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1. Rod geometry and Kirchhoff equations1

The morphology of the plant is determined by solving the Kirchhoff equations for an elastic rod with2

non-zero evolving intrinsic curvature and axial growth. Here we briefly recall the basic elements of Cosserat3

rod theory. A rod is a space curve r(S) ∈ R3, known as the centerline, equipped with two additional unit4

orthonormal vector fields (d1(S),d2(S)) representing the orientation of a cross section at S. The general5

frame is obtained by defining d3(S) = d1(S)× d2(S) and we note that {d1,d2,d3} forms a right-handed6

orthonormal basis. The components of a vector a = a1d1 + a2d2 + a3d3 in the local basis are denoted by7

a = (a1, a2, a3). We note that |a| = |a|.8

We choose the material parameter s to be the current arc length, i.e. in the grown configuration, and S9

to be the material arc length in an initial pre-grown configuration. These are related by the growth stretch10

γ := ∂s

∂S
. [1]11

For an unshearable rod, we may choose d3 to align with the tangent direction, so that12

∂r
∂s

= d3, [2]13

or equivalently14

∂r
∂S

= γd3. [3]15

A complete kinematic description of the frame is given by:16

∂di
∂s

= u× di, i = 1, 2, 3, [4]17

where u is the Darboux vector. The first two components (u1, u2) of the Darboux vector are associated with18

the Frenet curvature while u3 represents twisting, that is the rotation of the basis (not the curve) around19

the d3 vector. It contains both information on the Frenet torsion τ of the centerline and on the rotation of20

the cross section for increasing values of s.21

In particular, if the rod is assumed to be inextensible, the Darboux vector is related to the usual notion22

of Frenet curvature and torsion κ and τ by23

cotϕ = u2
u1

, [5]24

κ =
√

u2
1 + u2

2, [6]25

τ = u3 + u′2u1 − u′1u2
u2

1 + u2
2

. [7]26

where prime denotes differentiation with respect to current arc length s. Also, ϕ is the angle between the27

normal and the vector d1. The quantity ∂ϕ/∂s, the excess twist, represents the rotation of the local basis28

with respect to the Frenet frame as the arc length increases.29
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The stress on the cross section at r(s) from adjacent segments with larger material coordinates (s′ > s)30

gives rise to a resultant force n(s) and resultant couple m(s). These satisfy the balance of linear and angular31

momentum, which in mechanical equilibrium read:32

∂n
∂s

+ f = 0, [8]33

34
∂m
∂s

+ ∂r
∂s
× n = 0. [9]35

Here f is a linear force density accounting for any external forces acting on the rod, such as contact forces.36

The system is closed by boundary conditions and constitutive laws. We restrict to an inextensible rod in37

this paper, and thus only a constitutive equation relating moment m to curvature is needed. For a quadratic38

elastic energy, this takes the general form m = K(u− û), where K is a stiffness matrix. Considering the39

simplest and most widely used case of a diagonal K, we have40

m = K1(u1 − û1)d1 +K2(u2 − û2)d2 +K3(u3 − û3)d3. [10]41

In this case, the Kirchhoff theory tells us that the stiffnesses are42

K1 = EI1, K2 = EI2, K3 = µJ [11]43

where E is the Young’s modulus, µ the second Lamé parameter and J , I1,2 depend on the cross-sectional44

shape (see main text).45

In terms of boundary conditions, we primarily consider a plant that is held clamped at one end and free46

at the other. Denoting the clamped end s = 0, and the free end s = `, these amount to fixing the position47

and frame at s = 0:48

r(0, t) = r0, di(0, t) = di,0, i = 1, 2, 3, [12]49

and imposing zero force and moment at s = `:50

m(`, t) = n(`, t) = 0. [13]51

As the elastic timescale is much shorter than the growth timescale, mechanical equilibrium is assumed52

at all times, and the intrinsic curvatures and growth stretch γ are updated in a quasi-static fashion via a53

simple forward Euler time-stepping of the appropriate evolution law.54

2. From 3D growth field to 1D elasticity55

In order to use the Kirchhoff equations described in the previous section, we need to obtain the intrinsic56

curvatures from the tropism models. These are obtained as solutions of evolution equations. Here, we follow57

the framework of (1) to obtained the intrinsic curvatures from a growth tensor defined on a 3D tubular58

structure. In this framework, we define the centerline as the curve passing through the centroids of each59

cross section so that60 ∫
ΩS

x1 dx1dx2 =
∫

ΩS

x2 dx1dx2 =
∫

ΩS

x1x2 dx1dx2 = 0. [14]61

At any point in the material, the growth tensor can be written

G = Gijei ⊗ ej , i, j = 1, 2, 3,

where in general each Gij may be functions of position, and (e1, e2, e3) are Cartesian basis vectors that are62

chosen to coincide with the frame (d1,d2,d3) in the initial pre-deformed state of the plant.63
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Conceptually, the components of G define the expansion (or contraction) of material both as a local64

property and as directional quantities. For example, if G11 > 1 then cells will expand in the d1 direction.65

The determinant of G describes the net gain or loss of mass at each point; here it is worthwhile to note66

that growth without a change of mass is possible, and it is also possible to have a growth field for which67

points gain or lose mass while the total mass for a cross section stays fixed.68

The quantity that is of most relevance for capturing a tropic growth response is the term G33; this term69

describes axial elongation; it is the heterogeneity of this term across a section that generates curvature in70

the plant. While other terms may play a role, for instance in changing the cross-sectional geometry, we71

posit that this will typically be a secondary effect (for the general theory see (1)) and we assume the form72

G = diag(1, 1, 1 + g). [15]73

For this growth tensor, the key result of (1) is that the intrinsic curvatures are given explicitly by74

I1û1(S, t) =
∫

ΩS

x2g(x1, x2, S, t) dx1dx2, I2û2(S, t) = −
∫

ΩS

x1g(x1, x2, S, t) dx1dx2, û3 = 0, [16]75

where
I1 :=

∫
ΩS

x2
2 dx1dx2, I2 :=

∫
ΩS

x2
1 dx1dx2

are the second moments of area. A straightforward extension of the derivation given in (1) shows that the76

axial elongation γ is given by77

Aγ =
∫

ΩS

g(x1, x2, S, t) dx1dx2, [17]78

where A is the cross-sectional area. Note in particular that if g is constant, then from Eq. (14) it follows79

that no curvature is generated, and the axial extension is equal to g; this reflects the simple and intuitive80

notion that uniform axial growth does not create bending.81

3. Obtaining curvature and growth evolution laws82

As described in the main text, the axial growth g is connected to auxin concentration A(x1, x2, s, t) by a83

growth law, assumed to have the form84

∂g

∂t
= β(A−A∗). [18]85

Since the shape of the cross sections is assumed to remain constant in time, we can take a time derivative86

across equations Eqs. (16) and (17) and utilize Eq. (18) to obtain evolution laws for the curvatures:87

