

² Supplementary Information for

- Individualistic evolutionary responses of central African rain forest plants to Pleistocene
 climatic fluctuations
- 5 Andrew J. Helmstetter, Kevin Béthune, Narcisse G. Kamdem, Bonaventure Sonké and Thomas L.P. Couvreur
- 6 Andrew J. Helmstetter.

1

7 E-mail: andrew.j.helmstetter@gmail.com

8 This PDF file includes:

- 9 Figs. S1 to S38
- 10 Tables S1 to S7
- 11 SI References

12 Contents

13	Sampling and sequencing	3
14	Species information	4
15	Mantel tests	5
16	Genetic clustering including geographic information with TESS	9
17	Clustering sensitivity	14
18	Individual-level maximum-likelihood trees	21
19	Genetic diversity and putative refugia	28
20	Analysis of MOlecular VAriance (AMOVA)	36
21	Fossil calibrations	38
22	Backbone trees	39
23	Backbone-and-patch trees	41
24	Species trees reconstructed using StarBEAST and DENIM	43
25	Testing the effect of using alleles and lognormal clock models	50
26	Ecological Niche Models (ENMs)	52
27	distance-based RedunDancy Analysis (db-RDA)	61

28 Sampling and sequencing

Family	Genus	Epithet	Samples	75/75	Total length (bp)	SNPs	Loci
Arecaceae	Podococcus	acaulis	37	119	277199	2565	137
Arecaceae	Podococcus	barteri	88	120	216143	1918	144
Arecaceae	Sclerosperma	mannii	129	160	316075	3378	155
Annonaceae	Annickia	affinis	112	351	756665	5963	262
Annonaceae	Anonidium	mannii	109	365	766765	5311	293
Annonaceae	Monanthotaxis	enghiana	105	356	781943	3469	243
Annonaceae	Greenwayodendron	suaveolens	145	338	650322	5960	312

Table S1. Information on sampling of individuals used for genetic data. 75/75 indicates the number of loci (after paralogs were removed) reconstructed using the hybpiper pipeline for phylogenetic inference in which \geq 75% of the exon length was recovered in \geq 75% of individuals. Total length is the sum of the length of all 75/75 supercontigs (exon + introns). Loci indicates the number of loci and SNPs recovered using the SECAPR pipeline. We note that three individuals of *P. acaulis* did not have location data, and so were excluded from analyses with a geographic component.

genus	Annickia.affinis	Anonidium.mannii	Greenwayodendron.suaveolens
Habit	Tree	Tree	Tree
Max size (m)	up to 30	8–30	8–45
Forest stratum	canopy	canopy	canopy
Habitat	lowland evergreen rain forest	lowland evergreen rain forest	lowland to premontane evergreen/semi-decidious forest
Soil ecology	terra firma/periodically flooded soils	terra firma	terra firma
Sex	Hermaphrodite	Androdioecious	Androdioecious
Pollination	entomophilous	entomophilous	entomophilous
Number of fruits	3 to 34	1	2 to 8
Number of seeds	1	50–100	1–4
Fruit dimension (cm)	2–3.5 x 1–1.5	25–50 x 10–30	0.7–1.6 x 0.7–1.6
Fruit structure	stipitate, fleshy	stipitate, syncarpous, fleshy	stipitate, mericarp medium hard, fleshy inside
color at maturity	dark purple - black	yellow	green reddish
Dispersal syndrome (primary / secondary)	bird-monkey	monkey, elephants	bird-monkey / elephant
Inferred dispersal	potentially medium to widespread	potentially limited	potentially medium to widespread

genus	Monanthotaxis.enghiana	Podococcus.acaulis	Podococcus.barteri	Sclerosperma.mannii
Habit	Liana	Shrub	Shrub	Shrub
Max size (m)	up to 15	3–4	2–3	2–5
Forest stratum	understory/canopy	understory	understory	understory
Habitat	lowland to premontane evergreen/semi-decidious forest	lowland evergreen rain forest	lowland evergreen rain forest	lowland evergreen rain forest
Soil ecology	terra firma/periodically flooded soils	terra firma soil	terra firma/periodically flooded soils	periodically flooded soil
Sex	Hermaphrodite	Monoecious	Monoecious	Monoecious
Pollination	entomophilous	entomophilous	entomophilous	entomophilous
Number of fruits	5 to 15	20 to 30	20 to 30	up to 17
Number of seeds	1–4	1-3	1–3	1
Fruit dimension (cm)	1.4–3.4 x 8–9	2–3 × 0.5–1	3 x 0.6	2.5–3 x 2–3
Fruit structure	moniliformes, fleshy	sessil, fleshy	sessil, fleshy	sessile, mericarp hard, fleshy inside
color at maturity	dull purple/brown	dark purple	dark purple	brown
Dispersal syndrome (primary / secondary)	bird-monkey	Ruminant-rodent	Ruminant-rodent	Ruminant-rodent / elephants
Inferred dispersal	potentially medium to widespread	potentially limited	potentially limited	potentially limited

Table S2. Information on the taxonomy, morphology, life history and ecology of the seven chosen species in our study.

30 Mantel tests

³¹ We tested the amount of spatial structure in each of our species SNP datasets using Mantel tests. This approaches assesses the ³² correlation between geographic distance and genetic distance, i.e. the presence of isolation-by-distance (IBD). The Mantel

statistic is the correlation between two dissimilarity matrices (pairwise geographic and pairwise genetic distance). The genetic

matrix consisted of pairwise distances among all individuals for each species. We used the *mantel* function ('pearson' method)

in the R package 'vegan' (1) and calculated significance by performing 9999 random permutations . We then compared these

to the observed value of the Mantel statistic. We found that all species exhibited significant isolation-by-distance patterns.

6 of 70 Andrew J. Helmstetter, Kevin Béthune, Narcisse G. Kamdem, Bonaventure Sonké and Thomas L.P. Couvreur

Andrew J. Helmstetter, Kevin Béthune, Narcisse G. Kamdem, Bonaventure Sonké and Thomas L.P. Couvreur 7 of 70

Fig. S1. Mantel tests results for (a-b) A. affinis, (c-d) A. mannii, (e-f) G. suaveolens, (g-h) M. enghiana, (i-j) P. acaulis, (k-l) P. barteri and (m-n) S. mannii. Panels on the left show histograms of 9999 random permutations and the observed value as a dashed red line. Panels on the right show plots of genetic distance vs spatial distance.

