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1 Model Description
To estimate the number of bases in the polyadenylated tails of mRNA reads, we developed a
predictive model that combines a hidden markov model with an estimator of the translocation
rate through the pore. The hidden markov model uses linear-chain state transitions to perform a
segmentation of the raw sequencing signal of an mRNA read; the estimated translocation rate is
used in conjunction with the segmentation to estimate the tail length, which we elaborate upon
below.

In the rest of this supplementary note, we follow Oxford Nanopore Technologies’ nomeclature in
referring to the sequential raw current measurement values corresponding to a read sequenced via
the direct RNA protocol [1] as its squiggle, and individual values of a squiggle as samples; squiggles
are oriented in the direction of time, i.e. in the 3’-to-5’ orientation with respect to the strand. We
simultaneously refer to a given sequenced mRNA molecule and its sequence of nucleotides as a
read. Atypically, every mRNA read that we consider below is assumed to be oriented in the 3’-to-
5’ direction; this is to match the orientation of the direct RNA protocol, which sequences reads in
the 3’-to-5’ direction.

1.1 Signal Segmentation via Hidden Markov Model
A hidden markov model, which we call the Segmentation HMM, is used to segment the squiggle
of a read into distinct regions appearing sequentially. Biologically, each sequenced read consists of
a sequencing adapter (which we call the leader region), the RT splint adapter (which we call the
adapter region), the polyadenylated tail, and the coding transcript, respectively, from 3’ to 5’ [1].
The segmentation HMM contains one state for each of these regions connected sequentially via
linear chain state transitions. We additionally include two states to handle “jumps” in the squiggle
that are due to idiosyncrasies specific to nanopore sequencing, which we explain below.

We assume each state has an associated emission distribution and treat the raw samples of
a squiggle as realizations from one of these distributions, dependent on a latent state. For a
squiggle ~s = (s1, . . . , sn) with associated latent states ~h = (h1, . . . , hn) — where each hi is a label
representing a region of the read — we have that

∀i : si ∼ p(s|hi) = εi(s),

where εi(·) is the emission distribution for state hi. In our HMM, we use Gaussian, Gaussian
mixture, and uniform distributions to model emissions. We use the Viterbi algorithm to infer ~h
from any given ~s.

Prior to running the Viterbi algorithm, we apply a global linear rescaling on all samples of the
squiggle to remove per-read variations from the base model. The coefficients of the linear trans-
formation1 are estimated individually for each read using the same procedure as in [2]. Following
[2], we refer to a segmentation of a squiggle ~s into a sequence

~e = (〈µ1, σ1, δ1〉, . . . , 〈µK , σK , δK〉)

of contiguous samples (called events) as the event sequence associated to the squiggle. Samples
associated to a single event approximately correspond to a 5-mer residing in the pore at the time of
sampling. The event sequence associated to a squiggle is determined by a segmentation algorithm2

provided by Oxford Nanopore.
1The linear rescaling is implemented as a part of the SquiggleRead class in nanopolish: https://github.com/

jts/nanopolish.
2https://github.com/jts/nanopolish/blob/master/src/thirdparty/scrappie/event_detection.c#L268
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Figure 1: An example of a squiggle segmentation generated by the hidden markov model. Distinct
regions, from left to right: start (cyan), leader (yellow), adapter (red), poly(A) tail (green), and
transcript (purple). Two samples flagged as “cliffs” can be observed in the poly(A) tail.

To fit the emission distributions, we use a two-stage bootstrapped procedure where manually-
tuned emissions were used in an initial HMM before fitting emissions on the samples of the passing
segmentations via maximum likelihood; this is elaborated below in the subsection on the emission
distributions. We devote the rest of this section to explaining the state transitions and the emission
distributions of the segmentation HMM in further detail.

1.1.1 State Transitions

The hidden states of the Segmentation HMM have the following names (single-letter label in
parentheses) and interpretations:

• START (S): an optional state appearing before the LEADER segment.

• LEADER (L): the sequencing adapter attached to, and sequenced prior to, the RT splint
adapter.

• ADAPTER (A): the RT splint adapter sequence attached to the polyadenylated region as a
part of the direct RNA sequencing protocol.

• POLYA (P): the polyadenylated region of a read.

• CLIFF (C): a state that models brief sequencing artifacts within the polyadenylated region.

• TRANSCRIPT (T): the coding sequence of a read.

