Table S1. Effect of, and interaction between, production system and table grape variety on the dry matter content (DM),	
sugar content (SC) of pulp/juice, total phenolic content (TPC), total antioxidant activity (TAA; DPPH & TEAC assays)	
and total anthocyanin content (TAC) in white table grapes produced in South Africa from a UK supermarket survey	
carried out in 2015 (2-factor ANOVA, the values presented are means \pm SE)	

		Sugar con	ntent (SC)	Total phenolic		oxidant y (TAA)	Total ant content	hocyanin t (TAC)
Factors	Dry Matter content %	(pulp) Brix°	(juice) Brix°	content (TPC) mg GAE kg ⁻¹	DPPH μmol TE g ⁻¹	TEAC μmol TE g ⁻¹	mg cyan kg ⁻¹	mg mal kg ⁻¹
Production	/0	2120	2100			12.8		
system (PS)								
Organic	35 ±1	16.5 ± 0.4	16.3 ± 0.3	1366 ±92	58 ±1	5.8 ± 0.6	3.6 ±2.1	4.2 ±2.3
(n=44) Conventional (n=27) Variety	36 ±1	17.5 ±0.2	17.4 ±0.2	1173 ±60	56 ±1	5.1 ±0.4	5.4 ±2.0	6.1 ±2.2
(Vr)								
EarlySweet (n=6)	33 ±1 bc	16.1 ±0.4 bc	16.2 ±0.4 bc	1279 ±95 b	46 ±3 b	6.9 ±1.2	9.1 ±3.2	11.0 ±3.3
Prime (n=15)	33 ±1 c	15.6 ±0.3 c	15.7 ±0.3 b	1248 ±54 b	55 ±2 a	5.3 ±0.3	4.9 ±2.1	5.9 ±2.3
Sugraone (n=22)	36 ±1 b	17.0 ±0.4 b	17.0 ±0.4 a	1701 ±75 a	60 ±1 a	5.0 ±0.7	3.3 ±3.5	3.9 ±3.8
Thompson (n=28)	37 ±1 a	18.2 ±0.2 a	17.8 ±0.3 a	882 ±46 c	57 ±2 a	5.4 ±0.6	4.8 ±2.3	5.0 ± 2.4
ANOVA								
(p-values) Main effects								
PS	NS	0.0400	0.0254	0.0108	NS	NS	NS	NS
Vr	0.0002	< 0.0001	0.0005	<0.0001	0.0002	NS	NS	NS
Interactions*						110	1.0	1.0
PS:Vr	NS	NS	NS	0.0110 ¹	NS	NS	NS	NS

GAE, Gallic acid equivalent; **TE**, Trolox equivalent; **cyan**, cyanidin 3-glucoside equivalent; **mal**, malvidin 3-glucoside equivalent; *p*-values in *italic* are for trends (0.1<p<0.05); * only interactions for which significant results were detected are shown; ¹see Table S1.1 for interaction means ± SE;

Table S1.1 Interactions means ± SE for the effects of grape variety and production system on the total phenolic content in table grapes.

	Factor 1		ictor 2 ion System
Parameter	Grape Variety	Organic	Conventional
	Early Sweet	1180 ±19 aB	1328 ±142 aA
Total phenolic content	Prime	1088 ±72 bB	1388 ±35 aA
(mg GAE kg ⁻¹)	Sugraone	1845 ±87 aA	1556 ±109 bA
	Thompson	943 ±113 aB	861 ±49 aB

GAE, Gallic acid equivalent; For each parameter assessed means labelled with the same lower case letter within the same row and the same capital letters within the same column are not significant different (General Linear Hypothesis test p<0.05).

Table S2. Effect of, and interaction between, production system and table grape variety on the dry matter content (DM), sugar content (SC) of pulp/juice, total phenolic content (TPC), total antioxidant activity (TAA; DPPH & TEAC assays) and total anthocyanin content (TAC) in **red** table grapes produced in South Africa from a UK supermarket survey carried out in 2015 (2-factor ANOVA, the values presented are means ± SE

	Dry	Sugar	content (SC)	Total phenolic		ant activity 'AA)	antho	otal cyanin t (TAC)
Factors	Matter content %	(pulp) Brix°	(juice) Brix°	content (TPC) mg GAE kg ⁻¹	DPPH µmol TE g ⁻¹	TEAC μmol TE g ⁻¹	mg cyan kg ⁻¹	mg mal kg ⁻ 1
Production System (PS)					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	¥		
Organic (n=28)	40 ±1	18.8 ±0.3	19.1 ±0.3	1777 ±75	96 ±5	8.5 ±1.1	99 ±10	104 ±11
Conventional (n=29)	39 ±1	18.4 ±0.3	18.3 ±0.3	1471 ±73	88 ±4	5.3 ±0.7	120 ±12	127 ±13
Variety (Vr)								
Allison (n=8)	40 ±1	18.5 ± 0.4	18.9 ±0.4 ab	1845 ±63 a	100 ±3 ab	4.6 ±0.3 b	126 ±28	133 ±30
Crimson (n=25)	39 ±1	18.7 ±0.3	18.6 ±0.3 ab	1325 ±44 b	96 ±1 b	6.2 ±0.7 b	117 ±14	124 ±14
Flame (n=10)	37 ±1	17.6 ±0.5	17.7 ±0.4 b	1903 ±184 a	52 ±1 c	2.7 ±0.3 b	96 ±16	101 ±17
Sweet Celebration (n=14)	41 ±1	19.3 ±0.5	19.4 ±0.4 a	1821 ±92 a	109 ±5 a	12.0 ±1.7 a	96 ±11	101 ±12
ANOVA (p-values)								
Main effects								
PS	NS	NS	0.0407	0.0038	0.0166	0.0113	NS	NS
Vr	NS	NS	NS	0.0008	<.0001	0.0001	NS	NS
Interactions*								
PS:Vr	NS	NS	NS	NS	NS	NS	NS	NS