37 Genetic clustering including geographic information with TESS

Fig. S2. Maps depicting genetic clusters inferred from the TESS3 analysis for (a) Annickia affinis, (b) Anonidium mannii, (c) Greenwayodendron suaveolens, (d) Monanthotaxis enghiana, (e) Podococcus acaulis, (f) Podococcus barteri and (g) Sclerosperma mannii. This approach takes into account geographic information as well as genetic data. Black points represent locations of individuals. Interpolated values of ancestry coefficients are displayed for clusters inferred and the color gradient corresponds to the level of ancestry.

Fig. S3. Barplot of ancestry proportions inferred using TESS3 for (a) Annickia affinis, (b) Anonidium mannii, (c) Greenwayodendron suaveolens, (d) Monanthotaxis enghiana, (e) Podococcus acaulis, (f) Podococcus barteri and (g) Sclerosperma mannii. Number of genetic clusters was chosen for each species using the cross-validation store.

38 Clustering sensitivity

- 39 DAPC analyses were presented based on values of K selected based on BIC. Here we present DAPC results for other values of
- 40 K (from 2-8) for each species. This was to determine whether changing values of K might lead to similar patterns of population
- 41 genteic structure across species. Instead we find that structure is generally idiosyncratic, and this does not change as the
- 42 number of clusters increases.

Fig. S4. Assessment of sensitivity of DAPC analyses. We ran DAPC analyses for values of k from 2 (minimum K inferred) to 8 (maximum K inferred) for each species. Analyses were run as detailed in the materials and methods section. Sets of maps are shown for each value of K, and individuals are colored by cluster membership. The name of the species and the value of K are shown in the bottom left of each plot.

43 Individual-level maximum-likelihood trees

Fig. S5. Maximum likelihood phylogenetic tree of *A. affinis*. Colours on tips correspond to inferred DAPC clusters. Tips with white circles are outgroup taxa. Circles at nodes represent confidence in the preceding branch and show the results of 100 bootstraps inferred using RAxML.

Fig. S6. Maximum likelihood phylogenetic tree of A. mannii. Colours on tips correspond to inferred DAPC clusters. Tips with white circles are outgroup taxa. Circles at nodes represent confidence in the preceding branch and show the results of 100 bootstraps inferred using RAxML

Fig. S7. Maximum likelihood phylogenetic tree of *G. suaveolens*. Colours on tips correspond to inferred DAPC clusters. Tips with white circles are outgroup taxa. Circles at no des represent confidence in the preceding branch and show the results of 100 bootstraps inferred using RAxML.

Fig. S8. Maximum likelihood phylogenetic tree of *M. enghiana*. Colours on tips correspond to inferred DAPC clusters. Tips with white circles are outgroup taxa. Circles at nodes represent confidence in the preceding branch and show the results of 100 bootstraps inferred using RAxML.

Fig. S9. Maximum likelihood phylogenetic tree of *P. acaulis*. Colours on tips correspond to inferred DAPC clusters. Tips with white circles are outgroup taxa. Circles at nodes represent confidence in the preceding branch and show the results of 100 bootstraps inferred using RAxML.

Fig. S10. Maximum likelihood phylogenetic tree of *P. barteri*. Colours on tips correspond to inferred DAPC clusters. Tips with white circles are outgroup taxa. Circles at nodes represent confidence in the preceding branch and show the results of 100 bootstraps inferred using RAxML.

Fig. S11. Maximum likelihood phylogenetic tree of *S. mannii*. Colours on tips correspond to inferred DAPC clusters. Tips with white circles are outgroup taxa. Circles at nodes represent confidence in the preceding branch and show the results of 100 bootstraps inferred using RAxML.

44 Genetic diversity and putative refugia

- 45 One of our predictions (Table 1) is that the stability of refugial areas may lead to the accumulation of genetic diversity over
- time when compared to areas outside of refugia. Rapid expansion during interglacial periods would likely lead to low levels
- 47 of diversity in newly (re)colonised areas, due to founder effects. We examined the feasibility of this hypothesis in central
- ⁴⁸ African rain forests by performing regressions on three different measures of individual-level expected heterozygosity (H_e), ⁴⁹ observed heterozygosity (H_o) and allelic richness. We compared these metrics of diversity to distance from either Maley's (2) or
- ⁵⁰ Anhuf's (3) refugia (see Fig. 1 in the main text). In the first instance we calculated the distance from each individual to the
- ⁵¹ approximate central point of the nearest of Maley's refugia. In the second instance we calculated the distance from the coast
- 52 (representing Anhuf's hypothesis of coastal refugia) for each individual and plotted this against genetic diversity. Two species
- 53 (G. sauveolens and P. barteri) had conspicuous outliers that we identified using the boxplot function in R and removed from
- 54 the dataset. We performed regression analyses for each species and diversity statistic, fitting linear models for each variable
- ⁵⁵ independently. We also log-transformed variables to account for any non-normality in our data and found extremely similar
- 56 patterns (see Dryad repository for plots).

Fig. S12. Regressions of three different per-individual genetic diversity statistics (H_o, H_e and allelic richness) against distance to nearest refugium (a,c,e) and distance from coast (b,d,f) for *A. affinis*. Species names, R-squared values and p values are shown on each plot. The dotted red line indicates the fitted line of the regression model.

Fig. S13. Regressions of three different per-individual genetic diversity statistics (Ho, He and allelic richness) against distance to nearest refugium (a,c,e) and distance from coast (b,d,f) for *A. mannii*. Species names, R-squared values and p values are shown on each plot. The dotted red line indicates the fitted line of the regression model.

Fig. S14. Regressions of three different per-individual genetic diversity statistics (Ho, He and allelic richness) against distance to nearest refugium (a,c,e) and distance from coast (b,d,f) for *G. suaveolens*. Species names, R-squared values and p values are shown on each plot. The dotted red line indicates the fitted line of the regression model.

Fig. S15. Regressions of three different per-individual genetic diversity statistics (Ho, He and allelic richness) against distance to nearest refugium (a,c,e) and distance from coast (b,d,f) for *M. enghiana*. Species names, R-squared values and p values are shown on each plot. The dotted red line indicates the fitted line of the regression model.

