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SUMMARY
Eukaryotic SMC complexes, cohesin, condensin, and Smc5/6, use ATP hydrolysis to power a plethora of
functions requiring organization and restructuring of eukaryotic chromosomes in interphase and during
mitosis. The Smc5/6 mechanism of action and its activity on DNA are largely unknown. Here we purified
the budding yeast Smc5/6 holocomplex and characterized its core biochemical and biophysical activities.
Purified Smc5/6 exhibits DNA-dependent ATP hydrolysis and SUMO E3 ligase activity. We show that
Smc5/6 binds DNA topologically with affinity for supercoiled and catenated DNA templates. Employing sin-
gle-molecule assays to analyze the functional and dynamic characteristics of Smc5/6 bound to DNA, we
show that Smc5/6 locks DNA plectonemes and can compact DNA in an ATP-dependent manner. These re-
sults demonstrate that the Smc5/6 complex recognizes DNA tertiary structures involving juxtaposed helices
and might modulate DNA topology by plectoneme stabilization and local compaction.
INTRODUCTION

Chromosome architecture and dynamics in interphase and dur-

ing mitosis are controlled by structural maintenance of chromo-

somes (SMC) complexes (Hassler et al., 2018). Eukaryotes

contain three distinct SMC complexes known as cohesin, con-

densin, and Smc5/6 (Jeppsson et al., 2014b). They form ring-

shaped structures and use ATP hydrolysis to fuel manipulation

of chromatin to change the topology of chromosomes (Hassler

et al., 2018). SMC complexes invariably contain a pair of SMC

proteins at their core (Losada and Hirano, 2005). SMCs are large

proteins with N- and C-terminal regions separated by coiled-coil

domains and a flexible hinge that allows the proteins to fold back

at the middle (Hirano, 2005; Nasmyth and Haering, 2005). The N

and C-terminal regions come together, generating an ATP-bind-

ing motif. SMC complexes are produced when a heterodimer of

SMCproteins dimerizes through the hinges and aligns in parallel,

forming a rod-shaped structure approximately 50 nm long with

the two ATP-binding or ‘‘head’’ domains at the base (B€urmann
Molecular Cell 80, 1039–1054, Decemb
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et al., 2019). SMC heads are bridged by specific kleisin subunits,

creating a tripartite structure. ATP binding and hydrolysis are

thought to power conformational transitions in SMC complexes

that are necessary for their function on DNA.

In addition to the SMC-kleisin core, Smc5/6 complexes contain

a significant number of additional subunits, referred to as non-

SMC elements (Nses). In yeast, these include Nse1, Nse2 (or

Mms21), Nse3, Nse4, Nse5, and Nse6 (Sergeant et al., 2005;

Zhao and Blobel, 2005). Nse4 is the Smc5/6-specific kleisin that

bridges the heads of Smc5 and Smc6 (Palecek et al., 2006),

whereas Nse2 is a SUMO (Small Ubiquin-like modifier) E3 ligase

(Andrews et al., 2005; Potts and Yu, 2005; Zhao andBlobel, 2005)

that mediates SUMOylation of Smc5/6 subunits (Bermúdez-Ló-

pez et al., 2015) as well as other SUMO targets (Aragón, 2018).

Nse2 is docked onto the coiled-coils of Smc5 (Duan et al.,

2009a), and its E3 ligase activity is stimulated by DNA (Varejão

et al., 2018). Purified Smc5 and Smc6 proteins bind DNA tightly

through several domains on the hinges, heads, and coiled-coil re-

gions (Alt et al., 2017; Roy and D’Amours, 2011; Roy et al., 2011,
er 17, 2020 ª 2020 The Author(s). Published by Elsevier Inc. 1039
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2015). Smc5/6 complex isolated from yeast interacts with circular

DNAs in a salt-resistant manner and promotes catenation of plas-

mids in the presence of Top2, suggesting that it can act as an

intermolecular linker (Kanno et al., 2015). Nse5 and Nse6 form a

subcomplex that has been reported to interact with Smc5/6

hinges in budding yeast (Duan et al., 2009a) and Smc5/6 heads

in fission yeast (Pebernard et al., 2006).

The Smc5/6 complex participates in critical chromosome

transactions during DNA replication (Menolfi et al., 2015;

Torres-Rosell et al., 2007) and repair (Ampatzidou et al., 2006;

Bermúdez-López et al., 2016; Bonner et al., 2016; De Piccoli

et al., 2006; Irmisch et al., 2009; Potts et al., 2006). Smc5/6 is

required for stability of damaged replication forks (Bermúdez-Ló-

pez et al., 2010; Branzei et al., 2006; Irmisch et al., 2009) aswell as

repair of DNA double-strand breaks (DSBs) by promoting homol-

ogous recombination between sister chromatids (DePiccoli et al.,

2006; Potts et al., 2006) through recruitment and SUMOylation of

cohesin (McAleenan et al., 2012; Wu et al., 2012).

The function of Smc5/6 is necessary during S and G2 phases

(Menolfi et al., 2015) to ensure chromosome segregation (Ber-

múdez-López et al., 2010; Gallego-Paez et al., 2014; Lindroos

et al., 2006; Torres-Rosell et al., 2005). In G2/M, Smc5/6 coloc-

alizes with cohesin complexes on chromosomes (Jeppsson

et al., 2014a). Binding of Smc5/6 on chromosome arms is

increased significantly when Top2 is inactivated during replica-

tion (Jeppsson et al., 2014a). Smc5/6 chromosomal binding

upon Top2 inactivation is independent of DNA damage, suggest-

ing that it arises as a consequence of the increased topological

tension caused by Top2 absence or the presence of unresolved

sister chromatid intertwines (SCIs) (Jeppsson et al., 2014a).

A recently discovered function of human Smc5/6 complexes is

their role in hepatocytes as a restriction factor for hepatitis B vi-

rus (HBV) infection (Decorsière et al., 2016; Murphy et al., 2016).

Transcription of viral genes from HBV episomal DNA is inhibited

in the presence of the Smc5/6 complex (Decorsière et al., 2016;

Murphy et al., 2016). The exact molecular mechanisms are yet to

be fully elucidated; however, some evidence indicates that

Smc5/6 binds to restriction factors such as PJA1, which allows

the complex to recognize and bind viral episomal DNA (Xu

et al., 2018). Importantly, Smc5/6 binding promotes further

recruitment of DNA topoisomerases (Xu et al., 2018) to the viral

genomes to restrict HBV. The SUMO ligase activity of human

Nse2 has been demonstrated recently to target Top2a lysine

1520 (Deiss et al., 2019), and this modification is critical for To-

p2a’s role in chromosome segregation (Deiss et al., 2019). It is

presently unclear whether Smc5/6 SUMO activity is also

required for its HBV restriction role.

Smc5/6 has been linked to a number of fundamental pro-

cesses on DNA, including DNA transcription, DNA replication,

DNA repair, and chromosome segregation. However, the core

activity of Smc5/6 and its effect on DNA are largely unknown.

Phenotypic studies where Smc5/6 function is abrogated have

not been able to resolve a clear role common to all scenarios

the complex affects; thus, no functional name has been assigned

to this complex.

Here we isolated pure recombinant Smc5/6 holocomplexes

from budding yeast and investigated their architecture and

biochemical activities. We show that Smc5/6 complexes, like
1040 Molecular Cell 80, 1039–1054, December 17, 2020
cohesin and condensin, exhibit a rod-shaped architecture with

folded coiled-coil conformations. Purified Smc5/6 exhibits

SUMO E3 ligase activity as well as the ability to bind DNA topo-

logically in an ATP-dependent manner. Topological binding was

increased in substrates harboring DNA crosses (i.e., supercoiled

DNA and catenanes), and analysis of purified Smc5/6 complexes

on magnetic tweezers confirmed that they can indeed lock DNA

plectonemes. We also show that stabilization of DNA crosses by

Smc5/6 promotes slow ATP-dependent compaction in single

DNA and more efficiently when two proximal DNAs are assayed.

Analysis of recombinant human Smc5/6 (Serrano et al., 2020

[this issue of Molecular Cell]) demonstrates that the reported

activities have been conserved during evolution.

RESULTS

Purified Smc5/6 Holocomplexes Exhibit DNA-
Dependent ATPase and SUMO E3 Ligase Activities
Smc5/6 is one of three SMC-kleisin complexes present in

budding yeast with an essential but unclear function on repli-

cated chromosomes (Aragón, 2018). The complex contains the

two SMC proteins Smc5 and Smc6, the kleisin Nse4, and five

additional Nse subunits (Sergeant et al., 2005; Zhao and Blobel,

2005). Previous studies aiming to purify the holocomplex

employed tandem affinity purification of endogenous yeast com-

plexes (Kanno et al., 2015). These approaches yielded com-

plexes contaminated with Top1 and Top2 proteins (Kanno

et al., 2015). Recently, the active five-subunit SMC complex,

condensin, was purified by overexpression of its subunits from

galactose (GAL)-inducible promoters in high-copy plasmids

(St-Pierre et al., 2009; Terakawa et al., 2017). We followed the

same rationale and overexpressed, in budding yeast, the 8 sub-

units of Smc5/6 from two high-copy plasmids. We then purified

budding yeast Smc5/6 holocomplexes containing Smc5, Smc6,

and Nse1-6 from exponentially growing yeast cultures (Figures

1A and 1B). Purification employed affinity chromatography with

a triple StrepII (Strepavidin) tag fused to the Smc6 subunit, fol-

lowed by passage through a Hi-Trap Heparin HP column. The

purified complex eluted as a single peak in size-exclusion chro-

matography (SEC) (Figure 1A), and mass spectrometry analysis

confirmed the presence of Smc5/6 octamers. Top1 or Top2 con-

taminants were not detected in the samples.

SMC complexes use ATP hydrolysis to fuel manipulation of

DNA (Hassler et al., 2018). We therefore sought to test the

ATPase activity of the purified Smc5/6 holocomplexes using an

ATP/NADH-coupled assay (Figure 1C). In the absence of DNA,

Smc5/6 lacked ATPase activity (Figure 1C). In contrast, Smc5/

6 hydrolyzed ATP (1.2 ± 0.3 ATP/s, mean ± SD; n = 4) at a similar

rate as the one observed for purified condensin (Terakawa et al.,

2017) in the presence of DNA (Figure 1C).

Smc5/6 contains a SUMO E3 ligase (Andrews et al., 2005;

Potts and Yu, 2005; Zhao and Blobel, 2005), Nse2, docked on

the Smc5 coiled-coil (Duan et al., 2009a). Thus, we sought to

investigate whether our purified Smc5/6 holocomplexes exhibit

SUMO E3 ligase activity. SUMOylation occurs by a sequential

enzyme cascade including E1-activating enzyme (Uba2/Aos1),

E2-conjugating enzyme (Ubc9), and E3-ligase (Siz1, Siz2, and

Nse2) (Hay, 2001). Detection of SUMO E3 activity in vitro is
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Figure 1. Purification of Budding Yeast Smc5/6 Holocomplex

(A) Size-exclusion chromatogram (SEC) of wild-type Smc5/6 complexes.