GAE, Gallic acid equivalent; **TE**, Trolox equivalent; **cyan**, cyanidin 3-glucoside equivalent; **mal**, malvidin 3-glucoside equivalent; *p*-values in *italic* are for trends (0.1<p<0.05); only interactions for which significant results were detected are shown;

Table S3. Effect of, and interaction between, production system and table grape variety on the dry matter content (DM), sugar content (SC) of pulp/juice, total phenolic content (TPC), total antioxidant activity (TAA; DPPH & TEAC assays) and total anthocyanin content (TAC) in **red** table grapes produced in Mediterranean countries from a UK supermarket survey carried out in 2015 (2-factor ANOVA, the values presented are means ± SE)

Factors	Dry Matter	Sugar content (SC)		Total phenolic – content		ant activity 'AA)	antho	otal cyanin t (TAC)
14015	content %	(pulp) Brix°	(juice) Brix°	(TPC) mg GAE kg ⁻	DPPH µmol TE g ⁻¹	TEAC µmol TE g ⁻	mg cyan kg-1	mg mal kg-1
Production system (PS)								
ORG (n=30)	37 ±1	17.7 ±0.3	17.9 ±0.3	2170 ± 141	110 ±6	9.3 ±0.9	62 ±7	66 ±8
CON (n=30)	37 ±1	17.5 ± 0.2	17.9 ±0.3	1955 ±109	111 ±7	9.5 ±1.1	101 ± 17	106 ± 18
Variety (Vr)								
Allison (n=4)	37 ±2	17.7 ±0.8 ab	18.5 ±0.7 ab	1913 ±288 ab	99 ±5 b	9.0 ±1.7 ab	83 ±31	88 ±33
Crimson (n=33)	37 ±1	17.1 ±0.2 b	17.5 ±0.2 b	1930 ±80 b	105 ±4 b	9.1 ±0.7 b	81 ±11	86 ±12
Flame (n=10)	33 ±4	17.8 ±0.4 ab	18.0 ±0.5 ab	2640 ±276 a	151 ±16 a	15.0 ±2.8 a	85 ±9	90 ±9
Scarlotta (n=13)	38 ±1	18.5 ±0.5 a	18.7 ±0.4 a	2005 ±250 b	96 ±4 b	6.1 ±0.6 b	79 ±34	83 ±36
ANOVA								
(p-values)								
Main effects	210							210
PS	NS	NS	NS	NS	NS	NS	NS	NS
Vr	NS	0.0284	0.0448	0.0338	0.0008	0.0028	NS	NS
Interactions *								
PS:Vr	NS	0.03541	NS	NS	NS	NS	NS	NS

GAE, Gallic acid equivalent; **TE**, Trolox equivalent; **cyan**, cyanidin 3-glucoside equivalent; **mal**, malvidin 3-glucoside equivalent; *p*-values in *italic* are for trends (0.1<p<0.05); * only interactions for which significant results were detected are shown; ¹see Table S3.1 for interaction means ± SE;

Table S3.1 Interactions means ± SE for the effects of grape type and production system on the sugar content in table grapes.

Parameter	Factor 1		ctor 2 ion System
	Grape Variety	Organic	Conventional
	Allison	$18.7 \pm 0.9 \text{ aA}$	16.7 ±1.2 aA
Sugar content	Crimson	16.7 ±0.3 bB	17.4 ±0.3 aA
(pulp Brix°)	Flame	18.4 ±0.3 aA	17.3 ±0.6 aA
	Scarlotta	18.4 ±0.6 aA	$18.8 \pm 0.5 \text{ aB}$

For each parameter assessed means labelled with the same lower case letter within the same row and the same capital letters within the same column are not significant different (General Linear Hypothesis test p<0.05).