Fig. S16. Regressions of three different per-individual genetic diversity statistics (Ho, He and allelic richness) against distance to nearest refugium (a-c) and distance from coast (d-f) for *P acaulis*. Species names, R-squared values and p values are shown on each plot. The dotted red line indicates the fitted line of the regression model.

Fig. S17. Regressions of three different per-individual genetic diversity statistics (Ho, He and allelic richness) against distance to nearest refugium (a-c) and distance from coast (d-f) for *P barteri*. Species names, R-squared values and p values are shown on each plot. The dotted red line indicates the fitted line of the regression model.

Fig. S18. Regressions of three different per-individual genetic diversity statistics (Ho, He and allelic richness) against distance to nearest refugium (a-c) and distance from coast (d-f) for *S. mannii*. Species names, R-squared values and p values are shown on each plot. The dotted red line indicates the fitted line of the regression model.

57 Analysis of MOlecular VAriance (AMOVA)

The AMOVA approach is used to assess population differentiation using genetic markers (4). A pairwise genetic-distance matrix 58 is used to test how much genetic variation can be explained by a given stratification of the dataset. We used AMOVA to test 59 how much genetic variance could be explained by the North-South climatic inversion. Genetic clusters inferred from DAPC 60 were grouped based on whether they were north or south of the climatic inversion discontinuity at the climate inversion (where 61 the majority of its range was found). Then, each genetic cluster was considered as a second layer of structure, or subpopulation. 62 AMOVAs were performed using the *poppr.amova* function in the R package 'poppr' (5) and assessed significance by performing 63 999 randomisations, shuffling individual labels. We did not include within-individual variance in our models. We then repeated 64 our analysis, randomly shuffling population assignments in our dataset to calculate the significance of the population structure. 65 We also tested how much variance was explained by previously proposed glacial refugia or estimated areas of stability. We 66 split samples into two groups, those considered inside stable areas and those outside. We defined presence in Maley's refugia 67 using 1st quantile of distances from refugia in each dataset. Individuals closer than the 1st quantile distance were considered as 68 inside a stable area, and individuals further than this were considered outside stable areas. We took a similar approach for the 69 climate-based stable areas, using the difference between present and past climate at an individuals location instead of the 70 geographic distance from a point. We subtracted rasters of present-day climate values from past climate values (LGM; MIROC) 71 for annual mean temperature (bio1) and annual mean rainfall (bio12). We rescaled both variables to have a mean of 1, then 72 added them together to produce a raster where smaller values indicated stability through time. This approach gives equal 73 weight to rainfall and temperature variability. Finally, we used the binary presence-absence maps output in our ecological niche 74 modelling (ENM) analyses to split individuals into groups for the ENM-based stable areas. We followed the same approach as 75

⁷⁶ detailed above, but did not include genetic cluster as a subpopulation layer of structure.

test	sp	sigma	percentage	р
Variation between North/South	anni	-506.71	-59.74	0.00
Variation among clusters within North/South	anni	1123.22	132.42	0.00
Variation within clusters	anni	231.70	27.32	0.75
Variation between North/South	anon	303.49	43.45	0.00
Variation among clusters within North/South	anon	226.36	32.41	0.00
Variation within clusters	anon	168.67	24.15	0.00
Variation between North/South	green	12.34	2.26	0.01
Variation among clusters within North/South	green	9.23	1.69	0.08
Variation within clusters	green	524.50	96.05	0.21
Variation between North/South	mona	-112.90	-41.63	0.00
Variation among clusters within North/South	mona	169.69	62.58	0.00
Variation within clusters	mona	214.38	79.06	0.66
Variation between North/South	podo_b	14.82	11.00	0.00
Variation among clusters within North/South	podo_b	37.98	28.17	0.00
Variation within clusters	podo b	82 01	60.83	0 1 1

Table S3. Components of covariance from AMOVA analyses. The components of covariance table shows how much variance is detected at each stratification. Sigma represents the variance for each hierarchical level and to the right is the percent of the total.

Fig. S19. Barplot showing the amount of genetic variance explained by different concepts of refugia (1st quantile); climate-based, ENM-based and Maley's (1996) refugia. Bars are coloured by species and significance is denoted above each bar (. = p < 0.1, * = p < 0.05, ** = p < 0.01, *** = p < 0.001). No *P. acaulis* individuals occurred within estimated ENM stable areas so the corresponding AMOVA was not conducted.

77 Fossil calibrations

Fossil name	Hard lower bound	Soft upper bound (95%)	Exponential mean
Sabalites carolinensis	85.80	88.80	1.00
Attaleinae	54.80	60.79	2.00
Hyphaeneocarpon indicum	64.00	67.00	0.80

Table S4. Fossil calibrations used for the palm backbone tree inference. Parameters are for priors with an exponential distribution.

Fig. S20. Backbone tree of Annonaceae constructed using BEAST2. The tree was calibrated with a single fossil calibration at the root node. Posterior probabilities are indicated above the corresponding branch. 95% highest posterior densities (HPD) of node age are shown with blue bars at nodes.

Fig. S21. Backbone tree of Arecaceae constructed using BEAST2. The tree was calibrated with a single fossil calibration at the root node. Posterior probabilities are indicated above the corresponding branch. 95% highest posterior densities (HPD) of node age are shown with blue bars at nodes.

79 Backbone-and-patch trees

To achieve a tree with all species and backbone taxa we performed a backbone-and-patch approach as outlined in (6). For each

species we first rescaled the StarBEAST tree, setting the root age as the time of divergence between the focal species and

⁸² its closest outgroup (e.g. Annickia affinis and A. polycarpa). We then shortened the tip leading to its representative in the ⁸³ backbone tree using the stem/crown ratio of our StarBEAST tree. The StarBEAST tree was then grafted to the shortened tip

while the tree remained ultrametric. We repeated this for each plant family, Annonaceae (Fig. S22) and Arecaceae (Fig. S23),

85 separately.

Fig. S23. Phylogenetic trees showing the timing of population divergence events in three Palm species. The tree was built using the backbone-and-patch approach whereby a backbone tree was first constructed for Arecaceae (Fig. S21) and then StarBEAST trees were rescaled and grafted into place on the backbone trees (see methods for further details). Timescale and epochs are shown on the x axis.