(B) Analysis of peak fractions (dark gray bar) by SDS-PAGE and Coomassie staining. The pale gray bar indicates the pooled and concentrated fractions.

(C) Representative example of an ATPase activity assay of the Smc5/6 complex in the presence and absence of relaxed circular DNA. The linear fit of the

absorbance data gives the ATPase rate consumption.

(D) Anti-SUMO western blot analysis of an in vitro SUMOylation reaction. Reactions were started by addition of 2 mM ATP and allowed to proceed for 15 min

before being stopped by addition of SDS-PAGE loading buffer. Where indicated (+), Smc5/6 and DNA were added to 165 nM and 10 nM, respectively.

(E) Quantification of conjugated bands from three independent in vitro SUMOylation reactions. Mean (red lines) and standard deviation (black lines) values are

shown. Circles represent the individual measurements for each of the experiments.

(F) Quantification of free SUMO bands from three independent in vitro SUMOylation reactions. Mean (red lines) and standard deviation (black lines) values are

shown. Circles represent the individual measurements for each of the experiments.

See Table S1 for further characterization of Smc5/6 purification. See Figure S1 for further characterization of Smc5/6 SUMOylation activity.
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complicated because SUMO conjugation of substrates can be

achieved with the E1 and E2 proteins alone,making the contribu-

tion of E3 activity difficult to detect. Smc5/6 subunits themselves

are a target of Nse2 (Bermúdez-López et al., 2016); conse-

quently, their SUMOylation status can be used as a readout of

Nse2 activity. The ATPase activity of Smc5/6 and DNA binding

are required for Nse2-dependent SUMOylation of Smc5 and

Smc6 (Bermúdez-López et al., 2015; Varejão et al., 2018). There-

fore, we carried out in vitro reactions using SUMO conjugation to

Smc5/6 holocomplex subunits in the presence and absence of

ATP and DNA (Figures 1D and 1E) to investigate whether E3 ac-

tivity had been retained after purification. We followed SUMO by

western blotting to quantify the amounts of conjugates present

under the different conditions (Figure 1D). No conjugation was

observed when Smc5/6 or ATP was omitted (Figures 1D and

1E). In the presence of Smc5/6 and ATP, SUMO conjugation

was detected; however, the conjugation could be mediated

solely by the presence of E1 and E2 in the reaction (Figures 1D

and 1E). When DNAwas also added to stimulate, the ATPase ac-

tivity of Smc5/6 (Figure 1C) and its E3 SUMO ligase function

(Bermúdez-López et al., 2015; Varejão et al., 2018), a significant

increase in SUMO conjugation was observed (Figures 1D and

1E), and all free SUMO in the reaction was consumed (Figure 1F).

In addition, we assayed Smc5/6-dependent SUMOylation of

the purified C-terminal fragment of the Smc5/6 kleisin Nse4,

which is a known substrate of Smc5/6 SUMO activity (Bermú-

dez-López et al., 2015, Varejão et al., 2018). In the absence of

Smc5/6, Nse4-Ct was not SUMOylated. However, when we

included Smc5/6, mono- and di-SUMOylation of Nse4-Ct

were detected. These results demonstrate that Nse2 retained

its E3 ligase activity in the purified Smc5/6 holocomplexes, con-

firming that the complexes are enzymatically active in SUMO

conjugation.

EM Analysis of Purified Smc5/6
Electron microscopy (EM) images of yeast cohesin suggest that

the complex adopts a rod-like structure that resembles two

cherries with a stem (B€urmann et al., 2019). The coiled-coils of

the Smc pair are jointed at their hinge regions, forming the

stem structure; however, a discontinuity in the coiled-coils, a re-

gion called the elbow, allows the stem to fold back (B€urmann

et al., 2019). The three eukaryotic SMC complexes are predicted

to contain similar coiled-coil discontinuity regions that allow

elbow formation in the structures (B€urmann et al., 2019). EM im-

ages of Smc5/6 complexes have not been reported to date. We

crosslinked our purified Smc5/6 holocomplexes using bissulfo-

succinimidyl suberate (BS3) (Figure 2A) and analyzed their struc-

ture by negative-stain EM (Figure 2B). We observed some

heterogeneity on the sample, but the particles appeared to be

generally monodispersed (Figure 2B). Single particles exhibited

the rod-like structure characteristic of SMC complexes (Fig-

ure 2C; B€urmann et al., 2019), with two lobbed regions at their

base (Figure 2C) and stalks that varied in size emanating from

them (Figure 2C). We used two-dimensional (2D) image classifi-

cation to obtain class averages of the conformations (Figure 2D).

The classification generated the expected two-cherries-with-a-

stem structure (Figure 2D). The length of the stem was approxi-

mately 29 nm (Figure 2D), which is consistent with the bending of
1042 Molecular Cell 80, 1039–1054, December 17, 2020
coiled-coils at an elbow region. We observed a similar rod-

shaped organization by cryo-EM imaging (Figure 2E). The Nse2

subunit is known to interact with the coiled-coil region of Smc5

(Duan et al., 2009a; Pebernard et al., 2006). Densities on the

stems of the particles were observed, which could represent

Nse2 bound to Smc5 coiled-coil regions. Our EM analysis dem-

onstrates that Smc5/6 holocomplexes present the characteristic

SMC rod structure with a flexible coiled-coil region capable of

bending at the elbow region.

Structural Organization of Smc5/6 Complexes
To obtain further insights into the structure of Smc5/6 complexes

at the sequence level, we employed mass spectrometry to iden-

tify BS3-crosslinked (Figure 3A) residue pairs in Smc5/6 holo-

complexes. We obtained a total of 815 crosslinks at a 2% FDR

(false discovery rate) (Figure 3B), of which 385 were unique in-

ter-subunit crosslinks and 430 were intra-subunit crosslinks.

Analysis of inter-subunit crosslinks between Smc5 and Smc6

confirmed the expected intimate association of these two sub-

units, which exhibited crosslinked pairs throughout their

coiled-coil regions and heads (Figure 3C). Intra-Smc6 crosslinks

revealed a domain in the hinge (around position 650) that cross-

linked with the N- and C-terminal domains (Figure 3D). We also

obtained crosslinked pairs between the hinge of Smc6 and the

head domains of Smc5 (Figure 3C); these can only be satisfied

by bending of coiled-coils, which allows the hinge region to

interact with the Smc head domains (B€urmann et al., 2019).

The midpoint of the interaction lies around amino acid (aa) 425

(Figure 3D), which has been predicted previously to be the

elbow region based on coiled-coil discontinuities (B€urmann

et al., 2019).

Previous studies had suggested that the N-terminal region of

Nse2 binds to Smc5 coiled-coils (Duan et al., 2009a; Pebernard

et al., 2006).We detected crosslink pairs betweenNse2 and both

coiled-coils of Smc5 (Figure 3E), and the Smc5 pairs mapped to

the proximal and terminal regions of Nse2 (Figure 3E). In addi-

tion, crosslinks between the Nse2 N terminus and Smc6

coiled-coils were observed (Figure 3E). These results show

that Nse2 sits between the two arms of the folded SMC struc-

ture. The Nse2 N-terminal region also interacts with Nse6 (Fig-

ure 3E). The number of interactions between Nse5 and Nse6

was lower than expected (Figure 3E). Nse5 and Nse6 exhibited

contacts with the Smc5 and Smc6 subunits. However, Nse5 in-

teractions were mapped to the Smc terminal head regions,

whereas Nse6 crosslinked higher up on the coiled-coils (Fig-

ure 3E). Finally, Nse1, Nse3, and Nse4 crosslinks were consis-

tent with the position of these subunits at the base of the dou-

ble-cherry structure, making significant contacts with the Smc

head domains (Figure 3E). We observed a significantly high num-

ber of crosslinks between Nse4 and Nse3 (Figure 3E) as well as

between these two Nse subunits and the Smc5 and Smc6 heads

(Figure 3E). These results indicate that Smc heads provide an

interaction hub with extensive protein-protein connections to

Nse4 and Nse3 subunits (Figure 3E). The crosslinking data are

in good agreement with our EM analysis data demonstrating

that the core of the Smc5/6 complex, formed by the SMC-kleisin,

is organized in a manner similar to other Smc complexes, with

the kleisin subunit Nse4 bridging the heads of Smc5 and Smc6
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Figure 2. EM Analysis of the Purified Smc5/6 Complex

(A) SDS-PAGE of the BS3-crosslinking stabilized complex.

(B) A typical field of view of negative-stain EM of BS3-crosslinked Smc5/6 complex.

(C) Particle instances of the Smc5/6 complex presumed to represent the biological monomer.

(D) Negative-stain 2D class averages of (C).

(E) Cryo-EM particles (left panel) and class averages (right panel) of the Smc5/6 complex presumed to represent the biological monomer.
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Figure 3. Crosslinking Mass Spectrometry Analysis of Smc5/6 Complex Architecture
(A) SDS-PAGE analysis of the Smc5/6 complex before and after BS3 treatment.

(B) Intra- and inter-subunit crosslinks of the Smc5/6 complex.

(C) Inter-subunit crosslinks between Smc5 and Smc6 proteins. Head and hinge regions were annotated accordingly to Duan et al. (2009b). Throughout the whole

figure, crosslinks indicating an interaction with the head and hinge regions of the Smc subunits are highlighted in blue.

(D) Smc6 intra-subunit crosslinks.

(E) Inter-subunit crosslinks of the non-SMC elements.

(F) Tentative topology of the Smc5/6 complex based on the crosslinking mass spectrometry data.

See Table S2 for further characterization of the Smc5/6 crosslinking mass spectrometry analysis.
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Figure 4. In Vitro Reconstitution of Smc5/6 Complex Topological Loading onto DNA

(A) Schematic representation of the Smc5/6 loading assay experimental design.

(B) Agarose gel electrophoresis showing recovered DNA after Smc5/6 complex loading and immunoprecipitation in the absence and presence of ATP, ADP,

and ATPgS.

(legend continued on next page)
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(Figure 3F) and that the Smc coiled-coils fold back at an elbow,

bringing hinge regions into proximity with Smc heads. Our cross-

link analysis also shows that Nse1 and Nse3 sit on top of Nse4

and interact extensively with the head domains of the Smc pro-

teins (Figure 3F). In addition, Nse2 was found close to the elbow

fold on the structure, interacting with the two coiled-coils regions

on either side of the hinges (Figure 3F). Furthermore, the cross-

link data of the Nse5/6 subcomplex shows that it sits between

Nse2 and the Nse1/3 subunits, making substantial interactions

with the base of the two Smcs (Figures 3E and 3F). The organi-

zation of Nse subunits in the structure is different from other

SMC complexes, where these HEAT (Huntingtin, elongation

factor 3, A subunit of protein phosphatase 2A [PP2A], signaling

kinase TOR1)-repeat proteins sit below the kleisin subunit (Fig-

ures 3E and 3F).

