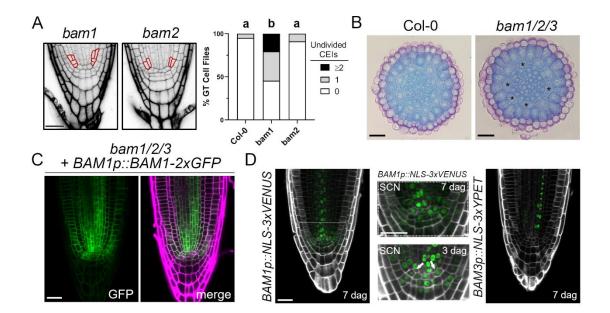
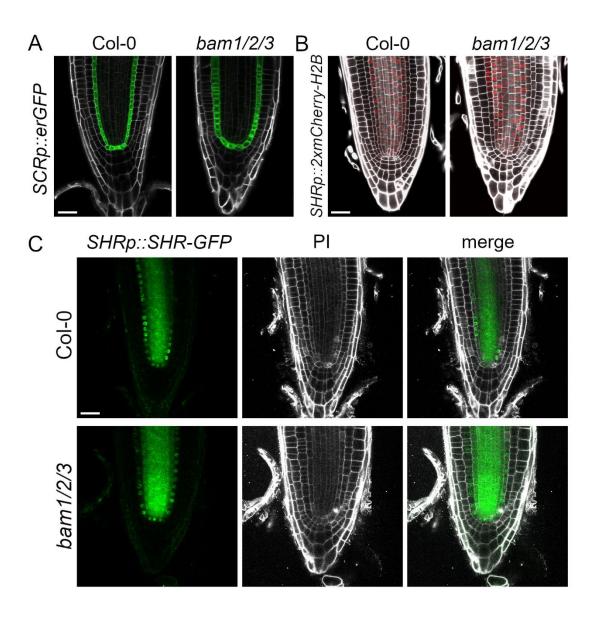


Supplementary Information for


BAM1/2 receptor kinase signaling drives CLE-peptide mediated formative cell divisions in Arabidopsis roots

Ashley D. Crook^{a,1}, Andrew C. Willoughby^{a,1}, Ora Hazak^{b,2}, Satohiro Okuda^{c,3}, Kylie R. VanDerMolen^a, Cara L. Soyars^a, Pietro Cattaneo^b, Natalie M. Clark^d, Rosangela Sozzani^d, Michael Hothorn^c, Christian S. Hardtke^b, and Zachary L. Nimchuk^{a,e,4}.


Corresponding author: Zachary L. Nimchuk Email: <u>zackn@email.unc.edu</u>

This PDF file includes:

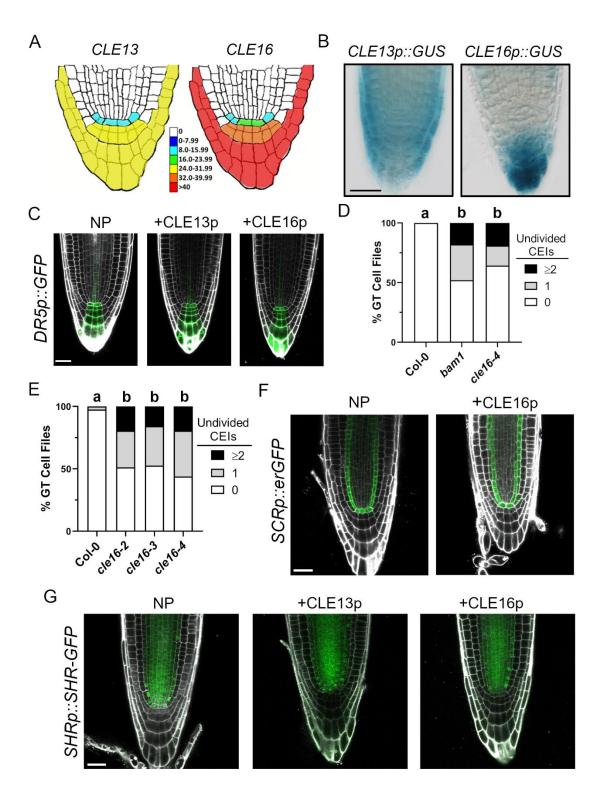

Figures S1 to S3 Tables S1 to S3 SI References

Fig. S1. BAM1/2 receptors are required for formative root cell divisions. (A) Quantification of undivided CEI cells in *bam1* and *bam2* single mutants (5 dag; n=81, Col-0; n= 56, *bam1*; n= 48, *bam2*). Undivided CEI cells and the first set of divisions are outlined in red. Distributions were compared using a Kruskal-Wallis nonparametric test. (B) Cross-sections of Col-0 and *bam1/2/3* roots at 6 dag. Asterisks represent a GT cell file with no formative division. (C) The division defects of a *bam1/2/3* mutant are rescued by the *BAM1p::BAM1-2xGFP* transgene. (D) The promoter of *BAM1* is active throughout the stem cell niche (SCN; boxed area), ground tissue (including CEIs at 3 dag, arrows), and stele in roots at 3 and 7 dag. (D) *BAM3* expression is restricted mainly to phloem lineage cells (D). Scale bars = 25 uM (A-D).