86 Phylogenetic trees reconstructed using StarBEAST and DENIM

87 Summary of the three molecular dating methods used.

- StarBEAST is a typical coalescent Bayesian inference method, allowing us to jointly date and infer topologies for
 phylogenetic trees.
- 2. DENIM extends this by accounting for migration in the data, providing a useful comparison to understand the potential impact of low-level migration.
- 3. The backbone-and-patch approach produces a tree with both inter and intraspecific relationships, and avoids the additional noise produced when using secondary calibrations by rescaling the tree based on fossil calibrations on backbone tree.

In preliminary analyses we examined the effect of taking phased alleles into account (7) as output by SECAPR (8). In addition, 94 we examined estimated ages in A. affinis and found that they extensively overlapped with those inferred using a consensus 95 sequence (Fig. S30b). However, this approach doubles the number of tips, resulting in significantly more computational 96 time, so for these two reasons we used a single sequence per individual. We also ran our StarBEAST analysis with a relaxed 97 uncorrelated lognormal clock model, in comparison with a strict clock to compare divergence times (Fig. S30c). We found that 98 times were generally similar but convergence was much harder to achieve and required computation time was significantly 99 longer. Monophyly constraints were used on the focal Annonaceae species as preliminary runs yielded non-monophyletic species 100 in some cases. Preliminary runs indicated that this was not necessary for the palm species. 101

Divergence estimation notwithstanding ILS and migration (DENIM). In order to account for migration amongst different genetic 102 clusters we also used the Divergence estimation notwithstanding ILS and migration (DENIM) approach (9). The model used is 103 similar to IMa2 (10), though the phylogenetic tree is estimated under a birth-death model rather than being assumed. Migration 104 is calculated between pairs of branches using an n-island model, providing information about the number of migrations within 105 each gene tree. DENIM can perform poorly when levels of migration are high. Nevertheless, taking migration into account 106 when it may be present can help to improve the estimation of topology and divergence times and acts as a useful comparison 107 to our StarBEAST analyses. We ran DENIM analyses using the same loci and substitution models as our StarBEAST analyses. 108 We assumed a strict clock and followed the instructions in the DENIM manual in regard to prior choice. In some cases (notably 109 A. mannii and G. suaveolens) we had to set upper limits on clock rate to avoid the analysis finding stationarity at implausably 110 high rates. We conducted multiple (2-3) runs for each species, and summarised the combined the posterior distribution of trees 111 from each run to produce a maximum-clade credibility (MCC) tree. 112

It is important to note the coalescent phylogenetic analyses results could be influenced by gene flow among genetic clusters 113 leading to underestimation of the timing of divergence events (11). However, our DENIM approach takes into account low 114 levels of migration, and yielded broadly similar topologies and divergence times when compared to analyses without migration 115 (Fig. S24-S29). Furthermore, our clustering analyses revealed limited evidence for admixture between genetic clusters (Fig. S3). 116 Species in which admixture was more prevalent (e.g. *M. enghiana*) may have actually diverged earlier than estimated in our 117 phylogenetic trees (see Fig. 3 in the main text). However, this admixture is not necessarily indicative of ongoing gene flow. 118 Introgression events may cause loci to deviate from the molecular clock. Given that we selected markers by this metric, this 119 may have helped to reduce the effect of any potential gene flow. 120

Fig. S24. Phylogenetic trees inferred using (a) StarBEAST and (b) DENIM for *A. affinis*. Genetic clusters are labelled alphabetically from 'a' to 'd' and outgroups are labelled 'o'. Node ages represent target heights and node bars represent 95% highest posterior densities of divergence times. Posterior probabilities are annotated on trees for each divergence event (0-1).

Fig. S25. Phylogenetic trees inferred using (a) StarBEAST and (b) DENIM for *A. mannii*. Genetic clusters are labelled alphabetically from 'a' to 'h' and outgroups are labelled 'o'. Node ages represent target heights and node bars represent 95% highest posterior densities of divergence times. Posterior probabilities are annotated on trees for each divergence event (0-1).

Fig. S26. Phylogenetic trees inferred using (a) StarBEAST and (b) DENIM for *G. suaveolens*. Genetic clusters are labelled alphabetically from 'a' to 'f' and outgroups are labelled 'o'. Node ages represent target heights and node bars represent 95% highest posterior densities of divergence times. Posterior probabilities are annotated on trees for each divergence event (0-1).

Fig. S27. Phylogenetic trees inferred using (a) StarBEAST and (b) DENIM for *M. enghiana*. Genetic clusters are labelled alphabetically from 'a' to 'c' and outgroups are labelled 'o' and 'ob'. Node ages represent target heights and node bars represent 95% highest posterior densities of divergence times. Posterior probabilities are annotated on trees for each divergence event (0-1).

Fig. S28. Phylogenetic trees inferred using (a) StarBEAST and (b) DENIM for *P. acaulis* and *P. barteri*. Genetic clusters are labelled alphabetically from 'a' to 'e' for *P. barteri* and 'f' to 'g' for *P. acaulis*. Node ages represent target heights and node bars represent 95% highest posterior densities of divergence times. Posterior probabilities are annotated on trees for each divergence event (0-1).

Fig. S29. Phylogenetic trees inferred using (a) StarBEAST and (b) DENIM for *S. mannii*. Genetic clusters are labelled alphabetically from 'a' to 'b' and outgroups are labelled 'o'. Node ages represent target heights and node bars represent 95% highest posterior densities of divergence times. Posterior probabilities are annotated on trees for each divergence event (0-1).

121 Testing the effect of using alleles and lognormal clock models

Fig. S30. Phylogenetic reconstruction in *A. affinis* using (a) single consensus sequence, (b) two allele sequences per individual for assessing divergence times and (c) as in (a) but with uncorrelated lognormal relaxed clock models instead of strict clock. Blue bars around nodes indicate 95% confidence intervals. Pie charts at nodes show posterior probability percentages. We note that the random set of five individuals per cluster used in (b) is different to those in (a) and (c).