I1
∂û1
∂t

= β

∫
ΩS

x2A dx1dx2, I2
∂û2
∂t

= −β
∫

ΩS

x1A dx1dx2,
∂û3
∂t

= 0. [19]88

And similarly, the evolution law for the axial extension is89

A∂γ
∂t

= β

∫
ΩS

(A−A∗) dx1dx2. [20]90

The approach outlined in (1) allows for more generic growth tensor G, in which case the bending91

stiffnesses about the d1 and d2 axes, as well as the torsional stiffness, can also change due to the growth.92

However, for the growth tensor (15), the stiffnesses are not impacted by g. Hence, for this modeling choice,93

when passing from tissue to organ scale, the tropic response is entirely encoded by the change in the intrinsic94

curvature of the plant as well as any axial extension.95

An extension of this model to include autotropism consists in adding a decay term96

∂g

∂t
= β(A−A∗)− ξ(g − g), [21]97
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where98

g = 1
A

∫
ΩS

g dx1dx2,99

is the growth field average. The extra term ξ(g − g) is the deviation of the growth field from its average100

value, thus providing a point-wise measure of the strain induced by differential growth. This term only101

impacts on the evolution laws for curvature, since it is differential growth that produces curvature. If, for102

instance, g > 1 is constant across the section, axial extension will occur without any curvature generation,103

and the autotropic term will not have an influence.104

Specifically, note that the curvature evolution laws Eq. (19) become105

I1
∂û1
∂t

= β

∫
ΩS

x2A dx1dx2 − I1ξu1, I2
∂û2
∂t

= −β
∫

ΩS

x1A dx1dx2 − I2ξu2. [22]106

while the axial evolution law Eq. (20) is unchanged since107 ∫
ΩS

(g − g)dx1dx2 = 0 [23]108

by definition of g. In light of the form of Eqs. (19), (20) and (22), the objective for any given tropic stimulus109

is thus to obtain an expression for the terms110 ∫
ΩS

x2A dx1dx2,

∫
ΩS

x1A dx1dx2,

∫
ΩS

A dx1dx2 [24]111

via manipulation of the transport equation; given these, the evolution rules follow both with and without112

autotropism. We consider each tropism stimulus separately in the following section.113

4. Specific curvature evolution laws114

In this section we outline the steps to obtain the curvature evolution laws given in the main text from the115

assumptions on auxin transport and via the general evolution equations Eqs. (19) and (20). We first discuss116

estimates of the different components of the auxin transport equation, and then each tropism is considered117

in turn.118

A. Comparing advection, diffusion, and turnover.One feature that is common to all evolution laws below119

is that we consider advection-dominated auxin transport, i.e. we restrict our attention to the zero-120

diffusion limit. To study the relative importance of advection and diffusion we compare the diffusive flux121

Jdiff = −D∇A, where D is a diffusion coefficient, and an advective flux due to the environmental stimulus,122

which will generally take the form Jstim = kAF, for a given auxin flow direction F (where |F| = 1) and123

with flow rate k. Due to the nature of our tissue-level description of auxin transport, the parameters k124

and D are difficult to quantify directly. Indeed, at the cellular level, models of auxin transport (2) are125

highly dependent on cell geometry, and auxin flux may differ significantly in the cytoplasm compared126

to the apoplast, due to varying diffusivity. Additionally, the parameter k may be a proxy for multiple127

processes. For instance, in cell-based models of gravitropism, e.g. (3), the gravitational stimulus is modeled128

by modifying PIN efflux carrier locations on particular cells, based on the stem orientation with respect to129

gravity. In this approach, the flux Jstim serves as a tissue-level proxy for a complex interaction of proteins130

and auxin transport both through and across cells; which cannot be easily related to a single parameter k.131

Moreover, this parameter is also related to the timescale of statoliths settling, e.g. (4).132

To our knowledge, there is no well-established tissue-level auxin transport models and further experimental133

work, as well as explicit modeling connecting cell to tissue scales, is needed to identify these parameters. In134

the absence of such a theory, we can, nevertheless, justify the zero-diffusion limit D = 0 by estimating, in135
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the transport equation, the relative size of the diffusion and advection terms as follows:136

∇ · Jdiff = D∇2A ∼ [A] [D]
[L]2 [25]137

∇ · Jstim = k∇ · (AF) ∼ [A] [k]
[L], [26]138

where the symbol “∼" denotes a scaling estimate and the bracket denotes the dimensions (e.g. L is the139

lengthscale of advection/diffusion so that [L] has the dimension of a length). To compare the relative size140

of these terms, note that in studies of the transport of an auxin pulse, auxin velocity has been measured to141

be on the order of V ∼ 1 cm/hr ≈ 3 · 10−4 cm/s (5), while the diffusion coefficient for auxin in aqueous142

solution has been estimated to be around D ∼ 10−6 cm2/s (6) (and is presumed to be smaller in cytoplasm143

(5)). Note that L can vary significantly depending on the plant/organ under consideration, but for axial144

transport we have a typical L between 1 and 10 cm, while for cross-sectional transport we take L ∼ 0.1 cm.145

For L ∼ 10 cm we estimate146

∇ · Jdiff ∼ [A]10−8s−1, ∇ · Jstim ∼ [A]3 · 10−5s−1,147

while for L ∼ 0.1 cm, we have148

∇ · Jdiff ∼ [A]10−4s−1, ∇ · Jstim ∼ [A]3 · 10−3s−1.149

These estimates show that axial diffusion is negligible but that it may play a role in cross-sectional transport,150

though is still an order of magnitude smaller than might be expected from advection.151

For the turnover modeled by the term −QA in the transport equation, it is more difficult to obtain an152

estimate. However, in the case of an auxin source, the inclusion of turnover in the model enables to define153

a characteristic ‘bending length’ l = U/Q, which gives the distance from the source within which the tropic154

bending response occurs. Thus, we may estimate Q from the bending length and velocity. Taking l ∼ 1 cm155

and with U ∼ 3 · 10−4 cm/s, we obtain Q = U/l ∼ 3 · 10−4 s−1.156

From a mathematical point of view, it is worth noting that in the cases of axial transport, the curvature157

evolution equations derived below can be obtained for zero turnover, and indeed would correspond to158

the derived forms in the well-defined limit of Q→ 0. The case of gravitropism is different in this regard,159

however, as gravitropism involves a cross-sectional auxin flow. The mathematical steps described below do160

not work in the case of zero turnover, i.e. Q→ 0 is a singular limit of the resulting gravitropic curvature161

evolution (which can be understood physically since, in the absence of turnover, auxin increases without162

bound).163

Furthermore, it is worth highlighting that the limit case D = 0 enables for analytical tractability, and164

as shown below is key in establishing explicit curvature evolution laws. In the case of D 6= 0, the general165

model formulation remains valid, but the solution techniques applied below would not be directly applicable166

and may require a full computational approach to solving for auxin concentration.167

