

1 Supplementary Materials

The Prognostic Impact of Circulating Tumour DNA in Melanoma Patients Treated with Systemic

4 Therapies—Beyond *BRAF* Mutant Detection

5 Gabriela Marsavela¹, Peter A. Johansson², Michelle R. Pereira¹, Ashleigh C. McEvoy¹, Anna L.

6 Reid ¹, Cleo Robinson ^{3,4}, Lydia Warburton ^{1,5}, Muhammad A. Khattak ^{1,6,7}, Tarek M. Meniawy ^{1,5,6},

7 Benhur Amanuel 1,3,6, Michael Millward 5,6, Nicholas K. Hayward ², Melanie R. Ziman 1,4, Elin S.

8 Gray ^{1,*} and Leslie Calapre ¹

9 Additional Materials and Methods

10 Plasma Samples Preparation and cfDNA Extractions

11 Blood samples were collected prior to initiation of treatment and during subsequent follow-ups. 12 For most patients, bloods were collected within a week prior treatment initiation (102/142, 72%), 13 extending for some patients to up to -51 days, with no treatment received during this period. Blood 14 was collected into EDTA vacutainer or Cell-Free DNA BCT® (Streck, La Vista, NE) tubes. Within 24 15 hours of blood collection, plasma was separated by centrifugation at 300 g for 20 minutes, followed 16 by a second centrifugation at 4700 g for 10 minutes. All isolated plasma was stored at -80°C until 17 extraction. Plasma cell-free DNA (cfDNA) was isolated from 1-5 mL of plasma using QIAamp 18 Circulating Nucleic Acid Kit (Qiagen, Hilden, Germany) as per the manufacturer's instructions. The 19 recovered cfDNA was eluted in 40 µL AVE buffer (Qiagen, Hilden, Germany) and stored at -80°C 20 until ctDNA quantification by droplet digital polymerase chain reaction (ddPCR).

21 Tissue Analysis

Mutational profile of *BRAF* WT patients were identified from tissue biopsies as previously described by Calapre et al. [1]. A custom targeted next generation sequencing panel of 30 melanoma-associated genes (Illumina, San Diego, CA, USA) with 950 amplicons and an Illumina MiSeq instrument were used to identify mutational targets for circulating tumour DNA (ctDNA) analysis in *BRAF* WT patients. Genomic variants were annotated using the Illumina Variant Studio 3.0 software (Illumina). Mutational targets were selected based on the criteria previously described [1].

29 Plasma ctDNA Analysis

30 Commercially available and/or customised probes were used to analyse ctDNA by ddPCR. 31 Droplets were generated using an Automatic Droplet generator QX200 AutoDG (Bio-Rad, Hercules, 32 CA). Amplifications were performed in 40 µL reactions using cycling conditions previously 33 described [2]. Twenty-six different mutation variants in 10 different genes were utilised. Customised 34 primers and probes for TERT and DPH3 promoter mutation analyses were performed as previously 35 reported by McEvoy et al. [3] and Calapre et al. [1], respectively. Limit of blank for the ctDNA assays 36 was determined using normal plasma samples from at least 10 healthy controls. Levels of ctDNA 37 were defined based on the level of false positive droplets as previously specified in Calapre et al. [1] 38 or are detailed in Table S2. Samples yielding copies/mL of plasma equal or below the maximum false 39 positive concentration were deemed ctDNA negative.

40 Whole Exome Sequencing

41 The concentrations of cfDNA used for WES ranged from 1 to 7 ng/uL of cfDNA, with ctDNA 42 fraction >7% abundance. Whole exome sequencing (WES) was carried out using the Exome-seq

- 43 Agilent V6 capture Kit (Agilent) by Novogene (Hong Kong, China). Sequence reads were aligned 44 against human reference genome (hg19) using the Burrows-Wheeler aligner (BWA). Duplicate reads
- 45 were marked with Picard Tools, reads were realigned against known indels and base qualities
- 46 recalibrated using Genome Analysis Toolkit. As BWA assumes a unimodal distribution of fragment
- 47 size, we adjusted the Proper Pair bit in read pairs following the approach in BWA but the fragment
- 48 sizes were fitted against a mixture of two Gaussian models.