Variable name	Description
	Animua inican reinperature Maga Diurga Paga (Maga of monthly (may tamp, min tamp))
BIO2 BIO2	Mean Durnar Range (mean of monthly (max temp - min temp))
BIO3	Isourierinality (SIOZ/DIO/)
BIO4 BIO5	Nex Temperature Seasonality (stalidatio deviation)
BIOS	Mia Temperature of Coldoct Month
BIO2	
BIO7	
BIO8	Maan temperature of weitest Quarter
BIO	Mean temperature of Dhest Quarter
BIO10	Men Temperature of Warmest Quarter
BIO11	Mean Temperature of Coldest Quarter
BIO12	Annual Precipitation
BIO13	Precipitation of Wettest Month
BIO14	Precipitation of Driest Month
BIO15	Precipitation Seasonality (Coefficient of Variation)
BIO16	Precipitation of Wettest Quarter
BIO17	Precipitation of Driest Quarter
BIO18	Precipitation of Warmest Quarter
BIO19	Precipitation of Coldest Quarter
altitude	elevation (m)
soil order	USDA soil taxonomy (ST) developed by United States Department of Agriculture and the National Cooperative
Distance from closest Maley refugia centroid	Distance (km) from central point of Maley's (1996) proposed refugia
Distance from coast	Distance from coast as calculated with distance from distance_to_coastline_lowres function in the 'distance_to_coast' R package
Habitat stability as extracted from ENMs	Areas predicted as suitable (TSS threshold) in both past (MPI_ESM_P) and present ENMs.
BIO1 stability	Absolute values of differences between past (MIROC_ESM) and present annual mean temperature
BIO12 stability	Absolute values of differences between past (MIROC_ESM) and present annualrainfall
Combined climatic stability as calculated from climate data	Sum of BIO1 stability and BIO12 stability
MEM	Moran Eigenvector's Maps - multivariate summary of geographic structure
BDRICM_M_250m	Depth to bedrock (R horizon))
BDTICM_M_250m	Absolute depth to bedrock (cm)
BLDFIE_M_sl2_250m	Bulk density (kg m_3) of the fine earth fraction (< 2 mm)
CECSOL_M_sl2_250m	Cation exchange capacity of soil
CLYPPT_M_sl2_250m	Proportion of clay particles ($<$ 0.002 mm) in the fine earth fraction
CRFVOL_M_sl2_250m	Volumetric fraction of coarse fragments (> 2 mm)
OCSTHA_M_sd1_250m	Organic carbon stocks
ORCDRC_M_sl2_250m	Organic carbon density
PHIKCL_M_sl2_250m	Soil pH in KCl solution
SLTPPT_M_sl2_250m	Proportion of silt particles ($>$ 0.002 mm and $<$ 0.05 mm) in the fine earth fraction
SNDPPT_M_sl2_250m	Proportion of sand particles ($>$ 0.05 mm) in the fine earth fraction
TAXNWRB_250m	observed taxonomic class in the WRB system (target variable)

Table S5. Variables used in the ENM and db-RDA analyses. Note that variables related to soil order, TAXNWRB, distances from refugia, MEMs and measures of stability were only used in db-RDA analyses. Further information on soil variables can be found here: https://www.isric.org/explore/soilgrids/faq-soilgrids

122 Ecological Niche Models (ENMs)

We obtained data for the 19 bioclimatic variables from the worldclim database (http://www.worldclim.org) including present-

¹²⁴ day data ('wc2.1_2.5m_bio') and data for three different past-climate models ('CCSM4' (CCL), 'MIROC_ESM' (MRL), ¹²⁵ 'MPI ESM P' (MEL)). We also included data from 11 different soil variables, downloaded from http://www.soilgrids.org

¹²⁵ 'MPI_ESM_P' (MEL)). We also included data from 11 different soil variables, downloaded from http://www.soilgrids.org ¹²⁶ (accessed March 2020). Elevation data was obtained using the <u>get_elev_raster</u> function in the R package 'elevatr'. All data

¹²⁷ were resampled to 2.5 arcmin resolution to match present-day climate data. Soil and altitude variables were kept constant in

the past and present. We identified and removed correlated environmental variables (>0.9) by running the *raster.cor.matrix*

¹²⁹ function in the R package 'ENMTools' (12). The full set of input variables can be found in S5. We collated a total of 1691 ¹³⁰ individual locations across the seven focal species (see supplementary data for details).

We constructed ENMs for each of the seven species using the R package 'biomod2' (13) and climatic, altitude and soil 131 variables. We created a convex hull around sample points (5 degrees) and used this as a mask to create a background area for 132 modelling (see R package 'ConR' for additional details (14)). We performed 10 replicates of 10,000 pseudoasbences with the 133 surface range envelop model (SRE) with a threshold of 0.05 (5%). An SRE is consructed (using the specified quantile) for the 134 species and pseudoabsences are extracted outside of this envelope. Note that pseudoabsences are randomly generated and will 135 cause repeated runs to be different We inferred ENMs using five different model algorithms: Generalized linear model (GLM), 136 Boosted regression trees (GBM), Artificial neural networks (ANN), Random forest (RF), MAXENT.Phillips (maxent). We 137 evaluated model fit using Cohen's Kappa (KAPPA) and true skill statistic (TSS). Once all algorithms were run we performed 138 ensemble modeling using all models. We then projected models (of all algorithms) into past (and present) climate, performing 139 a further ensemble modelling step. Finally we converted ensemble projections to binary presence-absence maps using KAPPA 140

and TSS. These are plotted below, showing areas suitable for each species under a given statistic and present or past climate

¹⁴² model. We highlight areas that were suitable in the past only, present only, or both. Details of model adequacy can be found ¹⁴³ in Table S6. We used results from the 'CCSM4' (AMOVA, db-RDA) and 'MIROC_ESM' (calculation of climatic stable areas)

144 past-climate models for downstream analyses.

Fig. S31. Habitat suitability and stable areas inferred from ecological niche modelling for *A. affinis*. Suitability was summarised as binary maps for present and past climate, these were added together so that values of 0.5 indicate habitat only suitable in the past, values of 1 indicate areas only suitable in the present and values of 1.5 indicate areas suitable during both periods (stable areas). Results are from three different models of past climate: CCL (a-b), MEL (c-d), and MRL (e-f). Two statistics were used to infer binary maps: KAPPA (a, c, e) and the true skill statistic (TSS; b, d, f). Individual locations used in the modelling are shown as black points on each plot.

53 of 70

Fig. S32. Habitat suitability and stable areas inferred from ecological niche modelling for *A. mannii*. Suitability was summarised as binary maps for present and past climate, these were added together so that values of 0.5 indicate habitat only suitable in the past, values of 1 indicate areas only suitable in the present and values of 1.5 indicate areas suitable during both periods (stable areas). Results are from three different models of past climate: CCL (a-b), MEL (c-d), and MRL (e-f). Two statistics were used to infer binary maps: KAPPA (a, c, e) and the true skill statistic (TSS; b, d, f). Individual locations used in the modelling are shown as black points on each plot.