B. Gravitropism. In the case of gravitropism, we consider a gravity driven auxin flux Jstim = kAf , where168

f := f1d1 + f2d2 describes the cross-sectional component of the direction of gravity expressed in the local169

frame. The parameter k describes the gravitropic auxin flow rate. Since auxin transport timescales are170

generally smaller than the timescale associated with growth (7), and transport is only occurring on the171

short cross-sectional lengthscale, we also take the auxin concentration to be at steady state. Under these172

assumptions, the auxin concentration satisfies173

∇ · (kAf) = −QA+ Cinδ(r − r0)− Coutδ(x1)δ(x2). [27]174

Here, the divergence is only taken in the cross-sectional variables (x1, x2), and Q is the turnover. The175

second and third terms on the right hand side account for a source Cin and sink Cout of auxin in each cross176
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section, providing a simple model of auxin transport routes. In particular, we consider here a source at177

radius r = r0, which may for instance be taken to be near the cross-sectional radius in the case of epidermal178

auxin flow, and a sink at the center. These terms are needed simply to provide a source of auxin to be179

transported under gravity and stimulate growth; the specifics of these choices do not impact on the resulting180

equations.181

Combining Eqs. (18), (19) and (27), and using Eq. (14), we obtain the following equation for the intrinsic182

curvature û1:183

I1
∂û1
∂t

= β

∫
ΩS

x2(A−A∗) dx1dx2 = − β
Q

∫
ΩS

x2(∇ · kAf) dx1dx2. [28]184

Note that the source and sink terms both vanish on a circular cross section, as does the A∗ term, assuming185

A∗ is constant. This form for ∂û1/∂t is not very useful, as it would still require solving for the auxin186

concentration at each time step. However, we may determine the evolution laws without explicitly solving187

for A, by noting the following identity188

x2∇ · (kAf) = ∇ · (x2kAf)−∇x2 · kAf = ∇ · (x2kAf)− kAf2, [29]189

since ∇x2 = d2. Therefore, when integrating over the cross section, we have190 ∫
ΩS

x2(∇ · kAf) dx1dx2 =
∫

ΩS

∇ · (x2kAf) dx1dx2 − kf2
∫

ΩS

A dx1dx2 = −kf2
∫

ΩS

A dx1dx2, [30]191

where we have used the divergence theorem and the no-flux boundary condition J ·n = kAf ·n = 0 on ∂ΩS192

to write193 ∫
ΩS

∇ · (x2kAf) dx1dx2 =
∫
∂ΩS

x2kAf · n ds = 0. [31]194

The problem is now reduced to evaluating an integral of only A over the cross section. We may again insert195

A via Eq. (27); the divergence term again vanishes by the no-flux boundary condition, while the delta196

function terms integrate to a constant ∆C = Cin − Cout, i.e. the net auxin available in the cross section, so197

that198 ∫
ΩS

x2(∇ · kAf) dx1dx2 = − k
Q

∆Cf2, [32]199

Combining the above, we obtain the relation provided in the main text:200

∂û1
∂t

= Cgravf2, [33]201

where Cgrav = βk∆C/(I1Q
2). Similar steps lead to the evolution equations for û2 and γ as appearing in the202

main text:203

∂û2
∂t

= −Cgravf1, [34]204

205

∂γ

∂t
= β

(∆C
QA
−A∗

)
. [35]206

207

Note that some plant organs align in a direction different to that of the gravitational field; the so-called208

gravitational setpoint angle (GSA) is often observed in branches of higher plants (8). in such branches, there209

exists an auxin-dependent ‘antigravitropic’ offset mechanism, effectively countering partially the growth210

response of auxin due to statolith settling under gravity (9). This mechanism can be easily included in our211

framework by altering the local gravitational field f to include the combined (and weighted) gravitational212

field and ‘antigravitational’ field, i.e. f would point in the direction of the GSA; however a full treatment of213

the problem likely would require consideration of the signaling pathways in the antigravitropic offset as214

shown in (9).215
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C. Phototropism. In the case of phototropism, we consider the following axial auxin transport equation216

∂A

∂t
− ∂

∂s
(UA) = −QA, [36]217

and with an auxin source at the tip s = ` given by:218

Atip(x1, x2, t) = −κI(t) (e1(t)x1 + e2(t)x2) [37]219

where e is a unit vector pointing from the tip to the light source, I characterizes the intensity of the light,220

and κ characterizes the strength of the response to generate auxin. The fact that light induces an auxin221

gradient in the phototropic response is well established (10) and, in the absence of supplementary evidence,222

the simplest modeling choice is to assume that this gradient is linear. An exact solution to Eqs. (36)223

and (37) is given by224

A(x1, x2, s, t) = Atip

(
x1, x2, t−

`− s
U

)
exp

(
−Q(`− s)

U

)
. [38]225

Following Eq. (19), we multiply by x2 and integrate over a cross section. Since Eq. (37) gives A as a linear226

function of x1, x2, then using Eq. (14), we obtain the curvature evolution given in the main text:227

∂û1
∂t

= −Cphoto exp
(
−Q(`− s)

U

)
e2

(
t− `− s

U

)
, [39]228

where Cphoto = βκI(t), and similarly for ∂û2/∂t.229

In the formulation outlined above, there is no axial growth component, i.e. γ̇ = 0, since the integral230

of A over each cross-section is zero due to the form of Atip. We may naturally incorporate axial growth231

by adding source and sink terms, as appeared in the gravitropism case. That is, consider the transport232

equation233

∂A

∂t
− ∂

∂s
(UA) = −QA+ Cinδ(r − r0)− Coutδ(x1)δ(x2). [40]234

Denoting the combined source and sink terms by ∆C, then if this term is independent of s the solution is235

A(x1, x2, s, t) =
[
Atip

(
x1, x2, t−

`− s
U

)
− ∆C

Q

]
exp

(
−Q(`− s)

U

)
+ ∆C

Q
. [41]236

In this case, the curvature evolution laws are unchanged, while the axial growth satisfies237

∂γ

∂t
= β

[
exp

(
−Q(`− s)

U

)(∆C
Q
− 1

)
−A∗

]
. [42]238

This formulation naturally produces growth focused at the tip, with growing region depending on the239

turnover. In cases of high turnover, it may be necessary to modify the growth law to avoid ‘negative growth’240