49 Somatic variants were identified with an in-house tool using the statistical framework 50 described by Li et al. [4]. We used a model assuming diploid germline and calculated the 51 phred-scaled likelihoods for possible genotypes. The tumour sample was modelled as a mixture of

51 phred-scaled likelihoods for possible genotypes. The tumour sample was modelled as a mixture of 52 tumour and normal cell DNA and likelihoods were calculated for an array of different variant allele

- 53 frequencies. The constrained log-likelihood ratio (CLR) was calculated and variants with CLR score
- 54 of < 70 were excluded from further analysis. Identified variants were further annotated using
- 55 ANNOVAR.

56 Neoepitope Load Prediction

57 To predict neoantigens formed by the somatic variants, we used pVACseq v4.0.9 [5] with

58 epitope lengths 8-11 and NetMHCpan binding predictions [6]

^a Exclusion of samples without follow-up within 12 weeks of therapy. ^b Exclusion of ipilimumab cases. ^c Exclusion of samples without detectable ctDNA at baseline and assessable 3-6 and/or 12-16 week follow-ups.

Figure S1. Flow chart showing group of samples included in the analyses.

Figure S2. Kinetics of ctDNA decay. Time course of biological response for patients undergoing first or second-line treatment with (**A**) anti-CTLA-4 (N = 8), (**B**) anti-CTLA-4 plus anti-PD-1 (N = 8), (**C**) anti-PD-1 (N = 21) or (**D**) targeted therapy (BRAF/MEKi) (N = 47). Solid lines in green, orange and red denotes treatment responders, stable disease and non-responders, respectively. Solid lines in green with red symbol represents patients that developed resistance to targeted therapy.

8

Variable	All samples	Immunotherapy	Targeted Therapy				
vallable	N = 142	N = 72 (%)	N = 70 (%)				
Age							
	20-49	11 (15)	20 (29)				
	50-69	38 (53)	31 (44)				
	70-99	23 (32)	19 (27)				
Sex							
	Female	18 (25)	25 (36)				
	Male	54 (75)	45 (64)				
M Classification							
	M1a	16 (22)	15 (21)				
	M1b	7 (10)	6 (9)				
	M1c	31 (43)	32 (46)				
	M1d	18 (25)	17 (24)				
Mutational Statu	IS						
BF	RAF Mutant	30 (42)	70 (100)				
NI	RAS Mutant	20 (28)					
	Others	22 (30)					
Treatment							
Anti-	PD1 inhibitor						
Per	nbrolizumab	40 (56)					
Ν	Jivolumab	1 (1)					
Anti-C	TLA-4 inhibitor						
II	pilimumab	12 (17)					
Anti-PD-1 plu	s anti-CTLA-4 inhibitor						
Ipilimu	mab/Nivolumab	19 (26)					
	BRAFi						
Ve	emurafenib		4 (6)				
Γ	Dabrafenib		1 (1.5)				
BRA	.Fi plus MEKi						
Dabraf	enib/Trametinib		64 (91)				
Vemurat	fenib/Cobimetinib		1 (1.5)				

Table S1. Demographic, clinicopathologic and treatment characteristics of included samples.

	Healthy	controls								
Assay	Positive Negative		iviaximum faise positive concentration (copies/mL)							
BRAF V600E	0	22	0							
BRAF V600K	0	23	0							
BRAF V600R	0	24	0							
BRAF V600E2	1	12	1							
BRAF K601E	3	7	2							
BRAF L597Q	0	16	0							
NRAS Q61K	0	19	0							
NRAS Q61L	3	9	7							
NRAS Q61P	1	9	2							
NRAS Q61R	7	24	9							
NRAS G12D	4	6	3							
NRAS G13D	4	6	5							
TERT C228T	1	29	2							
TERT C250T	2	18	4							
DPH3 C8T	1	10	2							
FLT1 T543I	1	17	1							
FLT1 E011K	3	7	9							
NF1 P1851S	3	11	3							
KIT L576P	1	11	2							
KIT V559A	0	12	0							
KIT W557R	0	13	0							
RAC1 P29S	0	12	0							
TP53 R248Q	6	8	2							
TP53 R248W	2	14	2							
TP53 R158H	1	9	2							
GRM3 E538K	0	10	0							
GRM3 S491L	6	12	6							

Table S2. Specificity of droplet digital polymerase chain reaction (ddPCR) assays.