Fig. S33. Habitat suitability and stable areas inferred from ecological niche modelling for *G. suaveolens*. Suitability was summarised as binary maps for present and past climate, these were added together so that values of 0.5 indicate habitat only suitable in the past, values of 1 indicate areas only suitable in the present and values of 1.5 indicate areas suitable during both periods (stable areas). Results are from three different models of past climate: CCL (a-b), MEL (c-d), and MRL (e-f). Two statistics were used to infer binary maps: KAPPA (a, c, e) and the true skill statistic (TSS; b, d, f). Individual locations used in the modelling are shown as black points on each plot.

55 of 70

Fig. S34. Habitat suitability and stable areas inferred from ecological niche modelling for *M. enghiana*. Suitability was summarised as binary maps for present and past climate, these were added together so that values of 0.5 indicate habitat only suitable in the past, values of 1 indicate areas only suitable in the present and values of 1.5 indicate areas suitable during both periods (stable areas). Results are from three different models of past climate: CCL (a-b), MEL (c-d), and MRL (e-f). Two statistics were used to infer binary maps: KAPPA (a, c, e) and the true skill statistic (TSS; b, d, f). Individual locations used in the modelling are shown as black points on each plot.

Fig. S35. Habitat suitability and stable areas inferred from ecological niche modelling for *P. acaulis*. Suitability was summarised as binary maps for present and past climate, these were added together so that values of 0.5 indicate habitat only suitable in the past, values of 1 indicate areas only suitable in the present and values of 1.5 indicate areas suitable during both periods (stable areas). Results are from three different models of past climate: CCL (a-b), MEL (c-d), and MRL (e-f). Two statistics were used to infer binary maps: KAPPA (a, c, e) and the true skill statistic (TSS; b, d, f). Individual locations used in the modelling are shown as black points on each plot.

Fig. S36. Habitat suitability and stable areas inferred from ecological niche modelling for *P. barteri*. Suitability was summarised as binary maps for present and past climate, these were added together so that values of 0.5 indicate habitat only suitable in the past, values of 1 indicate areas only suitable in the present and values of 1.5 indicate areas suitable during both periods (stable areas). Results are from three different models of past climate: CCL (a-b), MEL (c-d), and MRL (e-f). Two statistics were used to infer binary maps: KAPPA (a, c, e) and the true skill statistic (TSS; b, d, f). Individual locations used in the modelling are shown as black points on each plot.

Fig. S37. Habitat suitability and stable areas inferred from ecological niche modelling for *S. mannii*. Suitability was summarised as binary maps for present and past climate, these were added together so that values of 0.5 indicate habitat only suitable in the past, values of 1 indicate areas only suitable in the present and values of 1.5 indicate areas suitable during both periods (stable areas). Results are from three different models of past climate: CCL (a-b), MEL (c-d), and MRL (e-f). Two statistics were used to infer binary maps: KAPPA (a, c, e) and the true skill statistic (TSS; b, d, f). Individual locations used in the modelling are shown as black points on each plot.

59 of 70

KAPPA ANN Cutoff 819.10 768.30 810.90 841.25 842.50 885.05 79 KAPPA ANN Sensitivity 60.33 62.97 66.57 63.50 61.15 63.36 66	5.80 52.74 57.59
KAPPA ANN Sensitivity 60.33 62.97 66.57 63.50 61.15 63.36 60	52.74 57.59
	07.59
KAPPA ANN Specificity 97.55 97.59 97.53 97.34 98.00 98.47 9	
KAPPA ANN Testing.data 0.45 0.45 0.51 0.51 0.52 0.55	0.45
KAPPA GBM Cutoff 617.75 592.10 598.20 603.50 613.90 616.60 60	08.35
KAPPA GBM Sensitivity 62.14 62.27 69.94 64.48 77.47 61.52 6	59.53
KAPPA GBM Specificity 96.66 94.56 94.67 96.98 94.40 97.63 9	05.28
KAPPA GBM Testing.data 0.44 0.39 0.45 0.51 0.50 0.51	0.43
KAPPA GLM Cutoff 824.70 824.90 860.95 828.15 861.40 895.60 80)1.40
KAPPA GLM Sensitivity 58.92 59.38 66.39 60.05 66.49 62.02 5	54.59
KAPPA GLM Specificity 96.75 97.97 97.78 98.26 97.56 98.55 9	97.13
KAPPA GLM Testing.data 0.41 0.45 0.51 0.51 0.52 0.55	0.39
KAPPA MAXENT Cutoff 572.35 554.35 575.40 576.70 532.80 616.00 46	59.50
KAPPA MAXENT Sensitivity 56.12 55.18 63.02 62.38 64.03 65.58 5	57.12
KAPPA MAXENT Specificity 99.47 99.34 99.40 99.38 99.24 99.45 99.45	9.37
KAPPA MAXENT Testing.data 0.59 0.54 0.64 0.66 0.64 0.68	0.54
KAPPA RF Cutoff 849.94 824.05 761.40 841.17 845.55 865.05 84	17.44
KAPPA RF Sensitivity 58.91 65.61 65.46 52.69 67.03 67.15 6	51.84
KAPPA RF Specificity 96.95 95.80 95.97 96.69 94.62 96.76 9	97.47
KAPPA RF Testing.data 0.40 0.38 0.43 0.44 0.41 0.48	0.40
TSS ANN Cutoff 288.00 278.70 282.50 241.20 209.90 257.30 26	52.30
TSS ANN Sensitivity 89.67 91.52 89.15 88.16 94.87 93.95 8	35.65
TSS ANN Specificity 82.98 72.77 81.62 82.30 71.97 72.90 9	01.89
TSS ANN Testing.data 0.80 0.80 0.78 0.79 0.81 0.83	0.78
TSS GBM Cutoff 340.70 201.10 189.85 289.50 370.95 291.70 40	07.35
TSS GBM Sensitivity 89.66 88.85 89.87 85.14 91.80 89.21 8	37.46
TSS GBM Specificity 90.75 83.02 89.71 83.90 82.68 80.82 8	32.55
TSS GBM Testing.data 0.81 0.77 0.80 0.76 0.82 0.78	0.77
TSS GLM Cutoff 366.60 425.60 442.30 422.10 393.90 392.10 32	27.00
TSS GLM Sensitivity 91.01 90.29 92.88 92.26 94.02 94.11 8	36.65
TSS GLM Specificity 90.19 91.62 90.77 82.87 90.93 90.82 8	31.71
TSS GLM Testing.data 0.81 0.82 0.84 0.82 0.85 0.85	0.76
TSS MAXENT Cutoff 62.70 44.10 45.90 39.10 29.10 66.30 6	58.10
TSS MAXENT Sensitivity 90.97 90.65 93.91 91.88 93.36 92.43 9	3.73
TSS MAXENT Specificity 83.21 92.06 74.63 74.00 73.94 65.82 7	4.42
TSS MAXENT Testing.data 0.81 0.83 0.84 0.80 0.82 0.82	0.79
TSS RF Cutoff 467.56 414.75 336.00 434.22 504.45 450.70 37	0.61
TSS RF Sensitivity 91.04 91.39 93.92 89.87 88.84 89.74 9	00.93
TSS RF Specificity 88.81 89.51 76.63 86.54 89.67 89.52 8	39.99
TSS RF Testing.data 0.80 0.81 0.78 0.76 0.79 0.79	0.81