Topological Binding of Smc5/6 Is Stimulated in
Supercoiled and Catenated DNA
Smc5 and Smc6 can bind single-stranded DNA (ssDNA) and

double-stranded DNA (dsDNA) as monomers (Roy and

D’Amours, 2011; Roy et al., 2011) or dimers (Roy et al., 2015).

Thus, we sought to investigate the DNA binding properties of pu-

rified Smc5/6 holocomplexes. We used electrophoretic mobility

shift assays (EMSAs) to measure the ability of Smc5/6 com-

plexes to bind to linear ssDNA and dsDNA templates. We incu-

bated the substrates with increasing amounts of Smc5/6 in the

presence or absence of ATP. The Smc5/6 holocomplexes

were able to bind ssDNA and dsDNA in the absence of ATP,

similar to the properties reported for Smc5/6 heterodimers

(Roy et al., 2015). The presence of ATP clearly stimulated

Smc5/6 binding to dsDNA but had a modest effect on its ability

to interact with ssDNA.

Previous studies have shown that SMC complexes, including

Smc5/6, can bind circular DNA in a high-salt-resistant manner

(Cuylen et al., 2013; Haering et al., 2008; Kanno et al., 2015; Mur-

ayama and Uhlmann, 2014). This type of association with DNA is

usually referred to as topological binding. We investigated

whether our purifiedmaterial was capable of topological binding.

We incubated the Smc5/6 complex with relaxed circular DNA in

the presence of ATP. Smc5/6was immunoprecipitated, and after

several high-salt washes (Figure 4A), we eluted and analyzed, by

gel electrophoresis, the circular DNA that remained bound (Fig-

ure 4B). We observed that DNA was bound only in the presence

of ATP (Figure 4B). When we digested the circular DNA, only re-

sidual binding of circular DNA was observed, demonstrating that

linearization caused the majority of plasmids to escape Smc5/6.

Moreover, no DNA was retained in the presence of ADP or

ATPgS (adenosine 5’-gamma-thiotriphosphate) or in the

absence of nucleotides (Figure 4B), indicating that topological

entrapment by Smc5/6 had not taken place. Therefore, Smc5/

6 DNA entrapment in this assay is strictly dependent on ATP hy-

drolysis. Analysis of Smc5/6 binding to yeast chromosomes
(C) Gel image comparing the ability of the Smc5/6 complex to topologically load on

DNA (kDNA).

(D) Quantification of recovered DNA from three independent loading experiment

Circles represent the individual measurements for each of the experiments.

See Figure S2 for further characterization of Smc5/6 DNA binding activities.
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shows that the localization of the complex correlates with re-

gions containing DNA intertwines at cohesin sites (Jeppsson

et al., 2014a; Sen et al., 2016). Next we sought to investigate

whether DNA containing tertiary structure features, such as

supercoiled and catenated DNA, were substrates for topological

binding by Smc5/6. Negatively supercoiled plasmids did not

stimulate topological binding compared with relaxed DNA (Fig-

ures 4C and 4D). However, catenated and positively supercoiled

templates increased the amount of DNA bound topologically by

Smc5/6 (Figures 4C and 4D). Collectively, these results show

that topological binding by Smc5/6 has a preference for dsDNA,

particularly when tertiary structures are present, such as juxta-

posed DNA in the plectonemes of supercoiled plasmids and

the braids of catenated dimers. It is important to note that,

collectively, our EMSAs and topological binding assays demon-

strate that Smc5/6 interacts with DNA by direct electrostatic in-

teractions as well as topological entrapment.

Smc5/6 Compacts DNAMolecules against Low Physical
Forces in an ATP-Dependent Manner
To investigate the real-time activity of Smc5/6 holocomplexes,

we tested our purified complexes in a magnetic tweezers setup.

Here linear DNAmolecules are tethered between a glass surface

and magnetic beads. The beads are manipulated using a pair of

magnets that allows application of force and torque on the

captured DNA molecules (Figure 5A). Three types of DNA sub-

strates were captured and assayed: nicked single DNA mole-

cules, topologically constrained single DNAmolecules, and dou-

ble tethered DNA molecules. These can be differentiated by the

changes observed in the extension of tethered beads induced by

magnet turns.

Following pre-measurements to determine the type of DNA

substrate in each tether, we stretched the molecules against a

constant force of 0.5 pN before injecting Smc5/6 holocomplex

(10 nM) and ATP (2 mM) into the flow cell. After a lag time, we

observed a progressive decrease of extension in all tether types

(Figure 5B). We noticed that compaction in double tethered

beads occurred significantly faster than in beads tethered with

single DNA molecules (Figure 5B). Incubation with higher

amounts of Smc5/6 holocomplex (52 nM) caused speed

compaction to increase and a reduction of lag time. We tested

whether Smc5/6 could compact DNAs against higher forces,

and although we found that Smc5/6 complexes were able to

compact DNAs against forces of 1 pN, the speed of compaction

was significantly slower than that observed at lower forces.

These results show that Smc5/6 complexes are able to

condense DNA tethers, but only when the forces applied do

not exceed 1 pN.

Next we tested whether Smc5/6 compaction could be

reversed by applying a high force after compaction had been

achieved. We applied a force of 4 pN after DNA had been initially

compacted by Smc5/6 against 0.5 pN (Figure 5B). Upon force
to relaxed, negatively supercoiled (SC), positively SC plasmids and kinetoplast

s. Mean (orange lines) and standard deviation (black lines) values are shown.
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Figure 5. Single-Molecule Analysis of Smc5/6 on DNA Using MT (Magnetic Tweezers)

(A) Experimental configuration. DNAmolecules are attached between a glass surface and superparamagnetic beads in a fluidics cell. Force or torque is applied by

translating or rotating a pair of magnets above the chamber.

(B) Example of compaction experiments where samples containing 10 nM Smc5/6 with 2 mM ATP are introduced at 0.5 pN while monitoring the extension of

different DNA tethers. Stepwise compaction (total or partial) of the tethers is observed. At the end, the force increases to 4 pN, and the initial DNA extension is only

partially recovered. Traces for individual molecules are shown (red, blue, and black).

(legend continued on next page)
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increase (to 4 pN), the DNAmolecules largely re-extended. How-

ever, the full original extension was not recovered (Figure 5B),

demonstrating that Smc5/6 complexes are able to stabilize

some residual compaction even at this force. To test whether

ATP binding and hydrolysis were necessary for Smc5/6 to

compact DNA tethers, we investigated the activity of the com-

plex in the absence of ATP or the presence of the non-hydrolys-

able ATP analog AMP-PNP. Condensation was not observed in

the presence of AMP-PNP or when ATPwas omitted (Figure 5C).

Therefore, we conclude that Smc5/6 compaction is fully depen-

dent on ATP. To quantify the observed compaction effect, we

considered the difference between the initial and final length of

DNA (DL = L0�Lf) at 4 pN and after a condensation cycle (number

of molecules = 39; Figure 5D). The amount of residual condensa-

tion (DL) was significantly larger for double tethers, confirming

the preferred activity of Smc5/6 on this substrate (Figure 5D).

Next we sought to investigate whether DNA compaction by

Smc5/6 occurs by electrostatic interactions or through topolog-

ical binding of DNA. Electrostatic interactions should be sensi-

tive to high salt concentrations, whereas topological association

should resist high salt concentrations. Compaction induced by

Smc5/6 (Figure 6A) was completely reversed in the presence

of 1 M NaCl (Figures 5D and 6B). When full recovery was ob-

tained, lowering the salt concentrations to physiological levels

in the presence of ATP did not cause recompaction of the DNA

tethers (Figure 6C). However, when we flowed in new Smc5/6,

DNA compaction was again observed in the same molecules

(Figure 6D). Therefore, this result demonstrates that DNA

compaction observed in magnetic tweezers experiments does

not involve topological binding of Smc5/6 to DNA.

Our gel-based results demonstrate that Smc5/6 topological

binding has affinity for supercoiled and catenated substrates

(Figure 4C). To study the influence of supercoiling and braiding

in the compaction activity of Smc5/6, we carried out experiments

introducing supercoils and braids through rotation of the mag-

nets before adding the Smc5/6 complex (Figure 6E). We quanti-

fied DNA compaction at low force after 90 s and observed that

Smc5/6 compaction was favored on supercoiled and braided

substrates compared with nicked molecules. Although the

supercoiling sign did not affect the compaction level, Smc5/6

compaction was increased in braidedmolecules. Next we inves-

tigated whether Smc5/6 could bind plectonemes present on

supercoiled DNAs. We applied +30 or �30 turns to torsionally

constrained DNA molecules in the presence of only ATP (Fig-

ure 6F) or ATP and Smc5/6 (Figures 6G and 6H). We then rotated

the magnet back to the starting position (0 turns) and observed

that the end-to-end length did not fully recover when Smc5/6

and ATP were present (Figures 6G and 6H). These results
(C) Sequential MT experiment in which the effect of 10 nM Smc5/6 on individual t

the absence of ATP (left panel) and then with 2 mM AMP-PNP (a non-hydrolysable

min) whilemonitoring the DNA extension. The force ismaintained constant (0.5 pN

4 pN to compare DNA extensions. Themeasured extensions in the absence of ATP

those of bare DNA at each force. Traces for individual molecules are shown (red

(D) Difference in the extension of DNAmolecules at 4 pNmeasured before (L0) and

(DL = L0�Lf). Lf is estimated 5 min after increasing the force to 4 pN. The effect of 1

Smc5/6 and ATP. Bars represent the mean ± standard error from at least two in

See Figures S3–S5 for further characterization of Smc5/6 DNA compaction activ
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show that Smc5/6 has the ability to stabilize and lock DNA plec-

tonemes, preventing removal through inverted rotation. Identical

results were obtained regardless of the initial rotation direction,

indicating that Smc5/6 can stabilize positive and negative super-

coils, an ability demonstrated previously for condensin (Eeftens

et al., 2017).

Given the weak DNA compaction patterns exhibited by the

Smc5/6 complex, we decided to contrast Smc5/6 compaction

with that of condensin under the same experimental conditions.