11 Table S3. Clinical characteristics at baseline of the melanoma patients categ	orised in Groups A, B and C
---	-----------------------------

		Immun	otherapy								
	Group	Group	Group	Total	P-value*	Group	Group	Group	Total	P-value*	
Variable	A N=14 (%)	в N=8 (%)	N=7 (%)	N=29 (%)	(A/B/C)	A N=11 (%)	ы N=33 (%)	C N=3 (%)	N=47 (%)	(A vs B)	
Age	()					(*)	(* <i>1</i>		(* <i>1</i>		
≤65	5 (36)	6 (75)	3 (43)	14 (48)	0.100	5 (45)	18 (55)	2 (67)	25 (53)	0.001	
>65	9 (64)	2 (25)	4 (57)	15 (52)	.5 (52)		15 (45)	1 (33)	22 (47)	0.601	
Gender											
Female	3 (21)	1 (12)	4 (57)	8 (28)		5 (45)	10 (30)	1 (33)	16 (34)		
Male	11 (79)	7 (88)	3 (43)	21 (72)	21 (72) 0.120		23 (70)	2 (67)	37 (66)	0.359	
M Classification											
M1a/M1b	9 (67)	2 (25)	1 (14)	12 (41)	0 049	2 (18)	9 (27)	1 (33)	12 (26)	0 546	
M1c/M1d	5 (36)	6 (75)	6 (86)	17 (59)	0.049	9 (82)	24 (73)	2 (67)	35 (74)	0.540	
Brain metastasis											
Yes	3 (21)	2 (25)	1 (14)	6 (21)		6 (55)	5 (15)	1 (33)	12 (26)		
No	11 (79)	6 (75)	6 (86)	23 (79)	0.873	5 (45)	28 (85)	2 (67)	36 (74)	0.009	
Brain only											
metastasis											
Yes	2 (14)			2 (7)		2 (18)			2 (4)		
No	12 (86)	8 (100)	7 (100)	27 (93)	-	9 (82)	33 (100)	3 (100)	45 (96)	0.012	
ECOG status											
0	10 (71)	4 (50)	3 (43)	17 (59)	0.385	9 (82)	21 (64)	2 (67)	32 (68)	0.262	
1-3	4 (29)	4 (50)	4 (57)	12 (41)		2 (18)	12 (36)	1 (33)	15 (32)		
LDH levels											
Normal	7 (50)	2 (25)	1 (14)	10 (34)	_	8 (73)	13 (39)		21 (44)	_	
Abnormal	1 (7)	4 (50)	3 (43)	8 (28)			13 (39)	1 (33)	14 (30)		
Not available	6 (43)	2 (25)	3 (43)	11 (38)		3 (27)	7 (22)	2 (67)	12 (26)		
Prior lines of											
therapy	c (40)	4 (50)	a (a a)	44 (20)		4 (6)	2 (()		2 (0)		
Yes	6 (43)	4 (50)	1 (14)	11 (38)	0.316	1(6)	2 (6)	2 (4 0 0)	3 (6)	0.729	
	8 (57)	4 (50)	6 (86)	18 (62)		10 (94)	31 (94)	3 (100)	44 (94)		
status											
BRAF Mutant	6 (43)	2 (25)	1 (14)	9 (31)	0.373	11 (100)	33 (100)	3 (100)	47 (100)	-	
BRAF WT	8 (57)	6 (75)	6 (86)	20 (69)							

12 included in the survival analysis (N = 76).