Table S6. Evaluation of ecological niche models extracted frim 'models.out' files from biomod2 runs. Values for each pseudoabsence replicate were averaged across species.

distance-based RedunDancy Analysis (db-RDA)

We used db-RDA to uncover how genetic variance could be attributed to different geographic, historic and biological variables. 146 Our approach was based on the following tutorial (https://github.com/laurabenestan/db-RDA-and-db-MEM/). Genetic 147 distances were calculated using Principal Coordinates Analysis (PCoA) on a genetic distance matrix, which was used as a 148 response variable. We used Moran Eigenvector's Maps (MEMs) to summarise spatial structure in the data. This multivariate 149 approach outputs db-MEMs where the first explain patterns at large spatial scales, with spatial scale decreasing with each 150 db-MEM. Explanatory variables included those variables used for ENMs, MEMs, several variables related to stable areas 151 and USDA soil taxonomy. A list of the explanatory variables used can be found in Table S5. Unlike the AMOVA analyses, 152 climate-based measures of stability for rainfall and temperature were kept separate for db-RDA analyses. Correlation among 153 explanatory variables was examined and variables were pruned based on a threshold of 0.9 (Pearson). We then used Variance 154 Inflation Factor (VIF) to look for multicolinearity within the model. Variables with a VIF of >10 were iteratively removed the 155 model, starting with the variable with the largest VIF until all VIF values were <10. We built our db-RDA model by adding 156 and removing variables in order to maximise the explained variance, but ensuring that the amount explained did not exceed 157 the that of the full model, to avoid overfitting. Once this process finished, the final model was obtained and we visualized the 158 results using biplots, shown below. The relative importance of different categories of explanatory variables for each species is 159 shown in Figure 5 in the main text. 160

Fig. S38. Biplots of the distance-based redundancy analyses (db-RDA) for (a) *A. affinis*, (b) *A. mannii*, (c) *G. suaveolens*, (d) *M. enghiana*, (e) *P. acaulis*, (f) *P. barteri* and (g) *S. mannii*. The first two RDA axes are shown on the x and y axes. Arrows indicate the direction in which increasing values for variables, shown adjacent in red, explain genetic variance. The length of the arrow shows the level of variation explained by the associated variable. Individuals are represented as circles (point locations scaled by a factor of 10), coloured by their associated DAPC cluster.

	Species	Variable	Category	R-squared
	anni	bio_14	Climate	0.12911
2	anni	PHIKCL_M_sl2_250m	Soil	0.07142
3	anni	clim stab prec	Stability	0.06003
4	anni	MEM5	Geography	0.04111
5	anni	MEM3	Geography	0.02306
6	anni	MEM4	Geography	0.02000 0.02179
7	anni	MEM9	Geography	0.01858
8	onni	MEM6	Coography	0.01603
0	anni	onm stab	Stability	0.01093 0.01594
9	anni	In continuity	Stability	0.01524
10	anni	inceptions	5011 Stab 11:4	0.01959
11	anni	refugia_dist	Stability	0.00854
12	anni	MEM8	Geography	0.00851
13	anni	MEM15	Geography	0.00695
14	annı	MEM14	Geography	0.00712
16	anon	Inceptisols	Soil	0.09663
17	anon	MEM6	Geography	0.05654
18	anon	MEM2	Geography	0.05662
19	anon	bio_6	Climate	0.05389
20	anon	$ORCDRC_M_{sl2}250m$	Soil	0.02507
21	anon	MEM7	Geography	0.02345
22	anon	$SNDPPT_M_{sl2}250m$	Soil	0.01217
23	anon	enm_stab	Stability	0.01054
24	anon	$clim_stab_prec$	Stability	0.00866
25	anon	MEM3	Geography	0.00890
26	anon	$PHIKCL_M_{sl2}250m$	Soil	0.01461
27	anon	bio_18	Climate	0.00901
28	anon	$BDRICM_M_{250m}$	Soil	0.00692
29	anon	MEM4	Geography	0.00667
30	anon	$BDTICM_M_{250m}$	Soil	0.00825
31	anon	MEM11	Geography	0.00468
33	green	CRFVOL M sl2 250m	Soil	0.15570
34	green	bio 18	Climate	0.06829
35	green	bio 2	Climate	0.02023
36	green	bio 14	Climate	0.01987
37	green	PHIKCL M sl2 250m	Soil	0.00989
38	green	Alfisols	Soil	0.00967
39	green	BLDFIE M sl2 250m	Soil	0.00532
40	green	Inceptisols	Soil	0.00477
41	green	bio 15	Climate	0.00411
42	green	BDTICM M 250m	Soil	0.00487
43	green	Ultisols	Soil	0.00301
44	green	MEM2	Geography	0.00340
45	green	MEM2	Geography	0.00340
40	green	onm stab	Stability	0.00350
40	green	elim stab proc	Stability	0.00363
41	green	MEM7	Coorresponder	0.00302
40	green	alim stab tomp	Stability	0.00205
49	green	CDEVOL M al2 250m	Stability	0.00245
51	mona	CRFVOL_M_SI2_230III	Climate	0.04545
52 52	mona	DIO_18	Climate	0.02349
03 E 4	mona	NIDDT M -10 050	Geography	0.01622
54	mona	SNDPP1_M_SI2_250m	Soli	0.01124
55	mona	alt DDDLCM M 250	Geography	0.01269
56	mona	BDRICM_M_250m	Soll	0.00756
57	mona	MEM7	Geography	0.00747
58	mona	clim_stab_prec	Stability	0.00431
59	mona	MEM4	Geography	0.00455
60	mona	BDTICM_M_250m	Soil	0.00352
61	mona	MEM6	Geography	0.00349
62	mona	$\rm PHIKCL_M_sl2_250m$	Soil	0.00321
63	mona	MEM8	Geography	0.00207