Previous studies using magnetic tweezers have demonstrated

that condensin can compact DNA (Eeftens et al., 2017; Keen-

holtz et al., 2017; Strick et al., 2004).We purified yeast condensin

holocomplex using a protocol described previously (St-Pierre

et al., 2009; Terakawa et al., 2017). First we tested whether con-

densin could condense DNA stretched against a constant force

of 0.5 pN. We observed fast compaction of single (nicked and

torsionally constrained) and double DNAs. The lag time before

compaction was brief for condensin, and unlike that observed

for Smc5/6, no differences between single and double DNA

compaction were detected for condensin. Moreover, unlike

Smc5/6, condensin compaction was not delayed significantly

when we increased the stretching force to 1 pN. Our results

show that condensin and Smc5/6 generate compaction through

distinct mechanisms and exhibit different substrate preferences;

condensin shows robust and rapid compaction of DNA against

higher forces (1 pN) and, unlike Smc5/6, shows no preference

for torsionally constrained or double tethers. These results sug-

gest that Smc5/6-mediated compaction likely involves progres-

sive stabilization of DNA tertiary structures, involving DNA

crosses, which eventually causes the slow compaction of the

molecules we observed.

DISCUSSION

The function of the Smc5/6 complex has traditionally been asso-

ciated with DNA repair and maintenance of genomic stability.

The large body of studies seeking to explore the roles of the

complex has been directed toward analysis of cellular pheno-

types caused by Smc5/6 deficiency. Despite these efforts, the

function of Smc5/6 in vivo is poorly understood. Structural and

biochemical characterization of the SMC complexes cohesin

and condensin has provided important insights into their function

and their molecular mechanism of action (Hassler et al., 2018).

The number of biochemical studies of Smc5/6 is still limited.

Here we purified yeast Smc5/6 holocomplexes and demonstrate

that they adopt a typical double-cherry SMC-like structure,

including predicted features such as folding of the coiled-coils

to generate a bent stalk where the Smc hinge regions are
races of nicked, torsionally constrained, and double tethers is analyzed, first in

ATP analog, right panel). The samples are introduced at a low flow rate (20 ml/

) during themain part of the experiment, although the initial and final forceswere

or in the presence of AMP-PNP (Adenylyl-imidodiphosphate) corresponded to

, blue, and black).

after (Lf) condensation at 0.5 pN in the presence of Smc5/6, ATP, and/or NaCl

M NaCl is quantified after condensation experiments in the presence of 10 nM

dependent experiments.

ity on magnetic tweezers.
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Figure 6. Smc5/6-Dependent DNA Compaction Is Sensitive to High Ionic Strength

(A) Example of a sequential experiment where a sample containing 10 nMSmc5/6 with 2mMATP is first introduced at 0.5 pNwhile monitoring the DNA extension.

Stepwise compaction (total or partial) of the tethers is observed. At the end of the experiment, the force increases to 4 pN, and the initial DNA extension is only

partially recovered. Traces for individual molecules are shown (red, blue, and black).

(B) The fluidics cell is then washed with a high-salt (1 M NaCl) buffer, and the DNA molecules fully recover their initial extension at 4 pN. Traces for individual

molecules are shown (red, blue, and black).

(C) After washing with buffer, a solution supplemented with 2 mM ATP but no protein is added, and the force is lowered to 0.5 pN. There is no apparent

compaction under these conditions. Traces for individual molecules are shown (red, blue, and black).

(D) A fresh mixture of 10 nM Smc5/6 and 2 mM ATP is added, and clear condensation is observed again. Traces for individual molecules are shown (red, blue,

and black).

(E) Condensed extensions when the initial topological state of the DNA is altered by +10 or�10 turns. We allow condensation to occur for a fixed time (90 s) at low

force (0.5 pN) in the presence of 10 nM Smc5/6 and 2 mM ATP.

(F) Fully reversible rotation curve of a torsionally constrained DNA molecule at 0.5 pN in the presence of 2 mM ATP. First, 30 negative rotations are applied while

keeping the force constant. After 120 s at �30 turns, the magnet was turned to 30 positive rotations for another 120 s and back to 0. When turns are released

(magnets at 0 rotations), the initial end-to-end distance is fully recovered.

(legend continued on next page)
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proximal to the head domains. An interesting result is the posi-

tion, predicted from crosslinking analysis, of the E3 SUMO ligase

Nse2 within the complex. Nse2 interacts with the coiled-coil

regions below the elbow (Figure 3F). Nse2-dependent SUMOyla-

tion requires ATP binding to the Smc heads (Bermúdez-López

et al., 2015), indicating that global conformational changes of

the Smc subunits are functionally linked to the activity of Nse2.

Our results raise the possibility that the extension and bending

of the coiled-coils generates distinct functional states associ-

ated with the E3 SUMO ligase activity of the complex. Cryo-

EM analysis of purified yeast condensin shows different

functional conformations based on the presence of ATP, where

the condensin apo complex exhibits a fully folded conformation

(Lee et al., 2020) while ATP binding leads to a transition of the

Smc coiled-coils into amore extended architecture. Yeast cohe-

sin has also been shown to adopt extended and folded confor-

mations (B€urmann et al., 2019). Our EM analysis shows that

the coiled-coil regions in our Smc5/6 complexes are predomi-

nantly in a folded conformation. Structural analysis of purified

human Smc5/6 complexes (Serrano et al, 2020) demonstrates

that coiled-coils are extended. This difference might be due to

the prevalence of different conformational states in the two sam-

ples. Smc5/6 complexes are thus predicted, like condensin (Lee

et al., 2020) and cohesin (B€urmann et al., 2019), to switch be-

tween extended and folded coiled-coil conformations during

their nucleotide-based cycle.

Nse5 and Nse6 have been proposed to form a distinct sub-

complex (Pebernard et al., 2006) that interacts with the Nse1/

3/4 subunits at the base of the structure (Pebernard et al.,

2006). However, another report suggested that Nse5/6 bind to

the hinge regions of the Smc heterodimer (Duan et al., 2009a).

Our data show that Nse5 and Nse6 have contacts with the hinge

regions as well as the head regions of Smc5/6 (Figure 3E),

demonstrating that these subunits are likely to bridge these

two domains when the coiled-coils fold back at the elbow. Our

crosslinking data indicate that kleisin Nse4 sits at the base of

the structure (Figure 3E), below the Nse1 andNse3 subunits (Fig-

ures 3E and 3F). This is in contrast to what has been observed for

other SMC complexes, like condensin, where the HEAT-repeat

subunits sit below the kleisin (Hassler et al., 2019).

Our crosslink MS analysis also revealed an unusually high

number of crosslinks between Nse3, Nse4, and the Smc5/

Smc6 head domains (Figure 3E). Moreover, mutational analysis

around the N-terminal winged-helix domains in Nse3, at the cen-

ter of this interaction hub, revealed direct functional relevance,

with mutants exhibiting sensitivity to DNA-damaging agents

(Serrano et al., 2020). Importantly, clinical relevance has been

established for this region in lung disease, immunodeficiency,

and chromosome breakage (LIC) syndrome (van der Crabben

et al., 2016)

Previous studies have shown that Smc5/6 is able to bind circu-

lar DNA in a high-salt-resistant or topological binding manner
(G) Example of an irreversible rotation trace obtained with the same methodology

case, the original end-to-end distance is not recovered when the magnet is rota

(H) Similar experiment as in (G), only here positive rotations are applied first.

Numbers and arrows in (F) and (G) represent the sequence of rotations. See F

compaction activities.
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(Kanno et al., 2015). We observed that our purified Smc5/6 hol-

ocomplex can resist high-salt washes when bound to circular

plasmids (Figures 4A and 4B) and that this is dependent on the

presence of ATP (Figure 4B). Previously, topological binding by

Smc5/6 was assayed using nicked and negatively supercoiled

plasmids, and the affinity for these substrates has been reported

to be comparable (Kanno et al., 2015). We extended the analysis

to plasmids that are positively supercoiled and kinetoplast DNA,

which is catenated. Although Smc5/6 topological binding affinity

to nicked and negatively supercoiled plasmids was similar (Fig-

ures 4C and 4D), the presence of positive supercoiling and cate-

nation on the substrates significantly stimulated topological

loading (Figures 4C and 4D). The stimulation is consistent with

the idea that Smc5/6 binding sites coincide with regions where

higher levels of catenation and torsional stress are present;

i.e., cohesin sites in replicated chromosomes (Canela et al.,

2019; Jeppsson et al., 2014a; Sen et al., 2016). In addition, we

observed that Smc5/6 holocomplexes also bind ssDNA and

dsDNA through direct electrostatic interactions.

Furthermore, we employed magnetic tweezers to investigate

how Smc5/6 complexes associate with DNA. Our observations

show that Smc5/6 is capable of compacting DNA molecules

that are extended by low forces, below 1 pN (Figure 5B).

Compaction requires ATP hydrolysis by the Smc5/6 pair (Fig-

ure 5C) and is sensitive to washes with high-ionic-strength buffer

(Figure 6B), suggesting that compaction does not occur through

topological entrapment but through electrostatic wrapping-like

interactions with DNA, association between Smc5/6 complexes

or is mediated by a loop extrusion mechanism (Figure 7).

We found that the rates of DNA compaction were affected by

the presence of tertiary structures on the DNA substrates used

(Figure 6E). Torsionally constrained DNA molecules with pre-ap-

plied turns in both directions compacted more efficiently than

nicked DNA molecules (Figure 6E), and braided double DNAs

also exhibited greater rates of compaction (Figure 6E). This sug-

gests that Smc5/6 is more active when exposed to substrates

that contain regions with juxtaposed DNA helices. Moreover,

our results indicate that Smc5/6 is able to stabilize plectonemes

on DNA substrates (Figures 6F and 6G), consistent with the idea

that Smc5/6 binds preferentially to crossed DNA segments.

Although Smc5/6 topological loading was favored on positively

supercoiled substrates (Figures 4C and 4D), stabilization of pos-

itive and negative supercoils in our single-molecule assays was

comparable (Figures 6G and 6H) consistent with the finding

that compaction occurs through direct electrostatic interactions

rather than topological binding. Serrano et al. (2020) report that

the purified human Smc5/6 complex exhibits nearly identical

behavior on single-DNA molecule magnetic tweezers as what

we observed for yeast Smc5/6; namely, ATP-dependent

compaction under forces not exceeding 1 pN and stabilization

of supercoils of both signs. The evolutionary conservation of

substrate recognition (for DNAs containing plectonemes)
as described in (F) but in the presence of 50 nM Smc5/6 and 2 mM ATP. In this

ted back to 0.

igures S6 and S7 for further characterization of Smc5/6 and condensin DNA



Figure 7. Models of Smc5/6 Compaction

Activity

DNA compaction by the Smc5/6 complex could

be achieved by cooperative or non-cooperative

mechanisms. In the cooperative scenario, DNA

compactionwould be the result of the association

between several Smc5/6 complexes. Electro-

static interactions of single complexes with the

DNA (wrapping) or an extrusion-like activity of

the Smc5/6 complex could explain Smc5/6

compaction activity by non-cooperative mech-

anisms.
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suggests that this is a fundamental feature at the core of Smc5/6

function.