(∂γ/∂t < 0).241

D. Circumnutation. In the case of circumnutation, we assume the existence of an axial flow of auxin from a242

source point. The only difference here is that the auxin gradient originating at the source has a rotational243

component in the cross section. In the general case, we assume that an internal oscillator produces a244

time-varying auxin gradient at the point s = sc, i.e.245

A(sc, x1, x2, t) = κ(cos θ x1 + sin θ x2),246

where κ = κ(t) gives the size of the gradient and θ = θ(t) describes the orientation in the cross-section.
This oscillating gradient provides a simple auxin-level description of the complex mechanisms generating
the internal oscillator that are only beginning to be understood (11). The derivation of curvature evolution
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is the same as in the phototropism case, simply with e1(t) replaced by cos(θ(t)) and e2(t) replaced by
sin(θ(t)). Following the same steps, we obtain the curvature evolution laws

∂û1
∂t

= Ccirc sin
(
θ

(
t− |s− sc|

U

))
e−

Q
U
|s−sc|, [43]

∂û2
∂t

= −Ccirc cos
(
θ

(
t− |s− sc|

U

))
e−

Q
U
|s−sc|. [44]

where Ccirc = βκ. Note that the model provided in the main text corresponds to the particular choice of a247

constant rotation rate for the oscillator, θ = ωt.248

E. Thigmotropism.For thigmotropism, we assume that physical contact occurs at a point sc, and with
angle in the local basis ψc; that is, the point in physical space

r(sc, t) +R(cosψc d1(sc, t) + sinψc d2(sc, t)),

where R is the cross-sectional radius. Geometrically, generating the helical shape of a twining plant requires249

establishing a growth gradient which rotates along the axis of the plant with increasing arc length (12).250

In terms of auxin transport, it has been observed that point contact creates a sharp rise in asymmetric251

auxin concentration at the stimulus point that is transported along the stem (13, 14). This suggests that252

we impose as a boundary condition at the contact point an auxin gradient, with minimum auxin at the253

contact point, i.e.254

A(x1, x2, sc, t) = −κ(cosψc x1 + sinψc x2), [45]255

where κ characterizes the strength of the tropic response (which may, for instance, be connected to the256

magnitude of the contact force).257

We then assume that auxin flux consists of a rotational cross-sectional component with angular velocity258

ω, and an axial component with velocity U , thus generating a helical auxin gradient along the stem. The259

angular component may be seen as a proxy for (largely unknown) underlying mechanisms that generate260

the rotational component of growth gradient needed for helical twining. For instance, in nutating roots,261

a circumferential wave of ion flux is engaged; ion fluxes may interact with auxin (15), and also appear262

sensitive to touch (11), thus providing a possible mechanism.263

Following these assumptions, the auxin transport equation is thus264

∂A

∂t
+ sign(s− sc)

∂

∂s
(UA) +∇ · (Arωeθ) = −QA. [46]265

Here the sign function accounts for the flow away from the contact point in either direction, the divergence266

∇ · () is only with respect to the cross-sectional variables, r is the radial position vector within a cross267

section, and eθ is the circumferential unit vector in the cross section. Since the curvature response is largely268

localized to the region near the contact point, we neglect any time delay that would occur due to axial269

transport, and thus consider the steady-state auxin concentration. Setting ∂A/∂t = 0, the exact solution is270

given by271

A = −κ
[
cos

(
ψc + ω

U
sign(s− sc)

)
x1 + sin

(
ψc + ω

U
sign(s− sc)

)
x2

]
e−

Q
U
|s−sc|. [47]272

From here, the evolution equations for ûi follow naturally from Eq. (19), by multiplying by xi and integrating273

over a cross section, again with the use of Eq. (14).274

F. Multiple signals.We model multiple simultaneous signals as an additive effect to the growth response.275

In particular, consider two stimuli A and B. Letting the auxin concentration under stimulus A be denoted276

AA, and similarly AB for stimulus B, the axial growth law is adapted to277

∂g

∂t
= β(AA +AB −A∗). [48]278
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An alternative approach would be to formulate a single transport equation with combined flux and/or279

boundary conditions for each stimulus; however, this would likely negate the mathematical techniques280

by which we have obtained explicit curvature and growth evolution laws and thus necessitate a fully281

computational approach. The assumption of separated auxin flows for each stimulus, as utilized here,282

reflects the differing signal transduction pathways that exist for different stimuli, and leads to an additive283

growth response, as has been observed to hold reasonably well in the case of photogravitropism (16, 17). In284

this way, if tropisms A and B lead to the individual curvature laws285

∂ûi
∂t

= f
(i)
A ,

∂ûi
∂t

= f
(i)
B , i = 1, 2 [49]286

respectively, then the curvature evolution under the combined influence of signals A and B is simply287

∂ûi
∂t

= f
(i)
A + f

(i)
B . [50]288

It is also worth noting that different tropisms may act via different hormones, and that auxin affects289

multiple hormonal pathways (18), potentially acting on different cells within a cross section. In this way,290

competition between different tropic responses could appear at the level of the cross-sectional growth field291

g even within a single auxin field.292

5. Gravitropism metrics293

The metrics used in quantifying the gravitropic response with a rotating base are defined as follows:294

1. Alignment = 1
L

∫ L
0 (d3(S) · ez)2 dS, with ez = (0, 0, 1)295

2. Curvature = 1
L

∫ L
0

√
u2

1(S) + u2
2(S) dS296

3. Torsion = 1
L

∫ L
0

(
u′

2(S)u1(S)−u′
1(S)u2(S)

u2
1(S)+u2

2(S)

)2
dS297

The formulas for curvature and torsion follow from Section 1.298

6. Escape from the shade - mechanical contact299

In simulating the escape from the shade in photogravitropism (main text Fig. 7), contact with the rigid,300

shade-creating obstacle becomes an issue. Contact at a point s = sc induces a contact force fc that must be301

accounted for. We assume that the plant may slide along the surface without friction, so that the contact302

force acts only in the normal direction. Working in a planar geometry with tangent d3 and transverse303

direction d1, this may be expressed as fc = fcd1. The balance of linear momentum is then304

n′(s) = ρgey + fcd1δ(s− sc). [51]305

Here we have included self-weight with gravity g acting in the negative ey direction and linear density ρ.306

The delta function δ(s− sc) accounts for contact at a single point, and creates a jump in the resultant force307

n. Both fc and sc are unknown values that must be determined at each point in the evolution as part308

of the solution to the boundary value problem. To determine the two additional unknowns, the system309

requires two additional conditions, which are that the point r(sc(t), t) = p, where p is the fixed contact310

point of the obstacle, and we highlight that the contact location along the rod may change with time (since311

the motion is restricted to a plane, this vector equation consists of the required two scalar conditions).312