Table S4. Effect of, and interaction between, production system and table grape variety on the dry matter content (DM), sugar content (SC) of pulp/juice, total phenolic content (TPC), total antioxidant activity (TAA; DPPH & TEAC assays) and total anthocyanin content (TAC) in **black** table grapes produced in Mediterranean countries from a UK supermarket survey carried out in 2015 (2-factor ANOVA, the values presented are means ± SE)

	Dry	Sugar co	Sligar content (SU)				thocyanin it (TAC)	
_	Matter content	(pulp)	(juice)	content (TPC)	DPPH μmol	ΤΕΑϹ μmol	mg cyan	mg mal
Factors	%	Brix°	Brix°	mg GAE kg-	TE g ⁻¹	TE g-1	kg-1	kg-1
Production system (PS)								
Organic (n=9)	34 ±2	16.5 ±0.8	17.3 ±0.9	2746 ±316	139 ±11	24 ±3	552 ±133	582 ± 140
Conventional (n=11)	34 ±1	16.4 ±0.7	16.5 ±0.6	2250 ±232	117 ±10	16 ±2	426 ±60	450 ±63
Variety (Vr)								
Autumn Royal (n=8)	33 ±1	15.0 ±0.5b	15.5 ±0.6 b	2069 ±362	109 ±5 b	15 ±2 b	237 ±54 b	250 ±57 b
Midnight Beauty (n=12)	36 ±2	17.5 ±0.6a	17.8 ±0.7 a	2742 ±190	139 ±11 a	23 ±3 a	646 ±77 a	682 ±81 a
ANOVA (<i>p</i> -values)								
Main effects								
PS	NS	NS	NS	NS	NS	0.0498	NS	NS
Vr	NS	0.0027	0.0044	NS	0.0321	0.0291	0.0028	0.0028
Interactions*								
PS:Vr	NS	NS	0.00261	NS	NS	NS	0.03071	0.03071

GAE, Gallic acid equivalent; **TE**, Trolox equivalent; **cyan**, cyanidin 3-glucoside equivalent; **mal**, malvidin 3-glucoside equivalent; *p*-values in *italic* are for trends (0.1<p<0.05); * only interactions for which significant results were detected are shown; ¹see Table S5.1 for interaction means ± SE;

Table S4.1 Interactions means ± SE for the effects of grape variety and production systems on the total anthocyanin content and sugar content in table grapes.

Parameter	rameter Factor 1		Factor 2 Production System		
	Grape Variety	Organic	Conventional		
Sugar content	Autumn Royal	14.6 ±0.7 aA	16.4 ±0.8 aA		
(juice Brix°)	Midnight Beauty	19.4 ±0.4 bB	16.6 ±0.9 aA		
Total anthocyanin content	Autumn Royal	177 ±36 aA	297 ±99 aA		
(mg cyan kg ⁻¹)	Midnight Beauty	851 ±110 aB	499 ±64 bA		
Total anthocyanin content	Autumn Royal	187 ±38 aB	313 ±104 aA		
(mg mal kg ⁻¹)	Midnight Beauty	898 ±116 aA	528 ±67 bA		

cyan, cyanidin 3-glucoside equivalent; mal, malvidin 3-glucoside equivalent; For each parameter assessed means labelled with the same lower case letter within the same row and the same capital letters within the same column are not significant different (General Linear Hypothesis test p<0.05).

Table S5. Effect of, and interaction between, production system and table grape variety on the dry matter content (DM), sugar content (SC) of pulp/juice, total phenolic content (TPC), total antioxidant activity (TAA; DPPH & TEAC assays) and total anthocyanin content (TAC) in **red** table grapes produced in Mediterranean countries from a UK supermarket survey carried out in 2016 (2-factor ANOVA, the values presented are means ± SE)

	Dry	, 0		Total phenolic		Antioxidant activity (TAA)		Total anthocyanin content (TAC)	
Factors	Matter content %	(pulp) Brix°	(juice) Brix°	content (TPC) mg GAE kg ⁻	DPPH µmol TE g ⁻¹	ΤΕΑϹ μmol ΤΕ g ⁻¹	mg cyan kg-1	mg mal kg-1	
Production system (PS)					Ũ	Ũ			
Organic (n=7)	40 ±2	18.8 ± 0.6	19.1±0.5	2033 ±139	142 ±3	5.4±0.6	78 ±8	82 ±9	
Conventional (n=7)	40 ±2	18.5 ± 1.0	19.2±0.7	2230 ± 148	140 ± 1	5.8 ± 0.4	175 ±43	184 ± 46	
Variety (Vr)									
Allison (n=5)	40 ±2	18.3 ±0.5	18.8±0.5	2058 ± 140	143 ±2	6.4±0.4	127 ±41	134 ±43	
Crimson (n=9)	40 ±2	18.8 ± 0.8	19.3±0.6	2172 ± 141	140 ±2	5.2±0.5	126 ±34	133 ±35	
ANOVA (p- values) Main effects									
PS	NS	NS	NS	NS	NS	NS	NS	NS	
Vr	NS	NS	NS	NS	NS	NS	NS	NS	
Interactions*									
PS:Vr	NS	NS	NS	NS	NS	NS	NS	NS	

GAE, Gallic acid equivalent; **TE**, Trolox equivalent; **cyan**, cyanidin 3-glucoside equivalent; **mal**, malvidin 3-glucoside equivalent; *p*-values in *italic* are for trends (0.1<p<0.05); * only interactions for which significant results were detected are shown;