Presently, we do not fully understand the compaction mecha-

nism for Smc5/6; however, we speculate that binding to juxta-

posed DNAs and stabilization of DNA crosses might be an initial

step. We propose that this initial step might be followed by pro-

tein-protein interactions between prebound Smc5/6 complexes

or new binding of additional complexes around the sites of

already prebound complexes, achieving the final compaction

(Figure 7). In this scenario, greater amounts of DNA crosses in

the substrate would generate an increased level of Smc5/6

bound complexes stabilizing these structures, which, in turn,

would accelerate compaction as observed (Figure 6E). In addi-

tion, such a DNA compaction mechanism would be predicted

to be salt sensitive because the protein-protein interactions

would be disrupted in a high-ionic-strength environment. It is

important to note that our results suggest that the compaction

function by Smc5/6 occurs through recognition and stabilization

of juxtaposed DNAs structures, present in genomic regions were

DNA supercoiling or intertwines exist. It is possible that multiple

Smc5/6-binding events in such genomic regions could cause

local DNA compaction and facilitate processing of such struc-

tures by topoisomerases or shield the structures from nucleases

and other toxic enzymatic activities.

In summary,wepurifiedenzymatically active yeastSmc5/6hol-

ocomplexes, characterized their structural architecture with EM,

and analyzed their behavior on different DNAmolecule templates

using magnetic tweezers. Our data demonstrate that Smc5/6

complexes bind to substrates containing DNA tertiary structures,

where crossedDNAhelices arepresent.Wepropose thatSmc5/6

functions as a sensor for DNA supercoiling and intertwining by

recognizing and binding to crossed DNA helices. Our data also
Molecular Cell 80, 1039–1054, December 17, 2020 1051
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demonstrate that Smc5/6 is capable of

local DNA compaction. These activities

are predicted to influence or facilitate

recruitment of topoisomerase activity to

the DNA structures. Future analysis of

the cross-talk between Smc5/6 and

topoisomerase I and II should reveal

whether topoisomerase recruitment/

activity occurs through direct protein

interactions, enzymatic activity (i.e.,

SUMOylation), or modulation of DNA

(i.e., local compaction).Our study is a first
important step towards understanding the core activity of the

enigmatic Smc5/6 complex on DNA.

Limitations of Study
Finally, like every study, our work has limitations. Our structura

analysis represents only one conformational state of Smc5/6

and therefore it is difficult to predict whether this structure rep-

resents a functional state on DNA. SMC complexes are dynamic

machines that undergo conformational changes to perform thei

functions; thus, an understanding of Smc5/6 mechanisms and

how these translate into specific DNA manipulations will require

knowledge of all dynamic states and the binding to DNA

of these.
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(2006). Chromosomal association of the Smc5/6 complex reveals that it func-

tions in differently regulated pathways. Mol. Cell 22, 755–767.

Losada, A., and Hirano, T. (2005). Dynamic molecular linkers of the genome:

the first decade of SMC proteins. Genes Dev. 19, 1269–1287.

McAleenan, A., Cordon-Preciado, V., Clemente-Blanco, A., Liu, I.C., Sen, N.,

Leonard, J., Jarmuz, A., and Aragón, L. (2012). SUMOylation of the a-kleisin

subunit of cohesin is required for DNA damage-induced cohesion. Curr.

Biol. 22, 1564–1575.

Mendes, M.L., Fischer, L., Chen, Z.A., Barbon, M., O’Reilly, F.J., Giese, S.H.,

Bohlke-Schneider, M., Belsom, A., Dau, T., Combe, C.W., et al. (2019). An in-

tegrated workflow for crosslinking mass spectrometry. Mol. Syst. Biol.

15, e8994.

Menolfi, D., Delamarre, A., Lengronne, A., Pasero, P., and Branzei, D. (2015).

Essential Roles of the Smc5/6 Complex in Replication through Natural

Pausing Sites and Endogenous DNA Damage Tolerance. Mol. Cell 60,

835–846.

Murayama, Y., and Uhlmann, F. (2014). Biochemical reconstitution of topolog-

ical DNA binding by the cohesin ring. Nature 505, 367–371.

Murphy, C.M., Xu, Y., Li, F., Nio, K., Reszka-Blanco, N., Li, X., Wu, Y., Yu, Y.,

Xiong, Y., and Su, L. (2016). Hepatitis B Virus X Protein Promotes Degradation

of SMC5/6 to Enhance HBV Replication. Cell Rep. 16, 2846–2854.

Nasmyth, K., and Haering, C.H. (2005). The structure and function of SMC and

kleisin complexes. Annu. Rev. Biochem. 74, 595–648.

Palecek, J., Vidot, S., Feng, M., Doherty, A.J., and Lehmann, A.R. (2006). The

Smc5-Smc6 DNA repair complex. bridging of the Smc5-Smc6 heads by the

KLEISIN, Nse4, and non-Kleisin subunits. J. Biol. Chem. 281, 36952–36959.

Pebernard, S., Wohlschlegel, J.,McDonald,W.H., Yates, J.R., 3rd, and Boddy,

M.N. (2006). The Nse5-Nse6 dimer mediates DNA repair roles of the Smc5-

Smc6 complex. Mol. Cell. Biol. 26, 1617–1630.

Potts, P.R., and Yu, H. (2005). Human MMS21/NSE2 is a SUMO ligase

required for DNA repair. Mol. Cell. Biol. 25, 7021–7032.

Potts, P.R., Porteus, M.H., and Yu, H. (2006). Human SMC5/6 complex pro-

motes sister chromatid homologous recombination by recruiting the SMC1/

3 cohesin complex to double-strand breaks. EMBO J. 25, 3377–3388.

Rappsilber, J., Ishihama, Y., and Mann, M. (2003). Stop and go extraction tips

for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS

sample pretreatment in proteomics. Anal. Chem. 75, 663–670.

Roy, M.A., and D’Amours, D. (2011). DNA-binding properties of Smc6, a core

component of the Smc5-6 DNA repair complex. Biochem. Biophys. Res.

Commun. 416, 80–85.

Roy, M.A., Siddiqui, N., and D’Amours, D. (2011). Dynamic and selective DNA-

binding activity of Smc5, a core component of the Smc5-Smc6 complex. Cell

Cycle 10, 690–700.

Roy, M.A., Dhanaraman, T., and D’Amours, D. (2015). The Smc5-Smc6 heter-

odimer associates with DNA through several independent binding domains.

Sci. Rep. 5, 9797.

Seidel, R., van Noort, J., van der Scheer, C., Bloom, J.G., Dekker, N.H., Dutta,

C.F., Blundell, A., Robinson, T., Firman, K., and Dekker, C. (2004). Real-time

observation of DNA translocation by the type I restriction modification enzyme

EcoR124I. Nat. Struct. Mol. Biol. 11, 838–843.

Sen, N., Leonard, J., Torres, R., Garcia-Luis, J., Palou-Marin, G., and Aragón,

L. (2016). Physical Proximity of Sister Chromatids Promotes Top2-Dependent

Intertwining. Mol. Cell 64, 134–147.

Sergeant, J., Taylor, E., Palecek, J., Fousteri, M., Andrews, E.A., Sweeney, S.,

Shinagawa, H.,Watts, F.Z., and Lehmann, A.R. (2005). Composition and archi-

tecture of the Schizosaccharomyces pombe Rad18 (Smc5-6) complex. Mol.

Cell. Biol. 25, 172–184.

Serrano, D., Cordero, G., Kawamura, R., Sverzhinsky, A., Sarker, M., Roy, S.,

Malo, C., Pascal, J.M.,Marko, J.F., andD’Amours, D. (2020). The Smc5/6 Core

Complex Is a Structure-Specific DNA Binding and Compacting Machine. Mol

Cell 80, this issue, 1025–1038.
Molecular Cell 80, 1039–1054, December 17, 2020 1053

http://refhub.elsevier.com/S1097-2765(20)30790-5/sref16
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref16
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref17
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref17
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref17
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref18
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref18
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref18
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref18
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref19
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref19
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref19
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref20
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref20
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref20
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref20
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref21
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref21
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref22
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref22
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref22
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref22
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref23
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref23
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref23
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref24
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref24
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref25
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref25
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref25
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref26
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref26
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref27
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref27
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref28
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref28
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref28
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref29
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref29
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref29
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref29
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref30
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref30
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref30
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref31
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref31
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref32
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref32
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref33
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref33
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref33
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref34
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref34
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref34
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref35
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref35
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref35
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref35
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref36
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref36
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref36
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref37
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref37
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref37
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref38
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref38
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref39
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref39
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref39
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref39
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref40
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref40
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref40
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref40
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref41
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref41
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref41
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref41
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref42
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref42
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref43
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref43
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref43
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref44
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref44
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref45
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref45
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref45
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref46
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref46
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref46
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref47
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref47
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref48
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref48
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref48
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref49
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref49
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref49
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref50
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref50
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref50
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref51
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref51
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref51
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref52
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref52
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref52
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref53
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref53
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref53
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref53
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref54
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref54
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref54
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref55
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref55
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref55
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref55
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref56
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref56
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref56
http://refhub.elsevier.com/S1097-2765(20)30790-5/sref56


ll
OPEN ACCESS Article
St-Pierre, J., Douziech, M., Bazile, F., Pascariu, M., Bonneil, E., Sauvé, V.,
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-HA (12CA5) Sigma-Aldrich Sigma-Aldrich Cat# 11583816001,

RRID:AB_514505

Anti-Smt3 Abcam Abcam Cat# ab14405, RRID:AB_301186

Anti-rabbit IgG (HRP-conjugated) Thermo Fisher Scientific Thermo Fisher Scientific Cat# 10710965,