13

*The P-value was calculated using the Chi-square test

8 of 10

	G	roup A/B/C In	nmunotherapy		Group A/B Targeted Therapy							
			UNIVARIATE	· · ·								
	Progression free s	urvival	Overall surviv	Overall survival		urvival	Overall survival					
Variables	HR (95% CI)	P-value	HR (95% CI)	P-value	HR (95% CI)	P-value	HR (95% CI)	P-value				
Age (≤65 vs. >65)	0.46 (0.15 - 1.40)	0.174	0.83 (0.25 - 2.73)	0.761	1.18 (0.60 - 2.34)	0.625	1.06 (0.45 - 2.50)	0.894				
Gender (female vs. male)	0.58 (0.19 - 1.75)	0.333	1.24 (0.31 - 5.03)	0.758	1.49 (0.71 - 3.12)	0.294	1.17 (0.47 - 2.90)	0.738				
M Classification (M1a/b vs. M1c/d)	1.93 (0.64 - 5.83)	0.242	3.81 (0.80 - 18.08)	0.092	0.97 (0.44 - 2.15)	0.947	1.54 (0.52 - 4.60)	0.436				
Brain metastasis (no vs. yes)	1.98 (0.60 - 6.50)	0.262	1.795 (0.46 - 7.01)	0.404	1.57 (0.74 - 3.34)	0.240	1.765 (0.71 - 4.39)	0.223				
Brain only metastasis (no vs. yes)			-	2.76 (0.63 - 12.18)	0.179	4.19 (0.92 - 19.00)	0.063					
ECOG (0 vs. 1-3)	1.52 (0.53 - 4.34)	0.437	1.82 (0.55 - 6.01)	0.323	2.34 (1.16 – 4.75) 0.018		4.56 (1.88 – 11.06)	0.001				
Prior lines of therapy (no vs. yes)	1.00 (0.35 - 2.89)	0.998	0.63 (0.18 - 2.20)	0.464	1.12 (0.34 - 3.67)	0.852	0.57 (0.07 - 4.24)	0.580				
BRAF mutational status (WT vs. mut)	0.77 (0.35 - 2.31)	0.636	0.72 (0.20 - 2.53)	0.607	-	-	-	-				
ctDNA levels Group A vs Group B Group A vs Group C	2.07 (0.51 - 8.36) 9.16 (2.47 - 33.93)	0.305 0.001	1.61 (0.32 - 8.06) 7.46 (1.70 - 32.76)	0.563 0.008	2.590 (0.99 - 6.77)	0.052	1.73 (0.57 - 5.18)	0.329				
	· · ·		MULTIVARIAT	E								
	Progression free survival		Overall survival		Progression free survival		Overall survival					
Variables	HR (95% CI)	P-value	HR (95% CI)	P-value	HR (95% CI)	P-value	HR (95% CI)	P-value				
Age (≤65 vs. >65)	0.32 (0.09 - 1.15)	0.081	7.33 (1.01 - 53.25)	0.049	· · ·		· · ·					
Gender (female vs. male)	. ,											
M Classification (M1a/b vs. M1c/d)			7.75 (1.02 - 58.76)	0.048								
Brain metastasis (no vs. yes)	3.39 (0.92 - 12.54)	0.068										
Brain only metastasis (no vs. yes)	. ,				13.27 (2.02 - 87.23)	0.007	8.77 (1.74 - 44.31)	0.009				
ECOG (0 vs. 1-3)				2.28 (1.09 - 4.76)	0.029	5.69 (2.23 - 14.51)	0.000					
Prior lines of therapy (no vs. yes)					· · · · ·		· · · · ·					
BRAF mutational status (WT vs. mut)												
Group A vs Group B Group A vs Group C	1.57 (0.37 - 6.61) 15.11 (3.33 - 68.54)	0.539 0.000	0.69 (0.12 - 3.86) 16.01 (2.44 - 105.07)	0.671 0.004	3.45 (1.02 – 11.65)	0.046						

Table S4. Univariate and multivariate Cox proportional-hazards regression analysis for associations between ctDNA levels and survival.