Table S6. Effect of, and interaction between, production region, production system and table grape variety on the dry matter content (DM), sugar content (SC) of pulp/juice, total phenolic content (TPC), total antioxidant activity (TAA; DPPH & TEAC assays) and total anthocyanin content (TAC) in **red** table grapes from a UK supermarket survey carried out in 2015 (2-factor ANOVA, the values presented are means ± SE)

, , ,	Dry	Sugar con	ntent (SC)	Total phenolic		nt activity AA)		thocyanin t (TAC)
Factors	Matter content %	(pulp) Brix°	(juice) Brix°	content (TPC) mg GAE kg ⁻¹	DPPH µmol TE g ⁻¹	TEAC μmol TE g ⁻¹	mg cyan kg ⁻¹	mg mal kg ⁻¹
Production region (PR)								
South Africa (n=35)	39 ±1	18.4 ±0.2	18.4 ±0.2	1490 ±74	83 ±4	5.2 ±0.5	111 ±11	117 ±11
Mediterranean (n=43)	36 ±1	17.3 ±0.2	17.6 ±0.2	2095 ±98	115 ±6	10.5 ±0.9	82 ±9	87 ±9
Production system (PS)								
Organic (n=28)	37 ±1	17.7 ±0.3	18.0 ±0.3	2030 ±129	104 ±7	9.3 ±1.1	81 ±8	86 ±8
Conventional (n=50)	38 ±1	17.8 ±0.2	17.9 ±0.2	1708 ±82	100 ±5	7.4 ±0.8	103 ±10	109 ±10
Variety (Vr)								
Crimson (n=58)	38 ±1	17.8 ±0.2	18.0 ±0.2	1669 ±63	101 ±3	7.8 ±0.5	97 ±9	102 ±9
Flame (n=20)	35 ±2	17.7 ±0.3	17.8 ±0.3	2272 ±182	101 ±14	8.9 ±2.0	91 ±9	96 ±10
ANOVA								
(p-values) Main effects								
PR	0.0319	0.0017	0.0157	<0.0001	0.0001	0.0003	0.0425	0.0425
PS	NS	NS	NS	NS	NS	NS	NS	NS
Vr	0.0312	NS	NS	<0.0001	NS	NS	NS	NS
Interactions*								
PR : PS	NS	NS	0.0219 ¹	NS	NS	NS	NS	NS
PR : Vr	NS	0.0127 ²	0.0228 ²	NS	<0.0001 ²	0.0004 ²	NS	NS
PS : Vr	NS	NS	NS	NS	NS	NS	0.0182 ³	0.0182 ³
PR:PS:Vr	NS	NS	0.04424	NS	NS	NS	NS	NS

GAE, Gallic acid equivalent; **TE**, Trolox equivalent; **cyan**, cyanidin 3-glucoside equivalent; **mal**, malvidin 3-glucoside equivalent; *p*-values in *italic* are for trends (0.1); * only interactions for which significant results were detected are shown; ¹ see Table S6.1 for interaction means ± SE; ² see Table S6.2 for interaction means ± SE; ³ see Table S6.3 for interaction means ± SE; ⁴ see Table S6.4 for interaction means ± SE;

Table S6.1 Interactions means ± SE for the effects of production system and season on the sugar content in table grapes.

Parameter	Factor 1		ictor 2 ion System
	Production region	Organic	Conventional
Sugar content	South Africa	19.2 ±0.4 aA	18.0 ±0.3 bA
(juice Brix°)	Mediterranean	17.4 ±0.3 aB	17.7 ±0.3 aA

For each parameter assessed means labelled with the same lower case letter within the same row and the same capital letters within the same column are not significant different (General Linear Hypothesis test p<0.05).

Table S6.2 Interactions means ± SE for the effects of grape variety and season on the sugar content and antioxidant activity (TEAC, DPPH) in table grapes.

	Factor 2 Production region	
Grape Variety	Mediterranean	South Africa
Crimson	17.1 ±0.2 bA	$18.6 \pm 0.3 \text{ aA}$
Flame	$17.8 \pm 0.4 \text{ aA}$	$17.6 \pm 0.5 \text{ aA}$
Crimson	17.5 ±0.2 aA	18.6 ±0.3 bA
Flame	$17.9 \pm 0.5 \text{ aA}$	17.7 ± 0.4 aA
Crimson	9.1 ±0.7 aB	6.7 ±0.7 b A
Flame	15.0 ±2.8 aA	2.7 ±0.3 bA
Crimson	104 ±4 aB	96 ±1 bA
Flame	151 ±16 aA	52 ±1 bB
	Crimson Flame Crimson Flame Crimson Flame Crimson	Grape Variety Mediterranean Crimson 17.1 ±0.2 bA Flame 17.8 ±0.4 aA Crimson 17.5 ±0.2 aA Flame 17.9 ±0.5 aA Crimson 9.1 ±0.7 aB Flame 15.0 ±2.8 aA Crimson 104 ±4 aB

For each parameter assessed means labelled with the same lower case letter within the same row and the same capital letters within the same column are not significant different (General Linear Hypothesis test p<0.05).