In simulating this problem, we first integrate the system without contact, monitoring whether any point313

is near the obstacle, and stopping once a point along the rod first reaches the obstacle, i.e the first time314

t = t∗ at which there exists an s = s∗ for which r(s∗, t∗) = p. At this point, Eq. (51) has a solution with315

fc = 0, sc = s∗. For t > t∗, we then integrate the system with force balance (Eq. (51)). As a numerical316
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shooting procedure, we integrate from s = 0 to s = `, in which case the other unknowns are the moment317

m = mez and the force components n = nxex + nyey at s = 0. The 5 conditions to determine the shooting318

variables consist of the contact condition r(sc(t), t) = p, and the three conditions that make up the free319

end boundary condition m = n = 0 at s = `. In this way, we employ standard continuation techniques to320

increment the system beyond t∗.321

7. Comparison with kinematic models322

In this section we demonstrate under which limits and assumptions the curvature evolution laws we have323

derived correspond with existing kinematic descriptions in the literature.324

A. Gravitropism.As noted in the main text, the gravitropism model immediately reduces to the classic325

‘sine law of gravitropism’ (19, 20) when the deformation is restricted to a plane, and generalizes this model326

for 3D deformations. Furthermore, if the autotropism term is included in the growth law Eq. (21), we327

recover in the planar case the widely used “graviproprioceptive’ model, which is a modified sine law that328

includes autotropism (21). Both the sine law and the graviproprioceptive model have been validated against329

experiments involving different plant species (with the conclusion that the latter generally provides a more330

accurate description (21)).331

B. Phototropism. In the case of phototropism, we compare our formulation with the kinematic description332

of (17) which includes the combined influences of gravitropism, phototropism, and autotropism. In the case333

when photoception is apical, they posit the curvature evolution equation334

∂C

∂t
= −ν(A(L, t)−Ap)− βA− γC, [52]335

wehere they use C(s, t) to denote the plant curvature (considering only planar deformations), Ap is the336

angle the light source makes with the vertical, and the sensitivity to phototropism, gravitropism, and337

autotropism are respectively described by the parameters ν, β, and γ. Focusing only on the phototropic338

response, as in our framework the curvature at each point along the stem updates based on the orientation339

of the tip with respect to the light source; note that in this description the signal is assumed to propagate340

instantaneously so that at each point along the stem it is the orientation of the tip at the current time that341

dictates the curvature change.342

Comparing with our evolution equation Eq. (39), we recover Eq. (52) (with β = γ = 0) under the343

following assumptions: (i) the deformation is planar so that bending only occurs about the d1 axis, (ii) the344

light is assumed to be a plane wave making angle Ap with the vertical (as opposed to a point source in our345

formulation), (iii) the angle between light source and the tangent d3 at the tip is small, and (iv) in the346

limit of U →∞.347

Regarding conditions (ii) and (iii), note that for a planar deformation the tip orientation can be348

described by the angle α between the vertical and the tangent, so that d3 = (sinα, cosα, 0), and we have349

d2 = (− cosα, sinα, 0). Following the description above, the unit vector pointing towards the light source350

is given by e = (sin(Ap), cos(Ap), 0). We thus obtain351

e2 = e · d2 = sin(α−Ap) ≈ α−Ap.352

Plugging this form into Eq. (39) under the limit U →∞ thus reads353

∂û1
∂t

= −Cphoto(α−Ap),354

which is identical to the phototropism version of Eq. (52) under the substitution û1 = C.355
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C. Nutation.For the problem of nutation, we compare with the recent kinematic description of (22). While356

the notations and mathematical descriptions significantly differ from our work, the conceptual idea is357

similar. Namely, the time varying nutational curvature is developed due to an internal oscillator that358

creates a time varying growth axis and growth differential. In the notation of (22), the growth axis is given359

by prescribing a function ψg(s, t), which is the angle in each cross-section of the growth axis, while the360

degree of curvature-inducing differential growth is dictated by prescribing a function ∆(ψg)Ė. While the361

kinematic description is outlined for generic forms, in practice the authors assume that ψg and ∆(ψg)Ė are362

only functions of time, i.e. at each time the differential growth field is the same along the length of the363

plant. They then consider tip patterns in terms of these functions, and demonstrate that circular motion,364

elliptical motion, and more complex motion can all be obtained. These patterns are in good agreement365

with experimental observations.366

In our notation, the internal oscillator is given by a time-varying auxin source at a single point (typically367

the tip), and the orientation and degree of differential growth at each point along the length arises as a368

result of the axial transport of auxin from the tip. In particular, recall that we impose a form of auxin at369

the tip370

Atip = κ(cos θ x1 + sin θ x2),371

where θ = θ(t) gives the orientation of the auxin gradient due to the internal oscillator, playing an equivalent372

role to the function ψg(t) in (22), and the degree of growth differential is determined both by the the auxin373

tip gradient κ, which may be taken to be a function of time in general, as well as the sensitivity parameter374

β in the growth law Eq. (18).375

While the transport velocity U and turnover Q of auxin will generate a non-uniform growth response in376

our framework, we recover the kinematic description of (22) in the limit U →∞.377

8. Parameters and details of simulations378

In this section we provide the parameter choices and other relevant details for each of the simulations379

appearing in the main text and/or supplementary movies. Note that in most cases, we do not consider380

specific plants, but rather seek to demonstrate the qualitative behavior of the system in different parameter381

regimes. Thus, we are not concerned here with specific dimensional values, since it is the ratio of different382

dimensional parameters that dictates the qualitative behavior. Therefore, where possible we have scaled383

parameters to unity, e.g. the initial rod length can always be taken to equal 1, while varying parameters384

that enable to explore the qualitative regimes. This choice is not restrictive and amounts to measure all385

distances with respect to this unit length.386

A. Computational details.The models that we have derived are quite simple from a computational perspec-387

tive as they only involve integration along the arc length. Hence they are all formulated as boundary value388

problems for ordinary differential equations. Therefore, these equations do not require a dedicated code and,389

in each scenario, the resulting rod evolution equations were simply solved using NDSolve in Mathematica390

(23). In the absence of self-weight or other forces, this is a trivial matter: in such cases n = m = 0 and the391

curvature u is equal to the intrinsic curvature û, thus Eqs. (3) and (4) may simply be integrated forward392

from the clamped base at each time step, and then the intrinsic curvature û is updated quasi-statically.393

