Supporting Information

Identification of a new heterocyclic scaffold for inhibitors of the polo-box domain of Polo-like kinase 1

Celeste N. Alverez,^{1,2} [‡] Jung-Eun Park,¹ [‡] Kiran S. Toti,³ Yangliu Xia,¹ Kristopher W. Krausz,¹ Ganesha Rai,² Jeong K. Bang,⁴ Frank J. Gonzalez,¹ Kenneth A. Jacobson,³ * and Kyung S. Lee¹ *

¹Chemistry Section, Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States.

²Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, United States.

³Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, United States.

⁴Division of Magnetic Resonance, Korea Basic Science Institute, Cheongju 28119, Republic of Korea.

Table of Contents

1.	Supplementary Figures	
	Figure S1	2
	Figure S2	4
	Figure S3	6
	Figure S4	7
	Figure S5	8
	Figure S6	9
2.	Supplementary Tables	
	Table S1	10
	Table S2	11
	Table S3	11
3.	HPLC purity, HRMS, and NMR data for selected tested analogs	
	7	12
	21	13
	22	14
	23	15
	26	16
	36	17
	64	
	65	19
	79	20
	83	21
	85	22
	129	23
	134	
	-	···· — •

Supplementary Figures

Figure S1. Extracted ion chromatograms of selected compounds and their glucuronides in MLM incubations with UDPGA after 60 min. Upper panels show extracted MS of glucuronidated product(s) and lower panels show extracted MS of parent.

Figure S2. MS/MS spectrum of selected compounds and their glucuronides. Upper panel shows the MS/MS pattern of the glucuronide ion and lower panel shows the MS/MS pattern of the parent ion.

Figure S3. FP Comparative FP-based assays showing the ability of additional triazoloquinazolinone-derived compounds (**20**, **27**, **89**, and **90**) to specifically inhibit Plk1 PBD. (A) The FP assays shown here were performed currently with those in Figure 3 and therefore the data for control PLHST and **6a** are shown again. (B) To confirm anti-Plk1 PBD activity observed with the FITC-Ahx-DPPLHSpTAI-NH₂ ligand in (A), a second Plk1 PBD-binding ligand (FITC-Ahx-GPMQSpTPLNG-NH₂)²⁵ was used to carry out the assay. All the data shown in (A) and (B) are quantified from three independent experiments. Bars, mean ± standard deviation.

Figure S4. Acyl-transfer from **142**. (Upper Graph) HPLC chromatogram of **142**. (Middle Graph) HPLC chromatogram of compound 142 + 0.1M Ammonium acetate in 1xPBS after 30 min. (Lower Graph) HPLC chromatograph of **21**.

Observed glucuronidated product

Figure S5. (A) Extracted ion chromatograms of **143** and its metabolites in MLM incubations with NADPH and UDPGA after 60 min. (B) MS/MS spectrum of **143**, its hydroxylated metabolite and its demethylated metabolite. (C) Proposed metabolic pathways of **143** in mice.

Figure S6. (A) Extracted ion chromatograms of **143** and its metabolites from MS after 20 mg/kg IP injection of C57BL/6 mice analyzed 4 hours post injection. (B) Extracted ion chromatograms of **145** and its metabolites from MS after 20 mg/kg IP injection of C57BL/6 mice analyzed 4 hours post injection.

Supplementary Tables

Inactives (ELISA IC ₅₀ >50 μM)						
	$ \begin{array}{c} 0 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $					
	F N N N N N N N N N N	$F \xrightarrow{O}_{N \xrightarrow{N}} N$				
	F F					

 Table S1. Inactive S-alkylated compounds

Cmpd	t _{1/2} Human LM (min)	t _{1/2} Mouse LM (min)	<i>t</i> _{1/2} Rat LM (min)		
21	>120	>120	>120		
64	>120	>120	119.71		
68	>120	>120	106.37		
69	>120	88.35	>120		
80	50.83	105.09	>120		
130	>120	78.19	54.81		
134	>120	>120	>120		
143	16.80	3.77	9.41		
144	14.45	10.58	26.36		
	t _{1/2} Human cytosol (min)	t _{1/2} Mouse cytosol (min)	t _{1/2} Rat cytosol (min)		
21	>120	>120	>120		
64	>120	>120	>120		
68	>120	>120	>120		
69	118.48	97.58	>120		
80	>120	>120	>120		
130	>120	>120	>120		
134	>120	103.84	>120		
143	>120	>120	>120		
144					

Table S2. Multi species microsome and cytosol stability of selected compounds

Table S3. In vitro and in vivo stability of selected prodrugs in mice

Cmpd	<i>t</i> _{1/2} in vitro (min)	$t_{1/2}$ in vivo (min)
143	11.37 ± 3.49	28.74 ± 8.30
145	21.80 ± 6.03	51.26 ± 11.23

275.0926

4.0

14.5

4.5

533.0

0.841

43.14

C8 H15 N6 O3 32S

f1 (ppm) -1

					Peak #	RetTime [min]	Area [mAU*s]	Height [mAU]	Area %
					1	3.776	34.224	5.700	0.71
					2	4.055	45.792	7.089	0.95
*DAD1 B, Sig=254,12 Re	f=off				3	4.388	31.946	5.026	0.66
112 MAU				898	4	4.635	18.165	3.153	0.38
400				4	5	4.775	18.723	4.913	0.39
200					6	4.855	4659.518	662.420	96.31
0					7	5.015	29.828	5.265	0.62
0 1	2	3	4	5		6	7		8 min*
CNA003-054_PROTON_01 ¹ H NMR (400 MHz, dnso) δ 10.29 (dd, J= J=92, 7.9, 3.1 Hz, 1H), 3.92 (d, J=7.1 Hz, F CNA003-054_PROTON_01 I = 0.29 (dd, J=7.1 Hz, J=0.29 (dd, J=7.	:9.3, 4.7 Hz, 1H), 7.92 (dd, <i>J</i> 2H), 1.27 (s, 1H), 0.49 – 0.37	= 8.6, 3.1 Hz, 1H), 7.80 ((m, 4H).	ddd,						
¹⁹ F-NMR B (td) -113.02	A (dd) 10.29	C (d 7.3 B (dc 7.92	(dd) 30			D (d) 3.92		E (S) 1.27	F (m) 0.43
-100 -110 -120							ul	L	
	1.00-£	5.87 1.68 1.68 1.68 1.68 1.68 1.68 1.68 1.68				2.16-≖		1.03 -€	3.88-I
I.O 13.5 13.0 12.5 12.0 11.5	11.0 10.5 10.0 9.5	9.0 8.5 8.0	7.5 7.0 6.5 f1 (ppm)	6.0 5.5	5.0 4.5	5 4.0 3.5	3.0 2.5 2.0	0 1.5 1.0	0.5