Table S6.3 Interactions means \pm SE for the effects of grape variety and production system on the total anthocyanin content in table grapes.

Parameter	Factor 1	Factor 2 Production System		
	Grape Variety	Organic	Conventional	
Total anthocyanin content	Crimson	68 ±9 b A	110 ±12 aA	
(mg cyan kg ⁻¹)	Flame	$108 \pm 15 \text{ aA}$	76 ±10 aB	
Total anthocyanin content	Crimson	72 ±9 b A	116 ±12 aA	
(mg mal kg ⁻¹)	Flame	115 ±16 aA	$80 \pm 10 \ \mathbf{aB}$	

cyan, cyanidin 3-glucoside equivalent; **mal**, malvidin 3-glucoside equivalent; For each parameter assessed means labelled with the same lower case letter within the same row and the same capital letters within the same column are not significant different (General Linear Hypothesis test *p*<0.05).

Table S6.4 Interactions means \pm SE for the effects of production system, season and grape variety on the sugar content in table grapes.

Parameter	Factor 1	Factor 2	Factor 3 Production System	
	Production region	Grape Variety	Organic	Conventional
	Maditamanaan	Crimson	16.9 ±0.3 aB	17.8 ±0.3 aA
Sugar content (juice Brix°)	Mediterranean	Flame	$18.5 \pm 0.5 \text{ aA}$	$17.5 \pm 0.8 \text{ aA}$
		Crimson	19.9 ±0.3 aA	18.2 ±0.3 bA
	South Africa	Flame	$18.1 \pm 0.3 \text{ aA}$	$17.4 \pm 0.7 \text{ aA}$

For each parameter assessed means labelled with the same lower case letter within the same row and the same capital letters within the same column are not significant different (General Linear Hypothesis test p<0.05).

	Concentrations of individual anthocyanins (mg FW kg ⁻¹)							
						peonidin	malvidin	
Factor	delphinidin	cyanindin	petunidin	peonidin	malvidin	3-О-р-	3-O-p-	
	3-O-	3-O-	3-O-	3-O-	3-O-	coumaroyl	coumaroyl	
	glucoside	glucoside	glucoside	glucoside	glucoside	glucoside	glucoside	
Production system								
(PS)								
Organic (n=10)	14.7 ±6.9	26 ±11	12.5 ± 5.6	122 ±20	47 ±15	5 ±2	1.4 ± 0.4	
Conventional (n=9)	5.9 ±2.1	32 ± 10	6.8 ± 1.8	378 ± 106	60 ±13	8 ±3	2.3 ± 0.8	
Variety								
(Vr)								
Crimson (n=11)	0.6 ±0.2	9 ±2	1.6 ± 0.5	318 ± 95	40 ± 14	8 ±2	2.0 ± 0.7	
Flame (n=8)	24.2 ±6.7	57 ±11	21.1 ±4.9	141 ±24	70 ±13	6 ±2	1.5 ± 0.4	
ANOVA								
<i>p</i> -values								
Main effects								
PS	NS	NS	NS	0.0092	NS	NS	NS	
Vr	0.0001	0.0001	<0.0001	NS	NS	NS	NS	
Interactions*								
PS : Vr	0.0156 ¹	NS	0.0104^{1}	0.03351	0.0044 ¹	0.0216 ¹	0.0078 ¹	

Table S7. Effect of, and interaction between, year, production system and grape type on the content of individual anthocyanins in **red** table grapes produced in Mediterranean countries from a UK supermarket survey 2015 (3-factor ANOVA, the values presented are means ± SE).

p-values in *italic* are for trends (0.1); * only interactions for which significant results were detected are shown; ¹ see Table S7.1 for interaction means ± SE.

Table S7.1 Interactions means ± SE for the effects of grape variety and production system on the concentrations of
individual anthocyanin compounds in red grapes produced in the Mediterranean (2015).

	tor 2				
Parameter	Factor 1	Production system			
	Variety	Organic	Conventional		
delphinidin 3-O-glucoside	Crimson	0.4 ±0.2 a B	0.9 ± 0.4 a A		
(mg FW kg ⁻¹)	Flame	36.2 ±10.5 a A	12.2 ±1.7 b A		
petunidin 3-O-glucoside	Crimson	0.8 ±0.4 a B	2.6 ±0.9 a B		
(mg FW kg ⁻¹)	Flame	30.2 ±7.8 a A	12.1 ±1.2 b A		
peonidin 3-O-glucoside	Crimson	120 ±20 b A	555 ±151 a A		
(mg FW kg ⁻¹)	Flame	126 ±45 b A	157 ±24 a B		
malvidin 3-O-glucoside (mg	Crimson	15 ±5 b A	71 ±23 a A		
FW kg ⁻¹)	Flame	96 ±19 a A	46 ±5 b A		
peonidin 3-O-p-coumaroyl	Crimson	3.5 ±1.1 b A	12.7 ±3.9 a A		
glucoside (mg FW kg ⁻¹)	Flame	8.3 ±4.5 a A	3.1 ±0.7 a B		
malvidin 3-O-p-coumaroyl	Crimson	0.7 ±0.3 b A	3.6 ±1.2 a A		
glucoside (mg FW kg ⁻¹)	Flame	2.3 ±0.7 a A	$0.6 \pm 0.1 \text{ a B}$		

For each parameter assessed means labeled with the same lower case letter within the same row and same capital letters within the same column are not significant different (General Linear Hypothesis test p<0.05).