The states L, A, P, and T are connected via one-way transitions in a linear chain, representing
their biologically-expected order of appearance in an mRNA squiggle. START is an optional
state to account for a short open-pore signal that appears in some reads before the LEADER
segment. CLIFF is a state that models sequencing errors that appear in the POLYA region; these
are short, sparse regions within the POLYA region, occurring for < 10 samples at a time and
typically representing < 1% of the length of the POLYA region, that would otherwise cause a
mis-segmentation if not modelled. We observed that erroneous 1-sample artifacts of atypically
high or low current level caused the segmentation HMM to fail unless we added a CLIFF state to
model them. As the number of samples in each of the four regions represented by states L,A, P, T
is typically fairly large — on the order of thousands of raw samples per region — the weight on
the self-loop of each state is much higher than that of a transition to the next state. We set the
probability of a self-loop for L to 0.9, for A to 0.95, for P to 0.89, and for T to 1.0, since the latter
represents the final region of a read in the 3’-to-5’ direction. A full diagram of the state transitions
is provided in Figure 2.

1.1.2 Emission Distributions

Emissions are modelled with Gaussian, uniform, and Gaussian mixture distributions. The following
emission distributions are used:
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Figure 2: The state transitions of the segmentation HMM. Edges without an origin node on the
left indicate the initial state probabilities.

• START : N (µ = 70.2737, σ2 = 3.7743)

• LEADER: N (µ = 110.973, σ2 = 5.237)

• ADAPTER: 0.874×N (µ = 79.347, σ2 = 8.3702) + 0.126×N (µ = 63.3126, σ2 = 2.7464)

• POLYA: N (µ = 108.883, σ2 = 3.257)

• CLIFF : U([70.0, 140.0])

• TRANSCRIPT : 0.346×N (µ = 79.679, σ2 = 6.966) + 0.654×N (µ = 105.784, σ2 = 16.022)

Emission distributions were fitted with a two-stage bootstrapped approach. For each region of
the squiggle corresponding to a state, we made an initial estimate of the mean current level and
variance of the current levels, and ran the segmentation HMM on each read using these as the
parameters of initial emission distributions, before manually filtering the resulting segmentations
based on quality. Sample values from each of the S, L, A, P, T regions were aggregated from each
of the filtered segmentations, and Gaussians were fitted via maximum likelihood estimation to
each squiggle region to obtain the above emission distributions, while each Gaussian mixture was
fitted via 100 iterations of expectation-maximization. The number of Gaussian components in each
mixture distribution was chosen to be equal to the number of observed peaks in the kernel density
estimate of the sample data for each region. The uniform emission distribution for the CLIFF
state was not fitted with this approach; the upper and lower limits for the uniform distribution
were chosen based on manually-tuned observed upper and lower bounds for all samples across all
datasets.

1.2 Estimation of the Polyadenylated Tail Length
Fix a read R. Given a segmentation

〈L0, A0, P0, T0〉

of a squiggle
~s = (s1, . . . , sn)

with associated events
~e = (〈µ1, σ1, δ1〉, . . . , 〈µK , σK , δK〉),

where each component of the segmentation represents the starting index of its respective region
— e.g. sP0

is the first sample in the poly(A) tail — we compute an estimate of the number of
nucleotides in the poly(A) region by multiplying the duration of time spent in the poly(A) region
by the read rate, the rate at which the nucleotides of a read translocate through the pore during
sequencing. The translocation rate of a read varies as it is being sequenced; hence we instead use
the reciprocal of the median event duration as a proxy for a uniform sequence read rate. We found
that using the median event duration gave poly(A) tail length estimates that were more robust
to read rate differences across different reads than other read-level summary statistics such as the
mean event duration.
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Our estimator of the polyadenylated tail length is given by

n̂p(A) :=
|T0 − P0|
ρ ·med(~δ)

− 5,

where:

• n̂p(A) is the estimated number of nucleotides in the polyadenylated region of the read;

• med(~δ) = med({δi}Ki=1) is the median event duration from events in the read, in seconds;

• |T0−P0| is the number of samples in the polyadenylated region, as indicated by the segmen-
tation;

• ρ is the sample rate (in samples
sec ) of the nanopore sequencer, i.e. the number of current level

samples observed per second; and

• a constant term is subtracted from the quotient term to adjust for the k-mer size associated
to the event sequence (in our case, 5).

The sample rate ρ is a fixed constant set by the nanopore sequencer hardware whereas the median
event duration differs for each read.

