
	 	

9. Supplementary 
9.1. Fieldmap comparison 
 
Visual inspection identified that 12.7% (75 of 590) spin-echo EPI in the dHCP data was 
contaminated in all volumes, such that picking the best pair of spin-echo EPI volumes was 
inadequate.  In this circumstance, the fall-back procedure was to use the dual-echo-time-
derived fieldmap instead of the spin-echo-EPI-derived fieldmap. To ensure that the dual-
echo-time and spin-echo-EPI derived fieldmaps could be used interchangeably, we evaluated 
the similarity between the two. For each subject the spin-echo-EPI and dual-echo-time 
fieldmaps were resampled to the native functional space and then converted to a voxel 
displacement/shift map using FSL FUGUE. The shift maps were then masked by an eroded 
brain mask, to avoid edge effects as a consequence of registration misalignment. 
Supplementary Figure 3 presents an example dual-echo-time and spin-echo-EPI derived 
fieldmap from a single subject, as well as the distribution of voxel displacements for all in-
brain voxels from 409 subjects that had good quality dual-echo-time and spin-echo-EPI 
derived fieldmaps. The single-subject fieldmaps look qualitatively similar, although the dual-
echo-time-derived fieldmap appears smoother and the spin-echo-EPI-derived fieldmap 
appears to have greater values. This is supported by the voxel displacement distribution 
where the spin-echo-EPI-derived fieldmap has a slightly greater mean voxel displacement 
than the dual-echo-time-derived fieldmap. Two factors likely contribute to this difference, 1) 
the dual-echo-time fieldmap was acquired at lower resolution than the spin-echo-EPI 
(3x3x6mm and 2.15mm isotropic respectively), and 2) the dual-echo-time-derived fieldmap 
was low-pass filtered as part of the reconstruction process. Furthermore, the distribution of 
the voxel-wise difference between the dual-echo-time and spin-echo-EPI displacement/shift 
maps shows that 95% of voxels differ by less than 1 voxel shift and 99% by less than two 
voxels. We also inspected the distribution of spatial correlation between dual-echo-time and 
spin-echo-EPI derived fieldmaps across subjects, and observed good correspondence with 
75% (i.e., 25th percentile) of subjects showing correlation > 0.6. Given that the ground truth is 
unknown and that both the dual-echo-time and spin-echo-EPI derived fieldmaps are 
qualitatively and quantitatively similar, we felt justified in using the dual-echo-time-derived 
fieldmap as a back-up in cases where the spin-echo-EPI-derived was excessively 
contaminated by movement.  
 
 
 
 
  



	 	

9.2. Quality control prior to the dHCP neonatal fMRI pipeline 
 
The following is adapted from the release notes for the second dHCP data release. For further 
information see: http://www.developingconnectome.org/release-notes/  
 
QC on the released dHCP data is performed at numerous stages in the analysis, including 
within the dHCP neonatal fMRI pipeline as described in section 3.6.  There are three QC 
stages implemented prior to the neonatal fMRI pipeline: 

1) Scanning	notes	were	recorded	by	the	radiographers,	and	failed	scans	were	
manually	flagged	as	pass/fail	depending	on	if	the	issue	affects	the	fMRI	

2) After	reconstruction	the	images	were	visually	inspected	and	each	image	was	
flagged	as	PASS/FAIL	

3) The	structural	pipeline	QC	combined	several	sources	of	information:	479	scans	
were	scored	visually	as	part	of	an	atlas	construction	project	–	we	excluded	scans	
with	more	than	minor	motion	artifacts	in	T2.	We	excluded	11	scans	we	knew	to	
be	in	error.	We	excluded	scans	on	which	the	structural	pipeline	failed	to	run,	or	
on	which	the	separate	structural	QC	pipeline	failed	to	run.	We	did	a	visual	
inspection	of	all	white	matter	surfaces	and	excluded	one	scan	that	was	obviously	
failing.	
	

The dHCP-538 cohort used within this paper comprises 538 subjects that passed all three 
stages of QC prior to the fMRI pipeline.   
 