RRID:AB_772191

Anti-mouse IgG (HRP-conjugated) GE Healthcare GE Healthcare Cat# NA931,

RRID:AB_772210

Bacterial and Virus Strains

Stbl2 E.coli Invitrogen Cat#10268019

Rosetta 2 (DE3) pLysS E.coli Sigma-Aldrich Cat#CMC0014

Chemicals, Peptides, and Recombinant Proteins

DTT Sigma-Aldrich Cat#43815-5G

ATP Sigma-Aldrich Cat#A2383

biotin Sigma-Aldrich Cat#B4501-1G

cOmplete EDTA-Free protease inhibitor cocktail Sigma-Aldrich Cat#11873580001

BSA Thermo Fisher Cat#AM2616

Benzonase Sigma-Aldrich Cat#1000.01695.0001

Desthiobiotin Sigma-Aldrich Cat#D1411-1G

InstantBlue Sigma-Aldrich Cat#IBSL-1L

NuPAGE 4-12% Protein gels Thermo-Fisher Cat#NP0321PK2

Amicon Ultra Sigma-Aldrich Cat#UFC5003

Phospho(enol)pyruvic acid Sigma-Aldrich Cat#P7127

Pyruvate kinase Sigma-Aldrich Cat#P9136

Lactate dehydrogenase Sigma-Aldrich Cat#SAE0049

NADH Sigma-Aldrich Cat#10107735001

b-mercaptoethanol Sigma-Aldrich Cat#M6250

Imidazole Sigma-Aldrich Cat#I2399

Oriole Gel stain BioRad Cat#161-0495

SYBR Safe gel stain Thermofisher Cat#S33102

Critical Commercial Assays

StrepTrap HP Cytivia Cat#28907548

HiTrap Heparin HP 5ml Cytivia Cat#GE17-0407-01

Superose 6 10/300 GL GE Healthcare Cat#17517201

Ni-NTA Superflow QIAGEN Cat#30410

Dynabeads MyOne Streptavidin ThermoFisher Cat#65601

Deposited Data

Protein-protein crosslink mass spectrometry (CLMS) data PRIDE PXD016196

Experimental Models: Organisms/Strains

Yeast strain: Mata Lys2::pGAL1-GAL4::LYS2 pep4::HIS3

bar1::hisG ade2-1 trp1D2 can1-100 leu 2-3,112

Aragon lab n/a

Yeast strain: CCG14584 -Mata Lys2::pGAL1-GAL4::LYS2

pep4::HIS3 bar1::hisG ade2-1 trp1D2 can1-100 leu 2-3,112

[pRS424-GAL-SMC6-3xStrepII-SMC5-NSE4-His-3HA]

[pRS426-GAL-NSE1-NSE3-NSE6-NSE2-NSE5]

Aragon lab n/a

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Yeast strain: CCG14619 -Mata Lys2::pGAL1-GAL4::LYS2

pep4::HIS3 bar1::hisG ade2-1 trp1D2 can1-100 leu 2-3,112

[pRS424-GAL-SMC6-3xStrepII-SMC5-NSE4-His-3HA]

[pRS426-GAL-NSE1-NSE3-NSE6-NSE2-NSE5].

Aragon lab n/a

Oligonucleotides

Magnetic tweezers oligo 1 50GCGTAAGTGGTACCTT

ATAAAGTACTCGACTCAC

TATAGGGAGACCGGC-30

Sigma-Aldrich n/a

Magnetic tweezers oligo 2 50-AGTAAGCGCCGTCAGACCAG-30 Sigma-Aldrich n/a

Recombinant DNA

Plasmid- CCG1198 [pRS424-GAL1-SMC6-3xStrepII-

SMC5-NSE4-His-3HA TRP1]

Aragon lab n/a

Plasmid- CCG1204 [pRS426-GAL1-NSE1-NSE3-

NSE6-NSE2-NSE5 URA3]

Aragon lab n/a

Plasmid- CCG1267 [pRS426-GAL-SMC4StrepII-

SMC2-BRN1-His6-3HA URA3]

Haering lab Terakawa et al. 2017

Plasmid- CCG1268 [pRS424-GAL-YCS4-YCG1 TRP1] Haering lab Terakawa et al. 2017

Software and Algorithms

xiVIEV Rappsilber lab N/A

MaxQuant Max Planck, Martinsried,

Germany

https://maxquant.org

OriginPro 8 Originlab Corporation https://www.originlab.com/

LabVIEW software Moreno-Herrero lab N/A

RELION Scheres lab https://www2.mrc-lmb.cam.ac.uk/groups/

scheres/impact.html

Image Lab BioRad Cat#17006130

Fiji ImageJ Open source https://imageJ.net/Fiji

Other

Negatively supercoiled pBR322 Inspiralis Cat#S5001

Positively supercoiled pBR322 Inspiralis Cat#POS5001

Catenated DNA (kDNA) Inspiralis Cat#K2001
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RESOURCE AVAILABILITY

Lead Contact
Further information for resources and requests should be directed to and will be fulfilled by the Lead Contact, Luis Aragon (luis.

aragon@lms.mrc.ac.uk)

Materials Availability
All reagents generated in this study are available from the Lead Contact without restriction.

Data and Code Availability
The CLMS data have been deposited to the ProteomeXchange Consortium. PRIDE:PXD016196.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Yeast Strains
TheSmc5/6 holocomplex and condensin pentamer complexeswere expressed inW303 backgroundSaccharomyces cerevisiae strain.

Strains used
CCG14584 -Mata Lys2::pGAL1-GAL4::LYS2 pep4::HIS3 bar1::hisG ade2-1 trp1D2 can1-100 leu 2-3,112 [pRS424-GAL-SMC6-

3xStrepII-SMC5-NSE4-His-3HA] [pRS426-GAL-NSE1-NSE3-NSE6-NSE2-NSE5]
e2 Molecular Cell 80, 1039–1054.e1–e6, December 17, 2020
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CCG14619 -Mata Lys2::pGAL1-GAL4::LYS2 pep4::HIS3 bar1::hisG ade2-1 trp1D2 can1-100 leu 2-3,112 [pRS424-GAL-SMC6-

3xStrepII-SMC5-NSE4-His-3HA] [pRS426-GAL-NSE1-NSE3-NSE6-NSE2-NSE5].

Bacteria
Plasmids for expression of SMC complexes were amplified in JM109 E.coli strains Stbl2 (F- mcrA D(mcrBC-hsdRMS-mrr) recA1 en-

dA1lon gyrA96 thi supE44 relA1 l- D(lac-proAB) (invitrogen).

Plasmids
Plasmids for expression of SMC complexes:

CCG1198 [pRS424-GAL1-SMC6-3xStrepII-SMC5-NSE4-His-3HA TRP1] CCG1204 [pRS426-GAL1-NSE1-NSE3-NSE6-

NSE2-NSE5 URA3] CCG1267 [pRS426-GAL-SMC4StrepII-SMC2-BRN1-His6-3HA URA3] CCG1268 [pRS424-GAL-YCS4-

YCG1 TRP1]

METHOD DETAILS

Protein expression and purification
The different subunits of the S. cerevisiae Smc5/6 were synthesized under the control of galactose inducible promoters and

cloned into multicopy episomal vectors (URA3-GAL-NSE1-NSE2-NSE3-NSE5-NSE6 and TRP1-GAL-SMC6-3xStrepII-SMC5-

NSE4-8xHis-3xHA). Budding yeast W303-1a strains carrying both constructs (CCG14854) were grown at 30�C in selective

dropout media containing 2% raffinose and 0.1% Glucose to OD600 of 1. Protein expression was induced by addition of 2%

galactose and cells were grown for further 16 hours at 20�C. Cells were then harvested by centrifugation at 4�C, resuspended
in 2/3 volumes of buffer A (25 mM HEPES pH 7.5, 200 mM NaCl, 5% glycerol, 5 mM b-mercaptoethanol) containing 1 3 cOm-

pleteTM EDTA-free protease-inhibitor mix (Sigma-Aldrich), frozen in liquid nitrogen and lysed in a FreezerMill (SPEX Certiprep

6870). Cell powder was thawed at 4�C for 2 hours before mixing it with 1/3 volume of buffer A containing benzonase (Millipore)

and incubated at 4�C for an extra hour. Cell lysates were clarified by centrifugation at 45 000 g for 1 hour followed by filtration

using 0.22 mm syringe filters. Clarified lysates were loaded onto 5ml StrepTrap-HP columns (Cytivia) pre-equilibrated with buffer

A. The resin was washed with 5 column volumes of buffer A and eluted with buffer B (buffer A containing 5mM desthiobiotin). The

peak fractions containing the overexpressed proteins were pooled together and salt concentration was adjusted to 150 mM NaCl

using 100 mM NaCl-buffer A. Samples were then filtered as described above to remove residual aggregates and loaded onto 5ml

HiTrap Heparin HP (GE Healthcare) columns pre-equilibrated with 150mM NaCl-buffer A. Elution was carried out using a linear

gradient from 150 mM to 1 M NaCl in buffer A. Peak fractions were pooled and concentrated by centrifugal ultrafiltration (100 kDa

Amicon Ultra, Millipore). Salt concentration was adjusted to 300 mM NaCl during the concentration step. Gel Filtration was car-

ried out using a Superose 6 Increase 100/300 GL column (GE Healthcare) in 300 mM NaCl buffer A. Fractions corresponding to

monomeric complexes were pooled and concentrated as described above. Purified proteins were analyzed by SDS-PAGE (Nu-

PAGE 4%–12% Bis-Tris protein gels, ThermoFisher Scientific) and Coomassie staining (InstantBlue, Expedeon). Protein identi-

fication was carried out by mass spectrometry analysis. S. cerevisiae condensin complex was expressed and purified as previ-

ously described (St-Pierre et al., 2009; Terakawa et al., 2017). See Table S1 for further characterization of Smc5/6 purifications.

ATPase assays
ATPase activity of the purified Smc5/6 complexwasmeasured using an ATP/NADHcoupled assay in a spectrophotometer (LAMBDA

365 UV/Vis, PerkinElmer). The buffer for the experiments contained 50mMNaCl, 40mM Tris-HCl pH 7.5, 7mMMgCl2, 3 mMDTT, as

well as 0.5 mM phospho(enol)pyruvic acid, 200 U/ml pyruvate kinase, 200 U/ml lactate dehydrogenase, 80 mg/ml NADH and 2 mM

ATP. We tested Smc5/6 alone (without DNA) and in the presence of a circular plasmid with a 63-nt-gap (pNLrep, 6895 bp). The pro-

tein:DNA ratio was 4.87:1 in the final volume. The initial ATP concentration was 2 mM.