1.3 Reproducibility
The polyadenylated tail length estimator is implemented in the polya subprogram of nanopolish:

https://github.com/jts/nanopolish

The analyses performed on the datasets in the accompanying paper may be reproduced by running
the associated pipeline, implemented as a Makefile:

https://github.com/paultsw/polya_analysis

1.4 Software
The pipeline referred to in the previous subsection makes use of albacore version 2.3.3, samtools
version 1.9, minimap2 version 2.12, and nanopolish version 10.2. Plotting scripts in the pipeline
were developed in python version 3.4.6 and R version 3.4.4, with ggplot2 version 2.2.1.
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SUPPLEMENTARY TABLES 
 
Supplementary Table 1 Yield and read alignment statistics for native RNA and 1D cDNA. 
General read length statistics (first 5 rows) were calculated using NanoStat package 1. Aligned 
reads refers to reads aligned against GENCODE v27 using minimap2. Mean Aligned % identity 
was calculated using scripts described in Quick et al. 2 

  Native RNA Pass 1D cDNA Pass 

Reads 10,302,647 15,152,101 

Bases (Gb) 10.61 14.13 

Mean Read Length 1,030 933 

Median Read Length 771 780 

Read Length N50 1,334 1,072 

Mean Aligned % Identity 86.1 85.0 

Median Aligned % Identity 86.6 85.5 

Mean Aligned Read Length 987 791 

Median Aligned Read Length 726 643 

Longest Aligned Read Length 21,608 9,969 

Flowcells Used 30 12 

  

1. De Coster, W., D’Hert, S., Schultz, D. T., Cruts, M. & Van Broeckhoven, C. NanoPack: 
visualizing and processing long-read sequencing data. Bioinformatics 34, 2666–2669 
(2018). 

2. Quick, J., Quinlan, A. R. & Loman, N. J. A reference bacterial genome dataset generated 
on the MinION\texttrademark portable single-molecule nanopore sequencer. Gigascience 
3, 1–6 (2014). 
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Supplementary Table 2 Native RNA reads by gene. 9.7 million individual pass native RNA 
reads were aligned to genes in GENCODE v27 using minimap2 (splice aware setting). 20,289 
separate genes were identified in these alignments. (Attached) 
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Supplementary Table 3 Native RNA reads by isoform assignment. 9.7 million individual pass 
native RNA reads were aligned to isoforms in GENCODE v27 using minimap2 (splice aware 
setting). 64,241 separate isoforms were identified in these alignments. (Attached) 
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Supplementary Table 4 Mapping statistics for RNA and cDNA data aligned to both GRCh38 
and GENCODE v27 using minimap2 version 2.1. 
 
 

 RNA cDNA 

GRCh38 19405001 + 0 in total (QC-passed 
reads + QC-failed reads) 
9057321 + 0 secondary 
45033 + 0 supplementary 
0 + 0 duplicates 
19044282 + 0 mapped (98.14% : N/A) 
0 + 0 paired in sequencing 
0 + 0 read1 
0 + 0 read2 
0 + 0 properly paired (N/A : N/A) 
0 + 0 with itself and mate mapped 
0 + 0 singletons (N/A : N/A) 
0 + 0 with mate mapped to a different 
chr 
0 + 0 with mate mapped to a different 
chr (mapQ>=5) 

28313010 + 0 in total (QC-passed reads 
+ QC-failed reads) 
12617114 + 0 secondary 
543795 + 0 supplementary 
0 + 0 duplicates 
28028806 + 0 mapped (99.00% : N/A) 
0 + 0 paired in sequencing 
0 + 0 read1 
0 + 0 read2 
0 + 0 properly paired (N/A : N/A) 
0 + 0 with itself and mate mapped 
0 + 0 singletons (N/A : N/A) 
0 + 0 with mate mapped to a different 
chr 
0 + 0 with mate mapped to a different 
chr (mapQ>=5) 

GENCO
DE v27 

33875291 + 0 in total (QC-passed 
reads + QC-failed reads) 
23266864 + 0 secondary 
305780 + 0 supplementary 
0 + 0 duplicates 
33312595 + 0 mapped (98.34% : N/A) 
0 + 0 paired in sequencing 
0 + 0 read1 
0 + 0 read2 
0 + 0 properly paired (N/A : N/A) 
0 + 0 with itself and mate mapped 
0 + 0 singletons (N/A : N/A) 
0 + 0 with mate mapped to a different 
chr 
0 + 0 with mate mapped to a different 
chr (mapQ>=5) 