In cases that include self-weight or other forces, the rod equations at each time step were solved via a394

numerical shooting method implemented within NDSolve. The full system of Eqs. (3), (4) and (8)–(10) is395

solved by imposing the boundary conditions Eq. (12) at the base, and integrating to the tip with shooting396

variables m(0) and n(0) chosen to match the tip boundary conditions Eq. (13). The shooting variables at397

one time step form a sufficient guess for the next step, after the intrinsic curvature is updated quasi-statically,398

and convergence to a solution is rapid so that total simulation time is on the order of seconds. Mathematical399

notebooks are available in the online Supplementary material with sample code for simulating each of the400

tropic scenarios modeled.401
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B. Gravitropism: rotating base. In simulating the rotating base under gravitropism (Fig. 4 main text),
we orient the base at angle φ0 from the vertical ez direction (note that in terms of the angle θ appearing
schematically in Fig. 3(A) of the main text, we have θ = π/2− φ0). Expressed in terms of the spherical
unit vectors er = (sinφ0, 0, cosφ0), eφ = (cosφ0, 0,− sinφ0), eθ = (0, 1, 0), the frame at the point S = 0 is
then given the form

d3(0, t) = er [53]
d1(0, t) = cos(2πωt)eφ + sin(2πωt)eθ [54]
d2(0, t) = − sin(2πωt)eφ + cos(2πωt)eθ. [55]

We fix ω = 1, which is equivalent to scaling time based on the rotation rate of the base. We also set402

φ0 = π/3 and scale the total length L = 1. We simulate the gravitropic curvature laws with no axial growth403

and response rate Cgrav taking values of Cgrav = {0.1, 1, 10, 50}. In this simulation we ignore the effect of404

self-weight, so that mechanical equilibrium is automatically satisfied with u = û; we thus integrate Eqs. (3)405

and (4) to determine the morphology at each time step, and then update the curvature. Each parameter406

set is simulated up to time t = 3, which corresponds to three complete rotations of the base.407

C. Phototropism.408

Fixed light source. In simulating planar phototropism for a fixed light source (Fig. 5 of the main text), a409

light source is placed at the point (1, 1), and the parameters ` = 1, U = 1, and γ ≡ 1 (no axial growth) are410

fixed. This is equivalent to scaling time based on axial transport. The plant is clamped at the origin with411

tangent d3 = (0, 1) at s = 0. We then simulate up to t = 10 for each combination of the parameter choices412

Q = {1, 5}, Cphoto = {0.5, 2.5}, to represent the different regimes of high and low turnover and phototropic413

response, respectively.414

Note also that in simulating the time-delay differential equations, it is necessary to provide the form415

of the functions ei, i = 1, 2 for −`/U ≤ t < 0. These are chosen to be constant and equal to the value at416

t = 0, determined by the initial orientation.417

Moving light source - day/night cycle. To simulate a day/night cycle (Fig. 6 of main text), we set U = 1,418

` = 1, Q = 0.1, γ ≡ 1, and Cphoto = 1.5. A light source with intensity I(t) = max{0, sinωt} follows the419

path p(t) = (R cosωt, Y,R sinωt), where ω = 0.2, R = 3, and Y = 2.420

In the case of the additional autotropism terms, we increase Cphoto to 3 and set ξ = 0.3. The increase in421

Cphoto is chosen so that the motion during the day is similar to the non-autotropic case, as the autotropism422

serves to diminish the phototropic response in the presence of a stimulus. In both cases, one complete423

period is simulated, corresponding to day – when I(t) > 0, and night – when I(t) = 0.424

D. Photogravitropism.425

Fixed light source. For the simulations of main text Fig. 7 (A)-(E), we fix the parameters U = 1, Q = 0.1426

and Cphoto = 1. Growth is uniform and linear: γ = 1 + ct with c = 0.1, and initial length L = 1. A light427

source is placed at the point p = (4, 1). The plant is clamped at the origin with tangent d3 = (0, 1) at428

s = 0. We then simulate up to t = 10 for each combination of the parameter choices G = {0.25, 2.5},429

Cgrav = {0.1, 1}, . Here the parameter G characterizes the effective impact of self-weight under gravity. In430

particular, by scaling rod length by L, moment by Eb/L where Eb is the bending stiffness, and noting that431

the gravitational force has magnitude ρg, the non-dimensional moment balance equation, expressed in the432

reference variable S, is433

m′(S) = −γ2G(S − 1) cos (θ(S)) , G := ρgL3

Eb
[56]434

where θ is the angle between the tangent and the x-axis. In obtaining Eq. (56) we have used the geometric435

expression r′(S, t) = γd3 = γ(cos θex + sin θey), and that the solution to the force balance n′(S) = γρgey436

subject to n = 0 at S = L is n = ρg(S − L)ey.437
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Thus, the parameter choices for G and Cgrav represent the different regimes of high and low mass/gravity438

and gravitropic response, respectively.439

Canopy escape. In simulating the escape from shade (Fig. 7 (D)-(E) in main text), we have set U = 1,440

Q = 0.5, Cphoto = 1, Cgrav = 0.1, γ = 1 + 0.25t, G = 0.05 (see parameter description above). The initial441

length is L = 1, and the plant is clamped at the origin with tangent d3 = (0, 1) at s = 0. The shade442

creating obstacle occupies the region (x, y) with x ≤ 1, y ≥ 1.2, so that the corner point and eventual443

contact point is p = (1, 1.2).444

E. Circumnutation.For the simulations of circumnutation, main text Fig. 8 (A)-(B), the internal oscillator
is located at the tip, with angular velocity ω = 1; thus the period is 2π and we simulate one complete
period. Plant length is scaled to L = 1, and axial growth is turned off (γ ≡ 1). In Fig. 8 (A) other
parameters are U = 5, Q = 5, Ccirc = 2; in Fig. 8 (B) we use U = 5, Ccirc = 1, and we vary the turnover:
Q ∈ {1, 2, 3 . . . , 10}. In Fig. 8 (C) the parameters are U = 5, Q = 5, Ccirc = 1, and the angular velocity is
non-uniform; in particular the auxin gradient at the tip follows the line

cos θx1 + sin θx2,

with
θ(t) = ωt+ α sin ω̂t.

The tip profiles in the figure are plotted for ω = 1, ω̂ = 5, and varying α = {0, 0.15, 0.3, . . . , 1.5}.445

In these simulations we have also given the plant an initial curvature, which serves to better center446

the motion about the base of the plant, for visualization purposes (the initial curvature only creates a447

translation of the tip pattern). The initial curvatures used were as follows: u1 = 0 in Fig. 8 (A)-(C), while448

u2 = 1.25 in Fig. 8 (A), u2 = 0.5 in Fig. 8 (B), and u2 = 0.45− 0.07α in Fig. 8 (C) (this choice was made449

to avoid overlapping of the tip patterns with varying α).450

F. Thigmotropism. In simulating thigmotropism, main text Fig. 8 (D)-(F), we have set Cthig = 10, and451

varied the turnover Q and angular velocity ω as follows: Q = 3, ω = 2 in Fig. 8 (D), Q = 3, ω = 6 in Fig. 8452