	•	Concentrations of individual anthocyanins (mg FW kg-1)						
						peonidin	malvidin	
Factor	dalahini din 2	cyanin-	petuni-	peoni	malvi-din	3-О-р-	3-О-р-	
	delphini-din 3- O- glucoside	din 3-0-	din 3-0-	-din 3-O-	3-O-	coumaroyl	coumaroyl	
	O- glucoside	glucoside	glucoside	glucoside	glucoside	glucoside	glucoside	
Production system (PS)								
Organic (n=5)	0.2 ±0.1	8 ±3	0.5 ± 0.2	184 ± 24	20 ±8	13 ±7	2.4 ± 1.4	
Conventional	0.8 ± 0.5	28 ±13	1.6 ±0.9	238 ±69	24 ±8	9 ±4	0.9 ± 0.3	
(n=5)	0.0 ±0.0	20 ±10	1.0 ±0.9	200 107	2110	/ 11	0.9 10.0	
Variety (Vr)								
Crimson (n=6)	0.2 ± 0.1	36 ± 14	1.9 ± 1.1	300 ± 52	29 ±10	25 ±5	3.5 ± 1.5	
Allison (n=4)	1.1 ± 0.7	6 ±1	0.5 ± 0.2	152 ±30	17 ±5	2 ±1	0.4 ± 0.2	
ANOVA <i>p-</i> values								
Main effects								
PS	NS	0.0033	NS	NS	NS	NS	NS	
Vr	NS	NS	NS	NS	NS	NS	NS	
$Interactions^*$								
PS : Vr	NS	0.00331	NS	0.0106 ¹	NS	0.0442 ¹	0.0144 ¹	

Table S8. Effect of, and interaction between, year, production system and grape type on the content of individual anthocyanins in **red** table grapes produced in Mediterranean countries from a UK supermarket survey 2016 (3-factor ANOVA, the values presented are means ± SE).

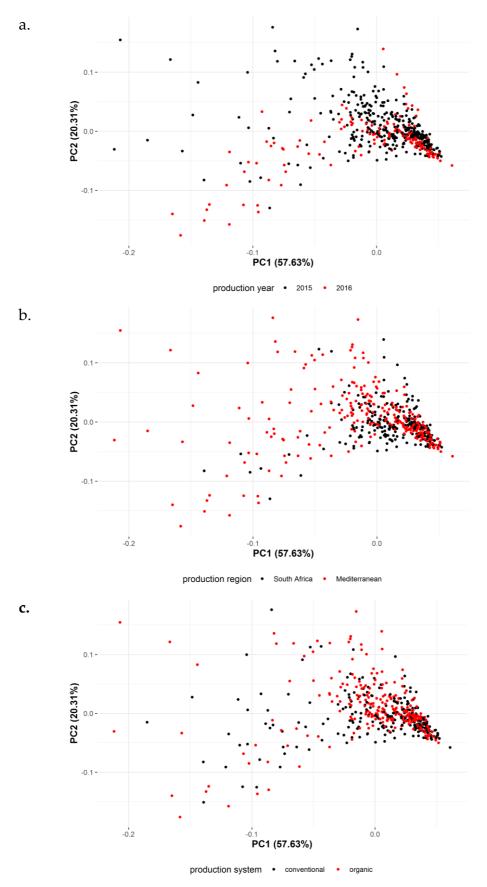
p-values in *italic* are for trends (0.1); * only interactions for which significant results were detected are shown; ¹ see Table S8.1 for interaction means ± SE.

Table S8.1 Interactions means \pm SE for the effects of grape variety and production system on the concentrations of individual anthocyanin compounds in red grapes produced in the Mediterranean (2016).