Expression and purification of E1, E2 and SUMO
Ubc9 and Smt3 expression were induced in Rosetta 2 (DE3) pLysS cells (Novagen) at an OD600 of 0,6 by addition of IPTG 1mM for 4

hours at 37�C. For Ubc9 purification, cells were recovered by centrifugation at 5000 g, resuspended in lysis buffer (50 mM NaCl,

50 mM KPO4, pH 6.5) and frozen at�80�C. Pellets were thawed in the presence of protease inhibitors and 5 mM b-mercaptoethanol

and spun at 100.000 g for 1 hour at 4�C. After centrifugation, the supernatant was passed through a 0.2 mmfilter. Next, imidazole was

added to 20 mM and incubated with 500 mL NiNTA beads prewashed in washing buffer (50 mMNaCl, 50 mM sodium phosphate, pH

6.5, 20mM imidazole, 5mM b-mercaptoethanol). After binding, beadswere washed 3 timeswith washing buffer andUbc9was eluted

in washing buffer containing 300 mM NaCl and 250 mM imidazole. Finally, the sample was dialyzed against 10% glycerol, 50 mM

HEPES pH 7, 100 mM NaCl, 10 mM MgCl2, 20 mM imidazole, 0,5 mM ZnCl2. For Smt3 purification, cells were recovered by centri-

fugation at 5.000 g and frozen at �80�C. Next, pellets were cryogenically disrupted in a ball mill and the pulverized material was re-

suspended in extraction buffer (300 mMNaCl, 50 mM Tris-HCl pH 8, 50 mM KPO4 pH 8, 0.5% NP-40, 5 mM b-mercaptoethanol and

protease inhibitors). The sample was sonicated and spun at 75.000 g for one hour at 4�C. The supernatant was passed through a

0,2 mm filter, and imidazole was added to 20 mM. Next, the extract was incubated with 500 mL of NiNTA beads prewashed with
Molecular Cell 80, 1039–1054.e1–e6, December 17, 2020 e3
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washing buffer (50mMTris-HCl pH 8, 50mMKPO4 pH 8, 5%glycerol, 5mM b-mercaptoethanol, 300mMNaCl, 20mM imidazole and

protease inhibitors). After binding, beads were washed 2 times with washing buffer, and eluted in washing buffer containing 250 mM

imidazole. The sample was finally dialyzed against the same buffer used for Ubc9. E1 was expressed and purified as described in

Johnson and Gupta (2001).

In vitro SUMOylation reactions
For Smc5/6 SUMOylation reactions, 165 nM Smc5/6 was mixed with 150 nM E1, 100 nM E2 and 16 mM Smt3 in reaction buffer con-

taining 40mMHEPES pH 7.5, 10 mMMgCl2, 50 mMNaCl and 0.2% Tween-20. Supercoiled DNAwas added to a final concentration

of 10 mM in the reactions stimulated with DNA. Reactions were started by addition of 2 mM ATP, incubated at 30�C for 15 minutes

and stopped with SDS-PAGE loading buffer (4% SDS, 10% sucrose, 0.025% bromophenol blue and 1% 2-mercaptoethanol in

0.25 M Tris-HCl pH 6.8). The products were analyzed by SDS-PAGE followed by Oriole staining (BioRad) or Western Blot with

anti-Smt3 (Abcam). Conjugated and free SUMO were quantified using Image Lab (Bio-Rad).

Protein cross-linking and Electron Microscopy
For cross-linking of Smc5/6 complex, samples at a concentration of 0.08 mg/mL were cross-linked in 25 mM HEPES pH8, 125 mM

NaCl, 5%glycerol, 1mMDTT at a ratio of 1:600 using BS3 for 2 hours at 4�C. The cross-linking reaction was quenched using 100mM

Tris-HCl pH 8. The cross-linked complex was applied to glow discharged continuous carbon EM grids at 0.02 mg/mL and adsorbed

for 1 minute. Sample was blotted and the grid negatively stained two times using 2%w/v Uranyl Acetate for 1 minute. The negatively

stained complex was visualized using a Philips CM200 operated at 160 kV and TVIPS TemCam F216. Particles were picked using

gautomatch and 2D averaging performed in Relion-3.0.

Grids for cryo-electronmicroscopywere prepared by depositing 3.5 ml of the diluted sample (dilution half, with a final concentration

of 0.44 mg/ml at 4�C) onto Quantifoil R2/2 copper grids. Samples were blotted before being frozen in liquid ethane at liquid nitrogen

temperature with a FEI Vitrobot Mark IV. Micrographs were collected on a Tecnai F20 FEG microscope operated at 200 kV. Images

were recorded on a Falcon II direct electron detector at a nominal magnification of 62,000 (final pixel size of 1.65 Å/pixel). The

total dose was 40 e�/Å2. A total of 1,400 particles was extracted and binned into boxes of 180x180 pixels with pixel size 3.30 Å.

CTF parameters were estimated with gCTF software. Particles were picked using gautomatch and 2D averaging performed in

Relion-3.0.

Crosslinking mass spectrometry
For crosslinking mass spectrometry analysis, 130 mg of Smc5/6 complex was crosslinked using a 1:600 molar ratio of protein to BS3

as described above. Quenching was achieved by addition of 50mM Ammonium Bicarbonate and incubation for 30 min at temper-

ature. Reaction products were separated by SDS-PAGE as described above. The gel band corresponding to the cross-linked spe-

cies was excised and digested with trypsin (Pierce, Germany). The resulting tryptic peptides were extracted and desalted using C18

StageTips (Rappsilber et al., 2003). Eluted peptides were fractionated on an ÄKTA Pure system (GE Healthcare) using a Superdex

Peptide 3.2/300 (GE Healthcare) at a flow rate of 10 mL/min using 30% (v/v) acetonitrile and 0.1% (v/v) trifluoroacetic acid as mobile

phase. Five 50 ml fractions were collected and dried.

Samples for analysis were resuspended in 0.1% (v/v) formic acid 1.6% (v/v) acetonitrile. LC-MS/MS analysis was conducted in

duplicate for SEC fractions and triplicate for SCX fractions, performed on an Orbitrap Fusion Lumos Tribrid mass spectrometer

(Thermo Fisher Scientific, Germany) coupled on-line with anUltimate 3000 RSLCnano system (Dionex, Thermo Fisher Scientific, Ger-

many). The sample was separated and ionized by a 50 cm EASY-Spray column (Thermo Fisher Scientific). Mobile phase A consisted

of 0.1% (v/v) formic acid and mobile phase B of 80% (v/v) acetonitrile with 0.1% (v/v) formic acid. Flow-rate of 0.3 mL/min using gra-

dients optimized for each chromatographic fraction from offline fractionation ranging from 2%mobile phase B to 45%mobile phase

B over 90 min. The MS data was acquired in data-dependent mode using the top-speed setting with a three second cycle time. For

every cycle, the full scanmass spectrumwas recorded in the Orbitrap at a resolution of 120,000 in the range of 400 to 1,600m/z. Ions

with a precursor charge state between 3+ and 6+ were isolated and fragmented. Fragmentation by Higher-energy collisional disso-

ciation (HCD) employed a decision tree logic with optimized collision energies (Kolbowski et al., 2017). The fragmentation spectra

were then recorded in the Orbitrap with a resolution of 30,000. Dynamic exclusion was enabled with single repeat count and 60 s

exclusion duration.

A recalibration of the precursor m/z was conducted based on high-confidence (< 1% false discovery rate (FDR)) linear peptide

identifications (Lenz et al., 2018). The recalibrated peak lists were searched against the sequences and the reversed sequences

(as decoys) of crosslinked peptides using the Xi software suite (v.1.6.745) for identification (Mendes et al., 2019). The following pa-

rameters were applied for the search: MS1 accuracy = 3 ppm; MS2 accuracy = 10 ppm; enzyme = trypsin (with full tryptic specificity)

allowing up to three missed cleavages; crosslinker = BS3 with an assumed reaction specificity for lysine, serine, threonine, tyrosine

and protein N termini; fixed modifications = carbamidomethylation on cysteine; variable modifications = oxidation on methionine,

hydrolyzed/aminolyzed BS3 from reaction with ammonia or water on a free crosslinker end. The identified candidates were filtered

to 2% FDR on link level using XiFDR v.1.1.26.58 (Fischer and Rappsilber, 2017). See Table S2 for further characterization of Smc5/6

crosslinking analysis.
e4 Molecular Cell 80, 1039–1054.e1–e6, December 17, 2020



ll
OPEN ACCESSArticle
In vitro Smc5/6 loading assay
For topological loading assays, 165nM of Smc5/6 complex was mixed with 3.3 nM DNA in a reaction volume of 15 mL and incubated

on ince in 56L buffer (40 mM Tris-HCl pH 7.5, 3 mMDTT, 7 mMMgCl2, 50 mMNaCl, 15% glycerol, 0.003% Tween) with or without 2

mM ATP. After 5min, samples were incubated for further 35min at 30�C with gentle agitation (400rpm) using a thermos-shaker. The

loading reaction was stopped by the addition of 500 mL of 56S buffer (40mMTris-HCl pH 7.5, 1mMDTT, 500mMNaCl, 10mMEDTA,

5% glycerol, 0.35% Triton X-100) and incubation for 5min at 30�C, followed by 5 min on ice. Smc5/6-DNA complexes were immu-

noprecipitated using a mMACS HA isolation kit (Miltenyi Biotec). 20 mL of magnetic beads were added to each reaction and rocked at

4 �C for 45 min. The magnetic beads were washed three times with 400 mL of 56W1 buffer (40 mM Tris-HCl pH 7.5, 1 mM DTT, 750

mMNaCl, 10 mM EDTA, 0.35% Triton X-100) and then once with 400 mL of 56W2 buffer (40 mM Tris-HCl pH 7.5, 1 mMDTT, 200 mM

NaCl, 0.1% Triton X-100). Beads were then suspended in 15 mL elution buffer (10 mM Tris/HCl, pH 7.5, 1 mM EDTA, 50 mM NaCl,

0.75% SDS, 1 mg ml�1 protease K) and incubated at 50 �C for 20 min. For assays involving linearization PstI digestion at 4 �C for

120 min was used. The reactions were resolved by electrophoresis for 1 h at 80V on 0.8% (w/v) TAE-agarose gels at 4�C. DNA
was either detected on a fluorescent image analyzer FLA-5000 (Fujifilm) after SYBR Green I (Invitrogen, ThermoFisher Scientific)

gel staining or using ethidium bromide staining and UV. Band intensities quantified using ImageQuant.

For Figure 4B, pUC19 was used as DNA substrate. Relaxed, supercoiled, positively supercoiled pBR322 and Crithidia fasciculata

kDNA used in Figures 4C and 4D were obtained from Inspiralis.

Magnetic tweezers DNA substrate
DNA substrate for magnetic tweezers experiments consisted of a 6337 bp-central fragment produced from the pNLrep plasmid by

digesting with KpnI and PsiI enzymes (both from NEB) and two digoxigenin or biotin-labeled DNA handles. Handles were PCR-

generated from the plasmid pSP73-JY0 (Fili et al., 2010) using oligos (forward: 50-GCGTAAGTGGTACCTTATAAAGTACTCGACT-

CACTATAGGGAGACCGGC; and reverse: 50-AGTAAGCGCCGTCAGACCAG), incorporating Dig-dUTP or Bio-dUTP (Roche). Dig-

and Bio-handles were digested with KpnI or PsiI, respectively, and ligated with the central fragment using T4 DNA ligase (NEB).

This procedure allowed us to obtain a high yield of torsionally-constrained as well as some residual nicked DNA molecules for

MT experiments. We avoided the exposure of the DNA to intercalating agents as well as to UV light during the production of all

DNA substrates.