9 of 10

Table S5. Clinical characteristics of melanoma patients in this pilot cohort.

Sample ID	BRAF Status	Treatment	Best Clinical Response	Previous Immunotherapy	Start of Treatment	Treatment Completion or Latest Clinic	Length of Treatment (wks) P	" Adrenal	Brain	Bone	Liver Uropnar	Lung Lympn	INNSEATE Pancreas Feivic	Bub-cut	allouus
MP0104	BRAF Mut	Pembrolizumab	PR	Yes (Ipilimumab)	25/08/2014	29/08/2016	105					x			
MP0105	BRAF WT	Pembrolizumab	CR	Yes (Ipilimumab)	10/02/2015	29/12/2017	150		x			x		x	
MP0201	BRAF Mut	Pembrolizumab	CR	No (Radiation Therapy)	5/08/2016	27/02/2018	82			x	x	x			
MP0303	BRAF Mut	Pembrolizumab	PR	No	15/09/2017	Ongoing	90 ^a			x	x				
MP0302	BRAF Mut	Pembrolizumab	SD	No	13/12/2017	31/05/2018	24	x				x x			
MP0102	BRAF WT	Pembrolizumab	PD	No	10/12/2015	12/02/2016	9				x	x	x		
MP0103	BRAF Mut	Pembrolizumab	PD	No	13/05/2016	4/07/2016	7			x	x	x			
MP0301	BRAF WT	Pembrolizumab	PD	No	11/06/2015	18/09/2015	14								
MP0304	BRAF WT	Pembrolizumab	PD	No	03/04/2017	25/05/2017	7 x	(x	x					
^a Weeks in treatment as of 31/08/2019.															

1 References

 Calapre, L.; Giardina, T.; Robinson, C.; Reid, A.L.; Al-Ogaili, Z.; Pereira, M.R.; McEvoy, A.C.;
 Warburton, L.; Hayward, N.K.; Khattak, M.A., et al. Locus-specific concordance of genomic alterations
 between tissue and plasma circulating tumor DNA in metastatic melanoma. *Molecular oncology* 2019, 13, 171–184, doi:10.1002/1878-0261.12391.

Gray, E.S.; Rizos, H.; Reid, A.L.; Boyd, S.C.; Pereira, M.R.; Lo, J.; Tembe, V.; Freeman, J.; Lee, J.H.;
Scolyer, R.A., et al. Circulating tumor DNA to monitor treatment response and detect acquired resistance in patients with metastatic melanoma. *Oncotarget* 2015, *6*, 42008–42018, doi:10.18632/oncotarget.5788.

McEvoy, A.C.; Calapre, L.; Pereira, M.R.; Giardina, T.; Robinson, C.; Khattak, M.A.; Meniawy, T.M.;
Pritchard, A.L.; Hayward, N.K.; Amanuel, B., et al. Sensitive droplet digital PCR method for detection of TERT
promoter mutations in cell free DNA from patients with metastatic melanoma. *Oncotarget* 2017, *8*, 78890–78900,
doi:10.18632/oncotarget.20354.

4. Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and
 population genetical parameter estimation from sequencing data. *Bioinformatics (Oxford, England)* 2011, 27,
 2987–2993, doi:10.1093/bioinformatics/btr509.

16 5. Hundal, J.; Carreno, B.M.; Petti, A.A.; Linette, G.P.; Griffith, O.L.; Mardis, E.R.; Griffith, M.
17 pVAC-Seq: A genome-guided in silico approach to identifying tumor neoantigens. *Genome medicine* 2016, *8*, 11, doi:10.1186/s13073-016-0264-5.

19 6. Nielsen, M.; Lundegaard, C.; Blicher, T.; Lamberth, K.; Harndahl, M.; Justesen, S.; Roder, G.; Peters,

20 B.; Sette, A.; Lund, O., et al. NetMHCpan, a method for quantitative predictions of peptide binding to any

21 HLA-A and -B locus protein of known sequence. *PloS one* **2007**, *2*, e796, doi:10.1371/journal.pone.0000796.