50261192 + 0 in total (QC-passed reads 
+ QC-failed reads) 
34327618 + 0 secondary 
781473 + 0 supplementary 
0 + 0 duplicates 
49240961 + 0 mapped (97.97% : N/A) 
0 + 0 paired in sequencing 
0 + 0 read1 
0 + 0 read2 
0 + 0 properly paired (N/A : N/A) 
0 + 0 with itself and mate mapped 
0 + 0 singletons (N/A : N/A) 
0 + 0 with mate mapped to a different 
chr 
0 + 0 with mate mapped to a different 
chr (mapQ>=5) 
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Supplementary Table 5 Kmer coverage for nanopore native RNA reads aligned to GENCODE 
isoforms. The read sequences were filtered by length and only reads that covered 90% or more 
of the respective reference sequence were chosen. Expected kmer counts were calculated from 
the set of reference sequences, and observed kmer counts were calculated from the set of read 
sequences. (Attached) 
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Supplementary Table 6 Kmer coverage for nanopore cDNA reads aligned to GENCODE 
isoforms. The read sequences were filtered by length and only reads that covered 90% or more 
of the respective reference sequence were chosen. Expected kmer counts were calculated from 
the set of reference sequences and observed kmer counts were calculated from the set of read 
sequences. (Attached) 
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Supplementary Table 7 MT-CO1 reads for which signal was recovered from either the start or 
end of the original read file. Reads were mapped using minimap2 (standard parameters). Only 
the subset of reads for which read mappings were improved are shown. (Attached) 
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Supplementary Table 8 FLAIR and GENCODE isoform and gene statistics using sensitive and 
stringent read assignment criteria. 
 

 Total Isoforms Total Genes Number of overlapping genes 
with GENCODE-stringent RNA 

GENCODE-sensitive 
cDNA 

79760 24681 12761 

GENCODE-stringent 
cDNA 

28408 12659 10151 

GENCODE-sensitive RNA 62284 20621 13169 

GENCODE-stringent RNA 28302 13169 13169 

FLAIR-sensitive RNA 53067 12298 10748 

FLAIR-stringent RNA 33984 10793 9816 
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Supplementary Table 9 Native RNA isoform numbers for the FLAIR-sensitive and FLAIR-
stringent sets. The table includes the total number of isoforms and the number of unannotated 
isoforms by category. 
 

Category Sensitive Stringent 

Total isoforms 53,067 33,984

Unannotated 31,990 17,116

Unannotated-novel combination of annotated junctions 15,832 7.961

Unannotated-contains intron retention 7,025 2,281

Unannotated-contains novel exon 2,504 1,180
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Supplementary Table 10 Number of isoforms detected as a function of sampling depth. Native 
RNA reads from the total population (8.16 M) were subsampled in 10% increments. The number 
of isoforms detected per subsample are tabulated for each isoform set. These data are plotted 
in Supplementary Figure 10. 
 
 

Sampling depth  Number of isoforms detected at a given sampling depth

Percent  Number of reads 

FLAIR‐

sensitive 

FLAIR‐

stringent 

GENCODE‐ 

sensitive 

GENCODE‐

stringent 

10  815616  14086 9192 28046  11870

20  1631232  20802 13505 36909  15857

30  2446848  26189 17026 47275  18508

40  3262464  30951 20283 46980  20546

50  4078080  35347 22719 50609  22384

60  4893695  39705 25462 53470  23822

70  5709311  43186 27773 56075  25129

80  6524927  46880 30105 58294  26206

90  7340543  50558 32080 60450  27339

100  8156159  53067 33984 62284  28302
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Supplementary Table 11 Summary of allele-specificity data for reads containing at least 2 
haplotype-informative variants.  
The columns are organized as follows:  

1. Ensembl gene ID 
2. Total reads for that gene (read > gene assignment was done using the output of FLAIR)  
3. Portion of reads originating from maternal allele 
4. Portion of reads originating from paternal allele  

 [ note : maternal and paternal may not add to 1, as some reads were not assigned ]  
5. Chromosome  
6. Gene Assignment by Binomial Test, (p=0.01) (Maternal / Paternal / Unassigned)  

 [ note : inclusive of all isoforms of the gene ]  
7. Gene Symbol  
8. Annotation for whether gene is on autosome or allosome 

 
(Attached) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Table 12 Unique isoforms expressed from each of the parental alleles. 
(Attached) 
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Supplementary Table 13 Estimate of poly(A) lengths for a synthetic enolase control transcript 
bearing different known poly(A) tail lengths. 
 

Statistic 10x 15x 30x 60x 60xN 80x 100x

Read count 27477 23000 18680 29823 91930 175162 59207

Median absolute 
deviation (mad) 5 5.2 6.25 9.28 12.52 12.01 22.87 

Mean  14.57 19.93 37.48 72.82 64.13 102.74 173.21

Median  11.43 17 32.89 62.63 56.26 82.13 108.68

Mode  5.96 14 31 58 59 77 93

Percent within 2 mad of 
expected  79.97 80.51 78.1 76.52 72.06 74.78 66.84 

Percent within 2 stdv of 
expected  97.53 97.63 97.24 96.76 97.44 95.97 92.54 

Standard deviation 
(stdv) 15.3 17.07 25.35 48.61 54.52 80.06 173.38 
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Supplementary Table 14 Statistics for poly(A) tail length of GENCODE-sensitive genes with 
greater than 500 reads. (Attached) 
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