Magnetic tweezers assays
We employed a custom-built MT setup similar to the system described previously (Seidel et al., 2004; Strick et al., 1998). In our as-

says, a DNA construct (6.3 kbp) is tethered between a glass slide covered with anti-digoxigenin and 1-mm streptavidin-coated super-

paramagnetic beads (Dynabeads MyOne Streptavidin, Thermo Fisher). A couple of permanent magnets that can be translated along

the optical axis of the microscope or rotated are used to stretch and twist the DNA. The magnetic beads are visualized using an in-

verted optical microscope while the bead position (DNA extension) is measured in real-time by video-microscopy, allowing us to

monitor the dynamics of DNAmodifying complexes at the single-molecule level. The full system is controlled by an in-house LabVIEW

software allowing real-time measurements of tens of beads at 120 Hz. The force is calculated from the Brownian excursions of the

bead in Fourier space and corrected for low pass filtering and aliasing (Daldrop et al., 2015).

Single nicked, single torsionally constrained and double DNA tethers were identified prior to each experiment by performing

extension versus magnet turns curves at high and low forces. Single nicked DNA molecules show no change in extension with

rotations. Single torsionally constrained DNA molecules do not display plectonemes at negative turns at high force but do form

plectonemes at low force. So, their mechanical response differs from that of double tethers, whose extension decreases both

with positive and negative turns, as the DNA molecules entangled. All the experiments were done at room temperature in a buffer

containing 50 mM NaCl, 40 mM Tris-HCl, pH 7.5, 7 mM MgCl2, 3 mM DTT, supplemented with 50 mM biotin when flowing the

Smc5/6 complex, unless stated otherwise. Additionally, DNA-bound streptavidin-covered magnetic beads were incubated

with 450 mM biotin prior to their introduction in the fluidics cell, to minimize possible unspecific interactions with the StrepII-

tag of the complex. The samples with Smc5/6 were injected into the fluidics cell at 20 ml/min. Shown traces include raw data

(120 Hz) and a 3 Hz filtering.

ctN4 in vitro SUMOylation reaction
For SUMOylation of ctN4 (C-terminal fragment of Nse4, residues 246 to 402), 2 mM ctN4 was added to SUMOylation reactions in the

same conditions as described above. The products were analyzed by SDS-PAGE followed by Oriole staining.

Liquid chromatography-tandem mass spectrometry (LC-MS/MS)
Samples were processed by in-Stage Tip (iST) digestion (Preomics GmbH, Planegg/Martinsried) following the manufacturer recom-

mendation. Protein digests were solubilised in 30 mL of reconstitution buffer and were transferred to auto sampler vials for LC-MS

analysis. Peptides were separated using an Ultimate 3000 RSLC nano liquid chromatography system (Thermo Scientific) coupled

to an LTQ Orbitrap Velos mass spectrometer (Thermo Scientific) via an EASY-Spray source. Sample volumes were loaded onto a

trap column (Acclaim PepMap 100 C18, 100 mm x 2 cm) at 8 ml/min in 2% acetonitrile, 0.1% TFA. Peptides were eluted on-line to

an analytical column (EASY-Spray PepMap C18, 75 mm x 50 cm). Peptides were separated using a ramped 120 min gradient
Molecular Cell 80, 1039–1054.e1–e6, December 17, 2020 e5
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from 1%–42%buffer B (buffer A: 5%DMSO, 0.1% formic acid; buffer B: 75%acetonitrile, 0.1% formic acid, 5%DMSO). Eluted pep-

tides were analyzed operating in positive polarity using a data-dependent acquisition mode. Ions for fragmentation were determined

from an initial MS1 survey scan at 30,000 resolution (atm/z 200) in theOrbitrap followed byCID (Collision-Induced Dissociation) of the

top 10most abundant ions in the Ion Trap. MS1 andMS2 scan AGC targets set to 1e6 and 1e5 for a maximum injection time of 50 ms

and 110 ms, respectively. A survey scan m/z range of 350 – 1500 m/z was used, with CID parameters of isolation width 1.0 m/z,

normalized collision energy of 35%, activation Q 0.25 and activation time of 10ms.

Data were processed using the MaxQuant software platform (v1.6.2.3) with database searches carried out by the in-built

Andromeda search engine against the Uniprot Saccharomyces cerevisiae database (6,729 entries, v.20180305). A reverse decoy

database was created and results displayed at a 1% false-discovery rate (FDR) for peptide spectrum matches and protein identifi-

cation. Search parameters included: trypsin, two missed cleavages, fixed modification of cysteine carbamidomethylation and var-

iable modifications of methionine oxidation, asparagine deamidation and protein N-terminal acetylation. Label-free quantification

was enabled with an LFQ minimum ratio count of 2. ‘Match between runs’ function was used with match and alignment time limits

of 0.7 and 20 min, respectively. Protein and peptide identification and relative quantification outputs from MaxQuant were further

processed in Microsoft Excel, with hits to the ‘reverse database’, ‘potential contaminants’ (peptide list only) and ‘Only identified

by site’ fields removed.

Electrophoretic gel mobility shift assay
6-carboxyfluorescein (6-FAM) 45nt-ssDNA and dsDNA substrates were prepared as described before (Terakawa et al., 2017). 50mM

of ssDNA or dsDNA were incubated with increasing concentrations of Smc5/6 complex ranging from 100 to 400 nM for 30 min at

28�C in 40 mM Tris–HCl pH 7.5, 50 mM NaCl, 7mM MgCl2, 10% glycerol, 0.2% NP-40 and 5 mM BME in a final volume of 15 ml

in the presence or absence of 8 mM ATP. The reactions were resolved by electrophoresis for 16 h at 30 V on 0.4% (w/v)

0.5xTAE-agarose gels at 4�C. DNA was detected on a fluorescent image analyzer FLA-5000 (Fujifilm) after SYBR Safe (Invitrogen,

ThermoFisher Scientific) gel staining.

QUANTIFICATION AND STATISTICAL ANALYSIS

ATPase assays
ATPase assay data in Figure 1C are shown as the mean ± SD. Three independent experiments were performed (n = 3).

SUMOylation assays
In vitro SUMOylation assays in Figures 1E and 1F depict the mean (red lines) and standard deviation (black lines) values. Three in-

dependent experiments were performed (n = 3).

DNA topological binding
In vitro topological binding assays shown in Figure 4D depict the mean (orange lines) and standard deviation (black lines) values.

Three independent experiments were performed (n = 3).

Magnetic tweezers experiments
Regarding the quantification of compaction described in Figure 5D, bars represents mean ± SE. The number of DNA molecules is

indicated in the main text.

Regarding the quantification of condensed extension after rotations in Figure 6E, boxplots indicate the median, 25th and 75th per-

centiles of the distributions and the whiskers show the outlier. The sample number varies between 48% n% 119. (Nicked +10 turns,

n = 101; TC +10 turns, n = 76; Double +10 turns, n = 59; Nicked�10 turns, n = 119; TC�10 turns, n = 108; Double�10 turns, n = 48).

Statistical analysis and data representation was performed using OriginPro 8.
e6 Molecular Cell 80, 1039–1054.e1–e6, December 17, 2020
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Supplementary Figure 1. Purified Smc5-6 complexes contain an active SUMO 
ligase. Related to Figure 1. (A) Oriole staining of SUMOylation reactions described 

in Figure 1D containing 150 nM E1, 100 nM E2 and 16 µM SUMO. Reactions were 

started by addition of 2 mM ATP and allowed to proceed for 15 min before being 

stopped by addition of SDS-PAGE loading buffer and boiling. Where indicated (+), 

Smc5/6 and DNA were added to 165 nM and 10 mM, respectively. (B) Oriole staining 

of ctN4 (c-terminal domain of Nse4) SUMOylation in the presence and absence of the 

Smc5/6 complex. Reactions were started by addition of 2mM ATP and allowed to 

progress for 30 minutes. Note that mono and di-sumoylated ctN4 species accumulate 

to a higher extent in the presence of Smc5/6 complex. ctN4-SUMO=monosumoylated 

ctN4; ctN4-SUMOx2= disumoylated ctN4. Red dots mark the position of sumoylated 

ctN4 species. 
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Supplementary Figure 2. DNA binding of Smc5/6 complex using an 
electrophoretic mobility shift assay. Related to Figure 4. (A) 50nM of 6-

carboxyfluorescein–labelled ssDNA and dsDNA were incubated with increasing 

concentrations of Smc5/6 complex, as indicated. (B) Agarose gel electrophoresis 

showing recovered DNA after Smc5/6 complex loading and immunoprecipitation in the 

absence and presence of digestion with the restriction enzyme PstI to linearise circular 

DNA bound so Smc5/6 complex.    

 
 



 
 

Supplementary Fig. 3
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Supplementary Figure 3. Mechanical response of nicked, torsionally 
constrained and double DNA molecules. Related to Figure 5. Example of a 

characterization experiment carried out in buffer, before the addition of proteins and 

ATP. 
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Supplementary Figure 4. DNA compaction experiment at 52 nM Smc5/6 and 0.5 
pN. Related to Figure 5. A sample containing 52nM of Smc5/6 and 2 mM ATP is 

introduced at 0.5 pN while monitoring the extension of different DNA tethers at the 

same time. A stepwise compaction (total or partial) of the tethers is observed. At the 

end of the experiment, the force increases to 4 pN and the initial DNA extension is 

only partially recovered. 

 

 

 

 

 



 
 

 

Supplementary Fig. 5
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Supplementary Figure 5. DNA compaction experiment at 40 nM Smc5/6 and 1 
pN. Related to Figure 5. Example of an experiment where a sample containing 40 

nM Smc5/6 with 2 mM ATP is first introduced at 1 pN while monitoring the DNA 

extension. Slow condensation of the tethers is observed. At the end of the experiment, 

the force increases to 4 pN and the initial DNA extension is only partially recovered. 
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Supplementary Figure 6. DNA condensation as function of topological state of 
DNA. Related to Figure 6. Illustrative example of individual condensation traces of 

single nicked, single torsionally constrained and double tethers when the initial 

topological state of the DNA is altered by +10 (A) or -10 (B) turns. We allowed DNA 

compaction by 10 nM Smc5/6 at a low force (0.5 pN) for 90 seconds and the force was 

afterwards raised to 4 pN for 180 seconds. The cycle was repeated 5 times per 

experiment. DNA compaction was quantified by comparing the initial extension of the 

molecule to the minimum extension value in each step (Δl). 

 

 

 

 



 
 

 

Supplementary Fig. 7
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Supplementary Figure 7. Condensation curves of S. cerevisiae condensin 
complex. Related to Figure 6. (A) SDS-PAGE and Coomassie Blue staining of 

purified condesin pentameric complex. (B) and (C) Magnetic tweezers experiments 

where 40 nM condensin and 2 mM ATP are added at 0.5 pN (B) and 1 pN (C) while 

monitoring the DNA extension. Robust condensation of the DNA tethers is observed 

in both cases.  
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