Supplementary Materials for: Simulating Absorption Spectra of Flavonoids in Aqueous Solution: a Polarizable QM/MM Study

Sulejman Skoko,[†] Matteo Ambrosetti,[†] Tommaso Giovannini,[‡] and Chiara Cappelli^{*,†}

†Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy. ‡Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway

E-mail: chiara.cappelli@sns.it

Figure S1: Dihedral distribution functions of α (top,blue), β (bottom,red) dihedral angles of Luteolin (**L**) as obtained from MD_{noVS} (left) and MD_{VS} (right).

Figure S2: Dihedral distribution functions of α (top,blue), β (middle,red) and γ (bottom,green) dihedral angles of Kaempferol (**K**) as obtained from MD_{noVS} (left) and MD_{VS} (right).

Figure S3: Dihedral distribution functions of α (top,blue), β (middle,red) and γ (bottom,green) dihedral angles of Quercetin (**Q**) as obtained from MD_{noVS} (left) and MD_{VS} (right).

Figure S4: Radial distribution functions between selected Oxygen atoms of Luteolin and water Hydrogen atoms as obtained from MD_{noVS} (blue) and MD_{VS} (red).

Figure S5: Radial distribution functions between selected Oxygen atoms of Kaempferol and water Hydrogen atoms as obtained from MD_{noVS} (blue) and MD_{VS} (red).

Figure S6: Radial distribution functions between selected Oxygen atoms of Quercetin and water Hydrogen atoms as obtained from MD_{noVS} (blue) and MD_{VS} (red).

Figure S7: QM/FQ UV/V is stick spectra computed on the snapshots extracted from $\rm MD_{VS}.$ The convoluted QM/FQ spectra are also plotted.

Figure S8: QM/FQ Excitation Energies of the first electronic transition as a function of α dihedral angle.

Figure S9: QM/FQ Excitation Energies of the first electronic transition as a function of β dihedral angle.

Figure S10: QM/FQ Excitation Energies of the first electronic transition as a function of γ dihedral angle.