  



	 	

9.3. Detailed registration methods 
 
Primary registrations: 

1. fieldmap-to-structural: rigidly align the derived fieldmap magnitude image (see 
Section 3.2) to the native structural T2w space using FSL FLIRT (Jenkinson et al., 
2002b; Jenkinson and Smith, 2001). A boundary-based registration (BBR) (Greve and 
Fischl, 2009) cost function is used if the fieldmap was derived from the spin-echo EPI 
using TOPUP. However, the correlation ratio cost function is used if the fieldmap was 
derived from the gradient-echo, because the magnitude image lacked sufficient 
anatomical detail for BBR. The fieldmap-to-structural transform is then applied to re-
sample the fieldmap image into the native structural space.  

2. sbref-to-structural: rigidly align the single-band EPI image (sbref) with the native 
structural T2w space and correct for susceptibility distortions in the sbref using FSL 
FLIRT, with the BBR cost function, and FSL FUGUE. This step requires the 
fieldmap to be in the native structural space (calculated in the previous registration 
stage) to correct for susceptibility distortions in the sbref. 

3. functional-to-sbref (distorted): rigidly align the functional multiband EPI image with 
the sbref using FSL FLIRT with the default correlation ratio cost function. This 
registration step is performed prior to susceptibility distortion correction of the 
functional multiband EPI as described in Section 3.4, therefore both the functional 
multiband EPI image and the sbref will contain susceptibility distortions. The first 
volume of the functional multiband EPI is used as the source (moving) image in this 
registration because the subsequent motion correction and distortion correction stage 
defines the functional space from the first volume (see Section 3.4).   

4. functional-to-sbref (undistorted): after motion correction and distortion correction, 
rigidly align the distortion-corrected functional multiband EPI image with the 
distortion-corrected sbref using FSL FLIRT with the default correlation ratio cost 
function. All volumes in the corrected functional multiband EPI image are aligned as 
consequence of the motion correction, therefore the temporal mean is used as the 
source (moving) image in this registration as it typically has superior SNR compared 
to a single volume.  

5. template-to-structural: align the structural image to the dHCP volumetric template 
(Schuh et al., 2018). Template-to-structural registration is performed with a multi-
modal non-linear registration (ANTs SyN)(Avants et al., 2008) of the age-matched 
T1w and T2w template to the subject’s T1w and T2w structural, which is then 
combined with the appropriate atlas week-to-week transforms to yield a (40 week) 
template-to-structural transform. We also evaluated FSL FNIRT (Jenkinson et al., 
2012) and MIRTK Register (Similarity+Affine+FFD transformation model) (Schuh et 
al., 2018a) and found that Register achieved excellent alignment but was not 
sufficiently regularised, resulting in inversion inaccuracy, whilst FNIRT was well 
regularised but did not produce alignments with sufficient accuracy (data not shown). 
We expect that good results could be achieved with both tools if their parameters 
were optimised, however ANTs SyN provided a good trade-off between alignment 
and regularisation with minimal parameterisation. In the event that the age of the 
subject is outside the range covered by the atlas, the closest template age within the 
atlas is used. Furthermore, some subjects do not have a T1w image, so in this instance 
only the T2w is used.  

 



	 	

Composite registrations:  
1. fieldmap-to-functional: constructed by combining the fieldmap-to-structural transform 

with the inverse sbref-to-structural and inverse functional-to-sbref (distorted) 
transforms. This allows for the fieldmap to be resampled to the native functional 
space, which is essential for the subsequent motion correction and distortion 
correction (Section 3.4). We have found that aligning the fieldmap with the functional 
via the structural is very robust and precise, largely because both sub-steps use BBR 
cost functions.  

2. functional-to-structural (undistorted): constructed by combining the functional-to-
sbref (undistorted) affine with the sbref-to-structural affine, which yields a linear 
transform that aligns the motion and distortion corrected functional multiband EPI 
with structural T2w.  

3. functional-to-template	(undistorted):	constructed	by	combining	the	functional-to-
structural	(undistorted)	transform	with	the	inverse	template-to-structural	
transform	to	yield	the	functional-to-template	(undistorted)	non-linear	transform	
to	align	the	motion	and	distortion	corrected	functional	multiband	EPI	with	the	
40-week	dHCP	template	space	with	a	single	resampling.	