Fig. S2. BAM1/2 do not regulate *SHR* or *SCR* expression or protein dynamics. (A-B) Expression patterns of *SCR* (A; 7 dag) and *SHR* (B; 4 dag) were unchanged in *bam1/2/3* roots when compared to Col-0 roots. (C) SHR-GFP was localized in the stele of Col-0 and *bam1/2/3* and the subsequent trafficking into the ground tissue and nuclear sequestration was observed. Scale bar = $25 \mu m$ (A-C).

Fig. S3. Root enriched CLE genes regulate formative cell divisions. (A) Expression profiles of *CLE13* and *CLE16* by cell-type specific RNA-seq (1) (heatmap represents relative transcript abundance) and (B) *promoter::GUS* fusions in the root meristem. *CLE13* is largely expressed

throughout the stem cell niche, with *CLE16* expression is most prominent in columella and lateral root cap cells. (C) The expression pattern of *DR5p::GFP* does not change in response to peptide treatment in plants at 3 dag. (D) Undivided CEI quantification in the GT cell files of *bam1* and *cle16-4* (n= 32, Col-0; n= 50, *bam1*; n= 42, *cle16-4*) show similar division defects. (E) Three independent mutant alleles of *CLE16* display congruent phenotypes (n= 40, Col-0; n= 41, *cle16-2*; n= 38, *cle16-3*; n= 41, *cle16-4*). Distributions were compared using a Kruskal-Wallis nonparametric test. (F-G) Confocal imaging of roots expressing *SCRp::erGFP* (F) and *SHRp::SHR-GFP* (G) did not show altered patterns when treated with peptides. Scale bar = 25 μ m (B, C, F, and G).

CLEp	Locus ID	Sequence	# AA	Upregulation of <i>CYCD6</i> observed?
CLE1p	At1g73165	RLSPGGPDPRHH	12	No
CLE2p	At4g18510	RLSPGGPDPQHH	12	No
CLE12p	At1g68795	RRVPSGPNPLHH	12	Yes
CLE13p	At1g73965	RLVPSGPNPLHH	12	Yes
CLE14p	At1g63245	RLVPKGPNPLHN	12	n.d.
CLE16p	At2g01505	RLVHTGPNPLHN	12	Yes
nd . 1	• •			

Table S1. Locus ID, sequence, and CYCLIND6;1p::GFP response of synthesized root expressed

 CLE peptides.

^{n.d.} not determined

Genotype	Locus ID	Mutant allele
BAM1	At5g65700	bam1-4, SALK_107290
BAM2	At3g49670	bam2-4, SAIL_1053_E09
BAM3	At4g20270	bam3-2, SALK_044433
		SALK_004121
SHR	At4g37650	shr-2, CS2972
SCR	At3g54220	<i>scr-3</i> , CS3997
CLE16	At2g01505	cle16-2
		cle16-3
		cle16-4

Table S2. Locus ID and allele information for genotypes used in the study.

Genotype		Primer sequence (5'-3')	Notes	
BAM1	F	ccggtactctttccccagatgtttctcatttacgtc		
DAWII	R	cttattggaagagagatcgacgagatttagtttacc		
	F	cttattggaagagagatcgacgagatttagtttacc		
bam1-4			T-DNA LB primer	
	R	attttgccgatttcggaac	(LB1.1a)	
BAM2	F	tatggttcgctttggtattg		
D/ 11/12	R	gttagetegttaceggaaace		
bam2-4	F	gaagtccagctgccagaaac	detects BASTA ^r	
0um2-4	R	gcaccatcgtcaaccactac		
	F	ggtgaagataacacaaccccttagccgcttccaacg		
BAM3	R	ccggtactctttccccagatgtttctcatttacgtc		
bam3-2/	F	ccggtactctttccccagatgtttctcatttacgtc		
SALK_004121			T-DNA LB primer	
SALK_004121	R	attttgccgatttcggaac	(LB1.1a)	
SHR/shr-2	F	actcctccgtccttcgactt	shr-2 (large indel)	
511175111-2	R	tctgtggctgcagctgttac	stir-2 (large lilder)	
SCR/scr-3	F	tcacgggacttggtacttcc	CAPs; MaeII site is	
SCR/SCI-5	R	cttctcgatggtcctccaac	introduced in scr-3	
CLE16/cle16-2	F	gaatccaaaacctgctctgc	MspI site at +59 is	
	R	cgaaggagcagtcaacacct	altered in <i>cle16-2</i> (+C)	
CLE16/cle16-3	F	gaatccaaaacctgctctgc	MspI site at +59 is	
	R	cgaaggagcagtcaacacct	altered in <i>cle16-3</i> (-G)	
CLE16/cle16-4	F	caaatcaaacagccatggaagcttgttccagaaccaga	dCAPs; BseL1 site at	
			+45 is altered in <i>cle16</i> .	
	R	cttggagagagaccagacac	4 (+A)	
CIE16nCIE16	Б	GGGGACAAGTTTGTACAAAAAAGCAG	attB1- <i>CLE16</i> 5'promoter	
CLE16p::CLE16	F	GCTTCACCtatgcacttaaagtgtggtaacactg GGGGACCACTTTGTACAAGAAAGCTG	*	
	R	GGTGgatettegaagaaatecatgeatteg	attB2- <i>CLE16</i> 3' UTR	

Table S3. Primer sequences used for cloning and genotyping.

SI References

1. Clark, N., *et al.* Stem-cell-ubiquitous genes spatiotemporally coordinate division through regulation of stem-cell-specific gene networks. Nat. Commun. **10**, 5574 (2019).