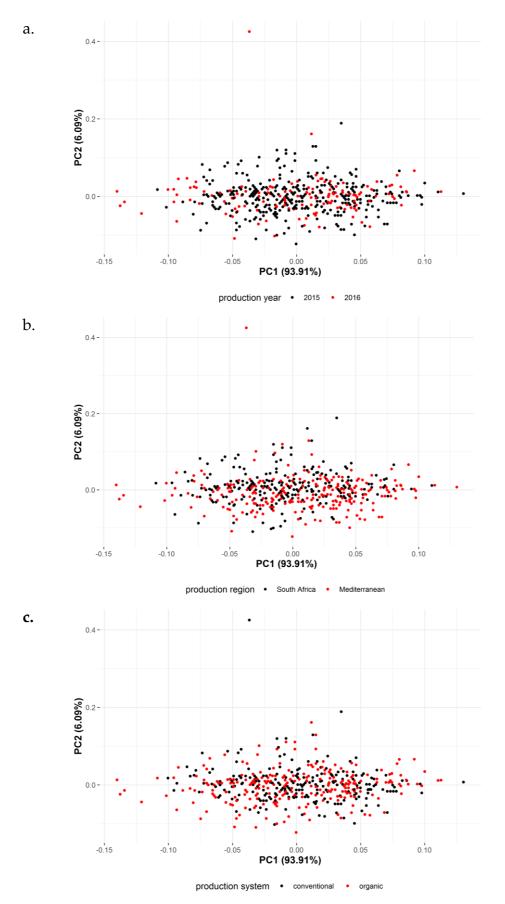
			Factor 2
Parameter	Factor 1	Produ	action system
	Variety	Organic	Conventional
cyanindin 3-O-glucoside (mg	Crimson	4 ±1 a A	7 ±2 a B
FW kg-1)	Allison	13 ±5 b A	58 ±8 a A
peonidin 3-O-glucoside	Crimson	163 ±30 a A	140 ±59 a B
(mg FW kg ⁻¹)	Allison	214 ±37 b A	386 ±6 a A
peonidin 3-O-p-coumaroyl	Crimson	1.4 ±0.2 a B	2.8 ±1.4 a B
glucoside (mg FW kg ⁻¹)	Allison	31.0 ±4.4 a A	18.5 ±4.8 b A
malvidin 3-O-p-coumaroyl	Crimson	0.2 ±0.0 a B	0.6 ±0.3 a A
glucoside (mg FW kg ⁻¹)	Allison	5.7 ±1.7 a A	1.3 ±0.4 b A

For each parameter assessed means labeled with the same lower case letter within the same row and same capital letters within the same column are not significant different (General Linear Hypothesis test p<0.05).

Table S9. Effect of, and interaction between, year, production system and grape type on the content of individual					
anthocyanins in black table grapes produced in Mediterranean countries from a UK supermarket survey 2015 (3-					
factor ANOVA, the values presented are means \pm SE).					


	Concentrations of individual anthocyanins (mg FW kg ⁻¹)						
						peonidin	malvidin
Factor	delphinidin	cyanindin	petunidin	peonidin	malvidin	3-O-p-	3-O-p-
	3-O-	3-O-	3-O-	3-O-	3-O-	coumaroyl	coumaroyl
	glucoside	glucoside	glucoside	glucoside	glucoside	glucoside	glucoside
Production							
system (PS)							
Organic (n=8)	74 ±27	19 ±11	132 ±39	324 ± 105	1334 ± 241	70 ± 14	534 ± 90
Conventional	32 ±8	14 ±10	72 ±15	172 ±50	1033 ±156	51 ±12	605 ±172
(n=9)	52 10	14±10	72 ±15	172 ±50	1055 ±150	51 ±12	005 ±172
Variety (Vr)							
Autumn royal	34 ±7	19 ±11	68 ±9	258 ±37	935 ±94	68 ±11	465 ± 90
(n=8)	04 T/	17 ±11	00 17	250 157	JJJJ 1/4	00 111	405 170
Midnight	68 ±25	14 ± 10	130 ± 37	233 ± 107	1387 ±236	53 ± 14	666 ±166
beauty (n=9)	00 120	14±10	100 ±07	200 ±107	1007 ±200	55 114	000 ±100
ANOVA							
<i>p</i> -values							
Main effects							
PS	NS	NS	NS	NS	NS	NS	NS
Vr	NS	NS	NS	NS	NS	NS	NS
$Interactions^*$							
PS : Vr	NS	NS	NS	0.0278 ¹	NS	NS	NS

p-values in *italic* are for trends (0.1<p<0.05); * only interactions for which significant results were detected are shown; ¹see Table S9.1 for interaction means ± SE.


Table S9.1 Interactions means ± SE for the effects of grape variety and production system on the concentrations of individual anthocyanin compounds in red grapes produced in the Mediterranean (2016).

		Factor 2 Production system			
Parameter	Factor 1				
	Variety	Organic	Conventional		
Peonidin 3-O- glucoside (mg	Autumn royal	201 ±35 aB	314 ±55 aA		
FW kg-1)	Midnight beauty	449 ±201 aA	60 ±9 b A		

For each parameter assessed means labeled with the same lower case letter within the same row and same capital letters within the same column are not significant different (General Linear Hypothesis test p<0.05).