 
 	



	 	

9.4. Frame	censoring	
A popular and effective method of dealing with head motion is using spike regression 
(Satterthwaite et al., 2012) or scrubbing (Power et al., 2014, 2012), collectively referred to as 
frame censoring.  We evaluated frame censoring as an alternative to ICA+FIX denoising. 
 
Both spike regression and scrubbing first identify time-points (whole volumes referred to as 
frames) and then censor these frames so that they do not affect downstream analysis. The 
methods differ in how they identify the contaminated frames and how they censor the 
contaminated frames (Parkes et al., 2018). Both methods use framewise displacement (FD; 
see Table 3) with a fixed displacement threshold to identify contaminated frames. Scrubbing 
additionally uses DVARS (see Table 3), also with a fixed threshold. Censoring in spike 
regression is achieved by creating a nuisance regressor per contaminated frame, whereas 
scrubbing either excludes contaminated frames and/or replaces contaminated frames with 
surrogate data depending upon what is appropriate for downstream processing. Additionally, 
both techniques employ a heuristic that discards entire subjects if there are insufficient 
uncontaminated time-points.  
 
Frame censoring methods can be expensive in terms of the number of volumes censored, 
particularly in high-motion cohorts such as neonates. This is particularly true for the dHCP 
because the babies are scanned without sedation. Using framewise displacement (Power et 
al., 2012) as a surrogate for head motion and a threshold of 0.25 mm, as advocated by 
Satterthwaite et al. (2013), results in ~20% of frames being flagged as motion corrupted. 
Furthermore, if we exclude subjects with < 4 minutes of uncorrupted data, the minimum 
recommended in spike regression and scrubbing (Parkes et al., 2018; Power et al., 2014; 
Satterthwaite et al., 2013), then 148 subjects are excluded.  Thus, to implement frame 
censoring we needed to relax these criteria.  To identify contaminated frames we used 
DVARS (post motion and distortion correction), with a threshold defined as the 75th 
percentile + 1.5 times the inter-quartile range (the outlier whisker when creating boxplots).  
This resulted in 6.5% of frames being flagged as outliers.  We did not implement a minimum 
duration of uncorrupted data. To achieve censoring, we simply removed the contaminated 
volumes, because the downstream analysis plan was to perform group sICA which is not 
sensitive the discontinuous time. 
 
Frame-censoring was evaluated on the 512 subjects from that dHCP-538 data that passed QC 
(see Section 3.6). Frame censored data was compared to the ICA+FIX denoised data 
(described in Section 3.5) using spatial and network matrix similarity to the unbiased group 
template (also described in Section 3.5).  This required running a low-dimension group ICA 
(dimension=25) across all data (all subjects, frame-censored and ICA+FIX denoised) to 
generate unbiased group spatial maps.  The unbiased group maps were visually inspected and 
12 RSN consistent maps identified (see Supplementary Figure 4).   
 
Group paired-differences in spatial and network similarity between frame-censored and 
ICA+FIX denoised groups were calculated using FSL RANDOMISE (Winkler et al., 2014) 
with 5000 permutations. Multiple comparison correction was achieved by FDR correction.  
ICA+FIX denoised data resulted in significantly (p<0.025) greater spatial similarity to 10 of 
the 12 unbiased group RSN maps, whilst frame censoring only showed significantly 
(p<0.025) greater spatial similarity for one of the unbiased group RSN maps (see 
Supplementary Figure 5).  Furthermore, ICA+FIX denoising resulted in significantly 
(p<0.025) greater network matrix similarity to the unbiased group network matrix than frame 
censoring (see Supplementary Figure 6). 



	 	

 
These results suggest, that in this context, with this specific variant of frame censoring, that 
ICA+FIX denoising performs better than frame censoring on these specific benchmarks.   
However, ICA+FIX has the added advantage that it is able correct for confounds beyond 
motion, such as multi-band artefacts, scanner artefacts, venous/arterial related artefacts, and 
spin-history effects.  Thus, given this evidence, we have opted to implement ICA+FIX in this 
dHCP neonatal fMRI pipeline which enables us to largely mitigate the effects of many 
confounds without excluding any subjects or time-points. Furthermore, we have avoided 
introducing a hard-censoring step at an intermediate processing point, which could have 
ramifications for downstream processing.  It is important to note that this analysis was 
intended to provide readers with a sense for how the results from the two techniques 
compare, but does not necessarily provide definitive results regarding the performance of the 
two approaches in all situations, with all possible settings and analysis decisions included, as 
we only consider a single robust implementation of frame censoring and a specific set of 
outcome metrics.  We expect both approaches could be valuable and effective for infant 
fMRI processing in the right context, and both likely better than doing neither. 
 