(E), and Q = 5, ω = 6 in Fig. 8 (F). Again, axial growth is turned off and the plant length is L = 1. In453

each case total simulation time is t = 10. In the thigmotropism formulation, with the signal coming from a454

single point, the curvatures may be determined exactly, given by455

u1 = −Cthig exp
(
−QS
U

)
sin
(
ψ0 + ωS

U

)
t, [57]456

457

u2 = Cthig exp
(
−QS
U

)
cos

(
ψ0 + ωS

U

)
t. [58]458

Here the angle ψ0 indicates the point of contact (which is set at s = 0). In the presented simulations,459

ψ0 = π/2, so that the contact point is at r(0, t) + ad2, where a is the cross-sectional radius, which was fixed460

at a = 0.02. From the formulas in Section 1, we then obtain that the curvature κ and torsion τ will evolve461

according to462

κ = Cthig exp
(
−QS
U

)
t [59]463

464

τ = ω

U
. [60]465

Note that a helix of radius α and pitch β (i.e. where the angle of the helix φ satisfies tanφ = β/α) has466

curvature κ̂ = α/
(
α2 + β2) and torsion τ̂ = β/

(
α2 + β2). Since the torsion of the plant is fixed by the ratio467

of rotational to axial auxin velocity, Eq. (60), and the helical radius for a pole of radius c and plant radius468

a is α = c+ a, we can solve for the pitch, or equivalently the angle φ, which satisfies sin(2φ) = ω(a+ c)/U .469

It follows that the curvature κ̂ = cos2 φ/(a+ c); in our simulations we have fixed the pole radius c = 0.05.470
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In this formulation, the curvature increases linearly in time at every point. This unrealistic (in long times)471

aspect could be corrected by having a depleting auxin source at the contact point. However, in any case we472

must account for the fact that the curvature cannot increase beyond κ̂, simply due to the presence of the473

pole. Thus, in simulating the wrapping around a pole, at each spatial point we increase the curvatures474

according to Eqs. (57) and (58), until the curvature κ = κ̂, where κ is given by Eq. (59), at which point we475

freeze the curvatures in the simulation (in this way, we account for the fact that the intrinsic curvature476

may keep increasing, but the actual curvature may not due to the mechanical contact, while avoiding the477

problem of having to compute the mechanical contact force density).478

G. Pole dance. In SI movies, we include a simulation that consists of a plant that searches for a pole via479

the circumnutation model, while also undergoing axial growth, and then begins to wrap around it following480

the thigmotropism model once contact is made. In this simulation, the parameters used were U = 6,481

Q = 10, Ccirc = 3, and circumnutation oscillator frequency ω = 5 originating at the base S = 0. The plant482

is clamped at the origin, has radius a = 0.025, is initially straight and has initial length L = 1 and growth483

rate ∂γ/∂t = 0.4. A vertical pole with radius c = 0.05 passes through the point {−0.68,−0.52, 0}. The484

plant first makes contact with the pole at time t = 3, and at contact point defined by reference arc length485

Sc = 0.8 and angle ψc = 2.26 (note that rather than defining the location of the pole, we have defined486

the location and time of the contact, and used these to define the pole; we then verify that with the pole487

defined in this way, no prior contact was made).488

Once contact is made, we turn off the circumnutation signal, and only evolve the portion of the plant,489

S > Sc, i.e. from pole to end. This follows the thigmotropism curvature evolution, with parameters490

U = 1, Q = 3, Cthig = 9, and ω = 0.77. The choice of ω is made for computational convenience, as this491

particular value means that the pitch of the helix is exactly equal to the angle at which contact is made,492

and no rotation of the tangent about the contact point is needed. The wrapping portion of the evolution is493

simulated from t = 3 up to t = 4.5.494

9. Comparison to experiment495

Section 3 of the main text includes model comparison with 3 distinct tropic experiments, with results496

plotted in main text Fig. 9. Below we outline experimental and model comparison details. The objective in497

this analysis was to demonstrate the general validity of the modeling framework, as opposed to a detailed498

analysis of any given experiment; therefore model parameter choices were chosen by direct comparison with499

the data. We have maintained parameter consistency across different setups of the same experiment, e.g.500

the gravitropism sensitivity is not changed when phototropic effects are added.501

A. Fig. 9(A). for this subfigure we consider the data in Fig. 1A of (24). In this set of experiments the502

hypocotyls of cucumber plants were subjected to gravistimulation and thigmotropism, with the resultant503

bending response measured over a period of 24 hours. In the control experiment, plotted as the red data504

points in our main text Fig. 9(A), the plants were placed in a horizontal position; the increase in curvature505

measures the bending towards the vertical as a gravitropic response. The blue data points correspond to an506

experimental setup with the plants situated vertically and given an asymmetric mechanical perturbation507

at the start of the experiment. This caused the plants to bend horizontally toward the direction of the508

stimulus, but since the stimulus did not persist they then reorient to the vertical under gravitropism;509

hence the increase and subsequent decrease in curvature. These are shown schematically in SI Fig. 1. In510

simulating these experiments, we employed a combination of gravitropism, thigmotropism, and autotropism.511

Note that while the authors do not specifically mention autotropism, its inclusion has been found to match512

gravitropic data more accurately than gravitropism alone (21); we found this to be the case as well. In the513

experiments, the mechanical perturbation is applied not a single point but rather by rubbing a needle along514

the entire length of the hypocotyl. To account for this in our model of the thigmotropic response, we make515

3 assumptions:516
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Control

Asymmetric 
mechanical 
perturbation

Fig. 1. Schematic for the experiments of (24) and model comparison.

1. The uniformly applied signal generates a spatially independent response.517

2. The signal provided at t = 0 decays exponentially with rate β.518

3. We restrict our attention to 2D deformation, i.e. we do not allow torsion to develop.519

With regards to point 3, the images in Fig. 3 of (24) do suggest some degree of torsion, consistent with our520

model, however the sections are too short for significant torsion to develop or be measured, and moreover521

only a single curvature measure is available for the data we plot. In terms of Eqs. (57) and (58), this is522

equivalent to setting the angular component ω to zero. This generates a planar deformation, for which523

u1 = 0, while u2 satisfies524

∂u2
∂t

= Cgrav cos θ(S)− Cthig exp(−βt)− ξu2, [61]525

where θ is the angle between the tangent and the horizontal axis (note gravity is oriented vertically downward526

as shown in Fig. 1. To simulate the control experiment, the S = 0 end is clamped at θ = 0; for the527

thigmotropic experiment the S = 0 end is clamped at θ = π/2. Both scenarios were run for total time528

t = 24 hr in correspondence with the data, and the total length is estimated to be 5 cm. The continuous529

curves shown in main text Fig. 9 correspond to the angle θ measured at the tip for the parameter choices:530

Cgrav = 0.033 (cm.hr)−1, ξ = 0.11 hr−1, Cthig = 0.033 (cm.hr)−1 (and Cthig = 0 for control), and β = 0.13531

hr−1.532

B. Fig. 9(B).This subfigure includes the circumnutation patterns appearing in Figs 3 and 4 (11) (see also533

references therein for the initial studies noted in this review paper), corresponding to tip patterns measured534

in three-week old sunflower plants.535

In simulating these we aim to reproduce the diversity of patterns, which can roughly be described536

as circular, elliptical, and rosette-like. We consider both circumnutation and circumnutation combined537

with gravitropism. The simulations follow Eq. (43) in the case of circumnutation only, and with the538

additional gravitropism terms corresponding to the right-hand sides of Eqs. (33) and (34) in the combined539

circumnutation and gravitropism. For circumnutation, the auxin source and internal oscillator are located540

at the tip sc = 1, with transport parameters U = 15 and Q = 5. The gravitropism response is Cgrav = 0.5.541

The internal oscillator is given by542
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Light 
source

Fig. 2. Schematic for the experiments of (25) and model comparison.