64	mone	Ovisola	Soil	0.00207
04 65	mona	Ulticolo	Soll	0.00207
00 66	mona	MEME	Coorrenter	0.00272
60	mona	MEMD his 14	Geography	0.00500
00 60	podoa	blo_14 Incenticala	Ciimate	0.03020
69 70	podoa	Inceptisois	5011	0.02291
70	podoa	clim_stab_prec	Stability	0.02255
71	podoa	BDTICM_M_250m	Soil	0.01590
72	podoa	PHIKCL_M_sl2_250m	Soil	0.01027
74	podob	CRFVOL_M_sl2_250m	Soil	0.06950
75	podob	Oxisols	Soil	0.03819
76	podob	bio_18	Climate	0.03055
77	podob	$BLDFIE_M_sl2_{250m}$	Soil	0.01924
78	podob	$coast_dist$	Stability	0.01501
79	podob	MEM2	Geography	0.01285
80	podob	Ultisols	Soil	0.01176
81	podob	Inceptisols	Soil	0.00772
82	podob	$BDTICM_M_{250m}$	Soil	0.00900
83	podob	MEM3	Geography	0.00522
84	podob	$\operatorname{clim_stab_prec}$	Stability	0.00408
85	podob	enm_stab	Stability	0.00315
87	sclero	MEM2	Geography	0.05109
88	sclero	bio_14	Climate	0.05146
89	sclero	$SLTPPT_M_{sl2}250m$	Soil	0.01623
90	sclero	MEM3	Geography	0.01969
91	sclero	Inceptisols	Soil	0.00988
92	sclero	MEM6	Geography	0.00877
93	sclero	MEM7	Geography	0.00595
94	sclero	MEM5	Geography	0.00509
95	sclero	MEM8	Geography	0.00518
96	sclero	MEM10	Geography	0.00403
97	sclero	PHIKCL_M_sl2_250m	Soil	0.00379
98	sclero	CRFVOL M sl2 250m	Soil	0.00313
99	sclero	Ultisols	Soil	0.00279
100	sclero	BLDFIE M $sl2 250m$	Soil	0.00266
101	sclero	refugia dist	Stability	0.00193
102	sclero	clim stab prec	Stability	0.00293
103	sclero	MEM14	Geography	0.00278
104	sclero	MEM9	Geography	0.00276
105	sclero	MEM4	Geography	0.00234
106	sclero	MEM12	Geography	0.00191
107	sclero	MEM13	Geography	0.00162
108	sclero	enm_stab	Stability	0.00156
109	sclero	MEM16	Geography	0.00110
103 104 105 106 107 108 109	sclero sclero sclero sclero sclero sclero sclero	MEM14 MEM9 MEM4 MEM12 MEM13 enm_stab MEM16	Geography Geography Geography Geography Stability Geography	$\begin{array}{c} 0.00278\\ 0.00276\\ 0.00234\\ 0.00191\\ 0.00162\\ 0.00156\\ 0.00110\\ \end{array}$

Table S7. Variable importance for final db-RDA models. For each species the variables present in the final db-RDA model are shown and the corresponding R-squared value. The category each model falls into is also noted.

161 References

- 1. Oksanen J, et al. (2019) vegan: Community Ecology Package. R package version 2.5-2. Cran R.
- Maley J (1996) The African rain forest Main characteristics of changes in vegetation and climate from the Upper Cretaceous to the Quaternary. Proceedings of the Royal Society of Edinburgh Section B: Biological Sciences 104:31–73.
- Anhuf D, et al. (2006) Paleo-environmental change in Amazonian and African rainforest during the LGM. Palaeogeography, Palaeoclimatology, Palaeoecology 239(3-4):510-527.
- Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. *Genetics* 131(2):479–491.
- Kamvar ZN, Tabima JF, Grunwald NJ (2014) Poppr: An R package for genetic analysis of populations with clonal,
 partially clonal, and/or sexual reproduction. *PeerJ* 2014(1):1–14.
- 6. Upham NNS, Esselstyn JA, Jetz W (2019) Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. *PLoS Biology* 17(12):e3000494.
- 7. Andermann T, et al. (2019) Allele Phasing Greatly Improves the Phylogenetic Utility of Ultraconserved Elements.
 Systematic Biology 68(1):32-46.
- Andermann T, Cano Á, Zizka A, Bacon C, Antonelli A (2018) SECAPR-A bioinformatics pipeline for the rapid and user-friendly processing of targeted enriched Illumina sequences, from raw reads to alignments. *PeerJ* 2018(7):e5175.
- 9. Jones GR (2019) Divergence Estimation in the Presence of Incomplete Lineage Sorting and Migration. Systematic Biology 68(1):19–31.
- 10. Hey J (2010) Isolation with migration models for more than two populations. *Molecular Biology and Evolution* 27(4):905– 920.
- 11. Leaché AD, Harris RB, Rannala B, Yang Z (2014) The influence of gene flow on species tree estimation: A simulation
 study. Systematic Biology 63(1):17–30.
- 12. Warren DL, Glor RE, Turelli M (2010) ENMTools: A toolbox for comparative studies of environmental niche models.
 Ecography 33(3):607–611.
- 13. Thuiller W, Georges D, Engler R (2013) biomod2: Ensemble platform for species distribution modeling. *R package version* 2(7):r560.
- 14. Dauby G, et al. (2017) ConR: An R package to assist large-scale multispecies preliminary conservation assessments using
 distribution data. *Ecology and Evolution* 7(24):11292–11303.