Figure S1. Principle component analyses of secondary metabolite concentration and antioxidant activity data showing the level of separation/variation between data from different (a) years (b) production regions and (c) production systems

Figure S2. Principle component analyses of sugar content data showing the level of separation/variation between data from different (a) years (b) production regions and (c) production systems

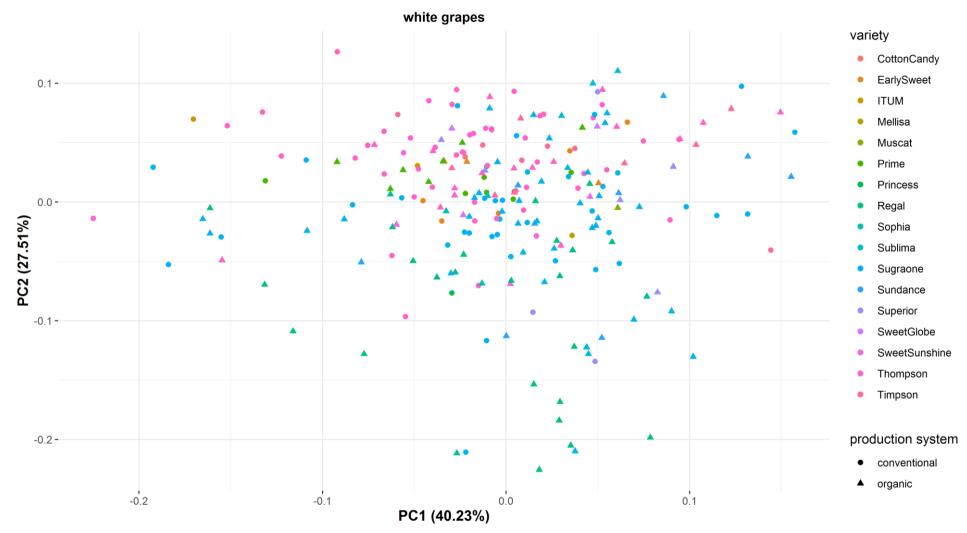
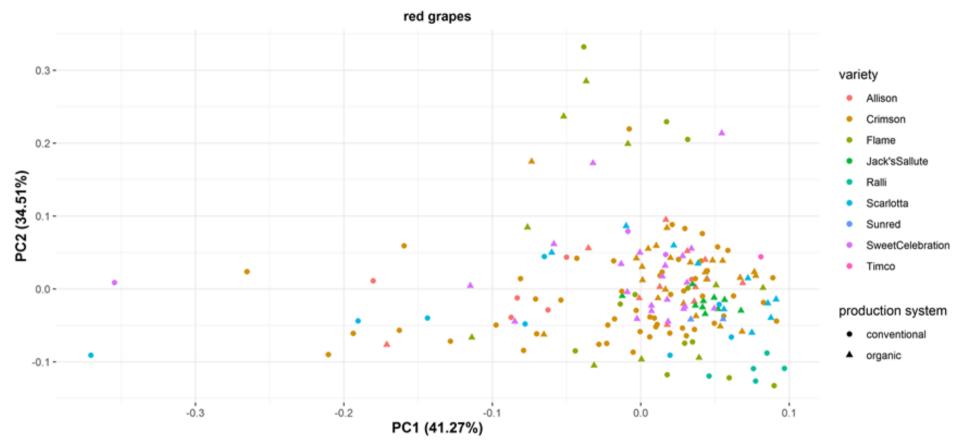



Figure S3. Principle component analyses secondary metabolite concentration and antioxidant activity data showing the separation/variation between black grape varieties and/or conventional and organic samples.

Figure S4. Principle component analyses secondary metabolite concentration and antioxidant activity data showing the separation/variation between red grape varieties and/or conventional and organic samples.

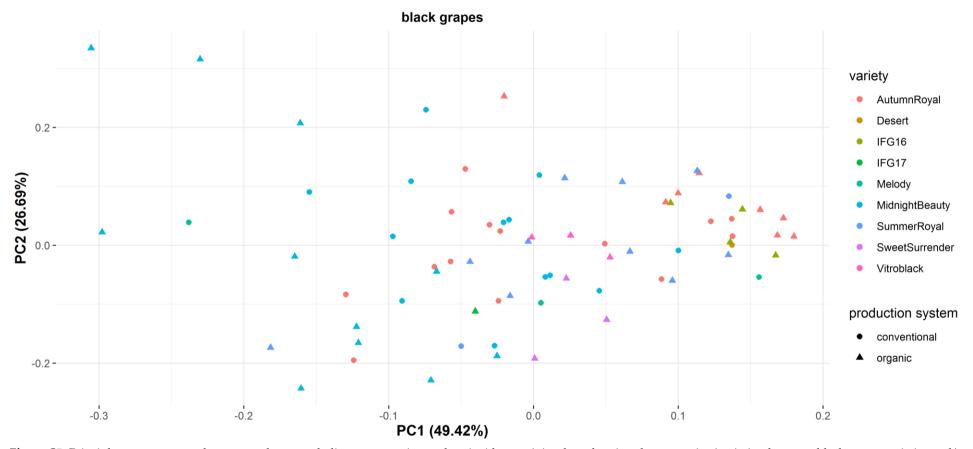


Figure S5. Principle component analyses secondary metabolite concentration and antioxidant activity data showing the separation/variation between black grape varieties and/or conventional and organic samples.