 	



	 	

9.5. RSN	development	with	age	
 
Before regressing the RSNs on age to look for developmental changes, we examined a 
number of age-related confounds. Specifically, we correlated DVARS and FD (as surrogates 
for motion), tSNR, and brain volume (estimated as the number of voxels in the subject’s 
brain mask in func space). We observed a strong positive correlation of brain volume with 
age (r=0.86), a small positive correlation of mean DVARS (r=0.05) and mean FD (r=0.16) 
with age, and a small negative correlation of tSNR (r=-0.15) with age (see Supplementary 
Figure 7). Movement and tSNR are clear confounds that we wish to control for, however 
brain volume is more challenging because it can be both a confound (due to differences in 
relative resolution and signal) and a legitimate feature of development. Here we control for 
brain volume and present RSN correlations with development.  
 
We used FSL dual-regression (DR)(Nickerson et al., 2017) to regress all the PFM-group-
maps onto the individual subject fMRI to yield subject-specific time-courses and spatial 
maps. As recommended by Nickerson et al. (2017), when performing DR the subject-specific 
time-courses were variance normalised before the second stage of DR which means that the 
single-subject DR spatial maps capture both the spatial distribution of the network (i.e. 
“shape”) as well as the “amplitude” of the network activity. To allow us to delineate the 
contribution of just amplitude alone, we additionally calculated the median absolute deviation 
of the DR time-courses (not variance-normalised) as an estimate of amplitude. To investigate 
changes with age, we regressed the spatial maps and amplitudes on age, controlling for 
DVARS, FD, tSNR, and brain volume (see Supplementary Figure 8) using FSL 
RANDOMISE (Winkler et al., 2014) with 5000 permutations. Multiple comparison 
correction was achieved by FDR correction with a threshold of 0.05. 
 
The DR spatial maps show a significant effect for age in all modes, in voxels that are 
spatially consistent with the group PFM map. Furthermore, the DR amplitudes show a 
significant increase in network amplitudes with age for all modes, which indicates that the 
age effects are, at least partially, driven by this increased amplitude of network activity.  
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9.7. Supplementary	Figures	
 

 
Supplementary	Figure	1.	(A)	Eight	volumes	of	the	spin-echo	EPI	from	a	single	subject	with	AP	(left)	and	PA	(right)	phase	
encode	directions.	Z-smoothness	scores	are	presented	with	each	volume.	The	two	volumes	in	the	last	row	have	
stereotyped	striping	artefact	due	to	subject	movement,	resulting	in	higher	z-smoothness	scores.	The	two	volumes	in	the	
first	row	were	selected	as	the	two	"best"	images	based	on	z-smoothness.	(B)	Motion	and	distortion	corrected	spin-echo	
EPI	(upper)	and	estimated	susceptibility-induced	off-resonance	field	(lower)	derived	from	the	spin-echo	EPI	in	(A)	using	
FSL	TOPUP.		

	

 



	 	

 
Supplementary	Figure	2.	(Upper)	Distribution of z-smoothness across all spin-echo-EPI volumes (8 per subject) across all 
subjects (N=538). (Middle). Distribution of z-smoothness for selected “best” quality spin-echo EPI volume across subjects. 
Best is defined by, first, picking the best pair of spin-echo-EPI volumes (one per phase encode direction) that had the lowest 
z-smoothness within subject, and then using the maximum z-smoothness value from that pair. (Lower) Same distribution as 
the middle plot but split by whether all spin-echo-EPI volumes were retained or rejected by visual inspection. 

 
 

 
Supplementary	Figure	3.	(A) Exemplar gradient-echo and spin-echo derived fieldmaps and magnitude from a single-
subject. The spatial correlation of the two fieldmaps is 0.71. (B) Distribution of spatial correlation between gradient-echo 
and spin-echo fieldmaps from 409 subject. (C) Distribution of voxel displacement/shift for in-brain voxels from 409 subjects. 
To improve visualisation of the scatter plot density, only a 10% random sample of the (>11 million) voxel 
displacements/shifts are plotted. 
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Supplementary	Figure	4.	Unbiased	group	RSN	template	maps	created	from	ICA+FIX	and	frame-censored	data.	