1. circle (left-most plot of main text Fig. 9(B)): θ(t) = t543

2. ellipse (middle plot of main text Fig. 9(B)): θ(t) = t− 0.5 sin(2t)544

3. rosette (right-most plot of main text Fig. 9(B)): θ(t) = t− 0.5 sin(1.7t)545

Note the small difference in θ between the elliptical and rosette-like cases, demonstrating how a small546

change in the rate of internal oscillator can produce significantly distinct patterns.547

In each case, we simulate the motion for a total time t = 6π. As the experimental rosette pattern548

demonstrates a spiraling out as time increases, here we have included a small axial growth component, with549

growth stretch γ satisfying γ̇ = 0.02. For visual purposes, a constant initial curvature u2 was given at time550

t = 0 in order to center the tip pattern around the origin. This took the value u2 = 0.3 for the rosette and551

ellipse, and t = 0 in order to center the tip pattern around the origin. This took the value u2 = 0.4 for the552

circle.553

C. Fig. 9(C).This subfigure includes data from Fig. 4 of (25). In these experiments, a young poplar stem is
given a gravitropic stimulus by titling of the base, and is then subjected to either an isotropic or anisotropic
light stimulus. The shape of the stem was recorded at different time points, providing x and y coordinates
for digitized points along the stem. This data was extracted for select time points (note that we are not
showing the shape at all time points, but rather a representative sample spanning the full time-scale of the
experiment). using WebPlotDigitizer, and appears as the symbols in main text Fig. 9(C). The left plot
is the data for the isotropic light, the right plot has an anistropic light source generated by neon tubes
located to the right of the plant and oriented at the same angle of tilt (see (25) Fig. 3). To simulate
these experiments, we use a combination of gravitropism, phototropism, and autotropism. In the case of
the isotropic light, since there is no directionality, we treat this case with phototropism omitted. As the
deformation is confined to a plane, the curvature u1 = 0, while u2 can be described in terms of the angle
θ = θ(S, t) between the tangent and the x-axis. The light is oriented at angle θ0 from the horizontal, which
is the same as the angle of the base, following (25) Fig. 3. The in-plane tangent vectors then satisfy

d1 =
(
− sin θ
cos θ

)
, d3 =

(
cos θ
sin θ

)

The unit vector pointing from the tip towards the light is given by

e =
(

sin θ0
− cos θ0

)
,
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from which we obtain554

e1(t) = d1(L, t) · e = − cos(θ(L, t)− θ0).555

The curvature evolution law is thus given by556

∂u2
∂t

= Cgrav cos θ − Cphoto exp
(
−Q
U
γ(1− S)

)
e1

(
t− γ(1− S)

U

)
− ξu2, [62]557

with e1 as given above. This is illustrated schematically in SI Fig. 2. The data extracted from (25) shows a558

significant increase in axial length over the course of the experiments. We incorporate this via a simple559

uniform axial extension with growth rate c, i.e. we impose γ = 1 + ct.560

For tree saplings, self-weight is probably not negligible, and we have included it as outlined in SI Section561

D, with the impact of self-weight characterized by the single parameter G as in Eq. 56.562

In generating the model predictions, represented by the solid curves in main text Fig. 9(C), we have used563

simulation parameters Cgrav = 0.3, ξ = 0.1, G = 0.3, c = 0.06, and in the right column with phototropism564

included, we use parameters Cphoto = 0.11, U = 2, and Q = 0.75 (with gravitropic and autotropic parameters565

unchanged). The data indicate a longer total time represented in the anisotropic phototropism case, so we566

have simulated these for total time t = 10 for the left column and t = 14 for the right column.567

The time between successive curves in the data is determined by the labels in the legend of (25) Fig.568

4. To relate these to the model predictions, we scale the total simulation time to match the difference in569

the first and last time points displayed in the data, and plot the simulated curves at the corresponding570

time points for each data curve. Explicitly, the data curves extracted are for the following time points as571

presented in the legends of (25) Fig. 4:572

• left plot (isotropic light): {274, 281, 285, 290, 299}573

• right plot (anisotropic light): {172, 176, 180, 193, 201}574

The data and simulation plots follow these time points, with color changing successively through the set575

{red, yellow, green, blue, purple}.576

10. Description of Movies577

SI movie S1: Gravitropism with rotating base, and gravitropic response parameter Cthig = 0.1. Other578

simulation parameters provided in SI Section 7.579

580

SI movie S2: Gravitropism with rotating base, and gravitropic response parameter Cthig = 1. Other581

simulation parameters provided in SI Section 7.582

583

SI movie S3: Gravitropism with rotating base, and gravitropic response parameter Cthig = 10. Other584

simulation parameters provided in SI Section 7.585

586

SI movie S4: Gravitropism with rotating base, and gravitropic response parameter Cthig = 50. Other587

simulation parameters provided in SI Section 7.588

589

SI movie S5: Phototropism, simulation of a day-night cycle, with no autotropism. Simulation parameters590

provided in SI Section 7.591

592

SI movie S6: Phototropism, simulation of a day-night cycle, with autotropism. Simulation parameters593

provided in SI Section 7.594

595
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SI movie S7: Thigmotropism, pole wrapping, with low turnover (Q = 3) and low angular velocity (ω = 2).596

Other simulation details provided in SI Section 7.597

598

SI movie S8: Thigmotropism, pole wrapping, with low turnover (Q = 3) and high angular velocity (ω = 6).599

Other simulation details provided in SI Section 7.600

601

SI movie S9: Thigmotropism, pole wrapping, with high turnover (Q = 5) and low angular velocity (ω = 6).602

Other simulation details provided in SI Section 7.603

604

SI movie S10: Pole dance. Circumnutation with axial growth, followed by thigmotropic pole wrapping.605

Simulation parameters provided in SI Section 7.606
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