 
Supplementary	Figure	5.	(Upper)	Mean	paired-difference	(ICA+FIX	minus	Frame	Censored)	of	spatial	similarity	to	the	
unbiased	group	template	per	map.		Asterisks	indicate	significant	differences.		(Lower)	Distribution	of	paired	differences	
(ICA+FIX	minus	Frame	Censored)	of	spatial	similarity	to	the	unbiased	group	template	pooled	over	all	spatial	maps.	



	 	

 
 
 

 
Supplementary	Figure	6.	Distribution	of	paired	differences	(ICA+FIX	minus	Frame	Censored)	of	network	matrix	
similarity	to	the	unbiased	group	network	matrix.	



	 	

 
Supplementary Figure 7.	 Age-related confounds. Age is the post-menstrual age-at-scan in weeks. 

 



	 	

 
Supplementary	Figure	8.	PROFUMO	group	spatial	maps	(PFM	Map),	t-statistic	of	age	regressed	on	the	DR	spatial	maps	
(t-stat),	and	DR	amplitudes	with	age	(Amplitude)	for	the	16	modes	qualitative	assessed	as	corresponding	to	adult	
resting-state	networks.	Age	is	the	post-menstrual	age-at-scan	in	weeks.	Brain	volume,	mean	DVARS,	mean	tSNR,	and	
mean	FD	confounds	are	controlled.	Only	significant	results	are	shown.	Multiple	comparison	correction	was	achieved	by	
FDR	correction	with	a	0.05.	

 	



	 	

 

 
Supplementary	Figure	9.	Examples	of	pre-term	subjects	scanned	at	29-weeks	(born	at	28-weeks),	31-weeks	(born	at	30-
weeks),	33-weeks	(born	at	31-weeks),	and	35-weeks	(born	at	34-weeks).		Upper	left	images	demonstrate	registration	
quality	for	these	subjects.	Fieldmap,	sbref,	and	template	images	are	resampled	to	the	native	structural	reference	space.	
The	outline	of	the	native	structural	white	matter	discrete	segmentation	is	overlaid	in	green.	Lower	left	images	
demonstrate	mean	tSNR	for	these	pre-term	subjects	at	different	pipeline	stages:	raw	EPI,	motion	and	distortion	
corrected	EPI	(MCDC),	and	denoised	EPI.	The	right	images	demonstrate	the	single-subject	spatial	maps	for	these	subjects	
after	dual-regressing	16	profumo	group	RSN	maps	onto	them.	The	first	column	is	the	group	map,	and	the	subsequent	
columns	are	the	dual-regressed	single	subject	maps.			



	 	

 

 
Supplementary Figure 10. Screen shot of automated QC report for a single subject. The dHCP neonatal fMRI pipeline 
automatically calculates a number of QC metrics (MP, DVARS, FD, tSNR, CNR, NMI; see Table 3) and generates this 
HTML QC report for each subject. The report presents each QC metric for the individual within the context of the group 
distribution for the corresponding metric. Additionally, the report also presents descriptive/qualitative summaries of the 
subject’s data quality in the form of “voxplots” and spatial maps for each metric as applicable. The report generation tool 
utilises a variety of open source packages including Jinja2 (http://jinja.pocoo.org/docs/2.10/), Bootstrap 
(https://getbootstrap.com/), Pandas (https://pandas.pydata.org/), Numpy (https://www.numpy.org/), Seaborn 
(https://seaborn.pydata.org), Nilearn (http://nilearn.github.io/), FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki), and PtitPrince 
(https://github.com/pog87/PtitPrince). 



	 	

 

 
Supplementary	Figure	11.	Term and pre-term HRF models constructed for this study, and the default adult HRF model 
within PROFUMO. The term and pre-term haemodynamic response characteristics are adapted from Arichi et al. (2012).  
The amplitude of each HRF is rescaled as part of the fitting process, however, for visualisation purposes the peak 
amplitudes here have been scaled to be consistent with the measured amplitudes in Arichi et al. (2012).  

 


