485

487

488

489

S1 Research design

We worked with i-Link Research Solutions (i-Link), an Australian online survey firm, to field a survey of 3,200 Australians between May 2, 2019 and May 20, 2019. i-Link manages a panel of over 200,000 Australians recruited through a variety of means, including print media, online marketing, direct mail, affiliate partners, and personal invitations. Members of the panel were invited to participate in our survey based on where they lived; we restricted our sample to residents of Queensland and New South Wales who were over 18 years of age.

Prior to assignment to treatment, we identified postcodes with at least one known 497 bat roost. Bat roost locations were obtained from state government websites. Bat roost 498 locations in QLD were obtained from the following website: 499 https://data.qld.gov.au/dataset/flying-fox-monitoring-program/resource/ 500 2079912d-72ac-4116-9e12-08e068064bff. Bat roost locations in NSW were 501 obtained from the following website: 502 https://data.nsw.gov.au/data/dataset/grey-headed-flying-fox-camps64935. 503 To fill in any spatial/temporal gaps in NSW, roost locations known to be inhabited 504 within the last five years were also provided by Peggy Eby, focusing primarily on NSW 505 and areas south of Bowen. S1 Fig is a map depicting postcodes with flying fox roosts 506 and postcodes without flying fox roosts. We block randomized assignment to treatment 507 based on whether or not a participant resided in a postcode with known bat roosts (S2 508

509

Prior Attitudes

Table).

510

We measured attitudes towards bats prior to treatment by asking survey participants the following question: "Please rate how you feel about flying foxes/bats on a feeling 512

thermometer using a scale of 0 to 100. The higher the number, the warmer or more favorable you feel toward bats. The lower the number, the colder or less favorable you feel. You can pick any number between 0 and 100." The respondent was then instructed to click on a scale to indicate their selection or drag the slider to select their answer.

Treatment

We randomly assigned respondents to one of six conditions: villain narrative without an image, victim narrative without an image, non-narrative information without an image, sing villain narrative with an image, victim narrative with an image, non-narrative information with an image (Table S1 Table). Conditions are depicted in the style of a Facebook post and presented in S2 Fig. 522

Affect

523

517

To measure affect, we asked survey participants to rate the intensity of their response to the Facebook post, using the following wording: "Upon reading this Facebook post, imagine what emojis you would use to respond. Please rate how intensely you are experiencing each of the following emojis."

Each respondent was prompted to select a number on a scale of 1 (Minimal Intensity) to 10 (Maximum Intensity), or 0 (Not at all), for each emoji. Emojis were labeled with emotions from the Positive and Negative Affect Schedule [62].

The positive affective score is a sum of the intensity ratings for positive emotions: Amused, Inspired, Hopeful, Enthusiastic, Determined, Love, Happy, and Thumbs Up. The negative affective score is a sum of the intensity ratings for negative emotions: Disgusted, Annoyed, Frustrated, Hostile, Anxious, Embarrassed, Fearful, Nervous, Sad, Guilty, Upset, and Thumbs Down. A sample of emojis used is depicted in S3 Fig.

To generate a single affective score, we subtracted the overall negative score from the overall positive score such that a negative affective score corresponds to a respondent whose affective response was more negative than positive and a positive affective score corresponds to a respondent whose affective response was more positive than negative. 539

Risk Perception

We measured two component parts of risk perception: perceived impact associated with ⁵⁴¹ bats and perceived likelihood of impact associated with bats. Impact was coded on a ⁵⁴² scale of -2 (Extremely negative) to 2 (Extremely positive) and likelihood was coded on a ⁵⁴³ scale of 1 (Extremely unlikely) to 5 (Extremely likely). The impact measure included in ⁵⁴⁴ the model is an additive index of the six impact questions; the likelihood measure is an ⁵⁴⁵ additive index of the six likelihood questions. ⁵⁴⁶

• Impact	547
 We would like to know your thoughts about various impacts flying foxes may 	548
have.	549
* What is the economic impact of flying foxes to you personally?	550
\Box Extremely negative, \Box Negative, \Box Neither negative nor positive, \Box	551
Positive, \Box Extremely positive	552
* What is the economic impact of flying foxes to your community?	553
\Box Extremely negative, \Box Negative, \Box Neither negative nor positive, \Box	554
Positive, \Box Extremely positive	555
* What is the impact of flying foxes on your personal quality of life?	556
\Box Extremely negative, \Box Negative, \Box Neither negative nor positive, \Box	557
Positive, \Box Extremely positive	558
* What is the impact of flying foxes on your community's quality of life?	559
\Box Extremely negative, \Box Negative, \Box Neither negative nor positive, \Box	560
Positive, \Box Extremely positive	561
* What is the impact of flying foxes on your personal health?	562
\Box Extremely negative, \Box Negative, \Box Neither negative nor positive, \Box	563
Positive, \Box Extremely positive	564
* What is the impact of flying foxes on the health of others in your	565
community?	566
\Box Extremely negative, \Box Negative, \Box Neither negative nor positive, \Box	567
Positive, \Box Extremely positive	568
• Likelihood	569

– Now that you have given us a sense of the impacts flying foxes have on you	570
and your community, now we would like to know how likely you think these	571
impacts will occur within the next year.	572
* Have an economic impact on you personally?	573
\Box Extremely likely, \Box Moderately likely, \Box Equally likely/unlikely, \Box	574
Moderately unlikely, \Box Extremely unlikely	575
* Have an economic impact on your community?	576
\Box Extremely likely, \Box Moderately likely, \Box Equally likely/unlikely, \Box	577
Moderately unlikely, \Box Extremely unlikely	578
* Impact your personal quality of life?	579
\Box Extremely likely, \Box Moderately likely, \Box Equally likely/unlikely, \Box	580
Moderately unlikely, \Box Extremely unlikely	581
* Impact your community's quality of life?	582
\Box Extremely likely, \Box Moderately likely, \Box Equally likely/unlikely, \Box	583
Moderately unlikely, \Box Extremely unlikely	584
* Impact your personal health?	585
\Box Extremely likely, \Box Moderately likely, \Box Equally likely/unlikely, \Box	586
Moderately unlikely, \Box Extremely unlikely	587
* Impact human health of others in your community?	588
\Box Extremely likely, \Box Moderately likely, \Box Equally likely/unlikely, \Box	589
Moderately unlikely, \Box Extremely unlikely	590
Outcome Variables	591
We measured survey participant's level of support for five bat management policies.	592
Support was coded on a scale of 1 (Strongly oppose) to 4 (Strongly support).	593
• To what extent do you support the following:	594
 Providing federal protection for flying fox species threatened with extinction 	595
\Box Strongly support, \Box Support, \Box Oppose, \Box Strongly oppose	596
 Providing state protection for flying fox species threatened with extinction 	597
\Box Strongly support, \Box Support, \Box Oppose, \Box Strongly oppose	598

- Dispersing roosts close to residential areas	599
\Box Strongly support, \Box Support, \Box Oppose, \Box Strongly oppose	600
– Dispersing roosts in urban public spaces	601
\Box Strongly support, \Box Support, \Box Oppose, \Box Strongly oppose	602
 Investing in strategic tree plantings outside of urban areas to encourage 	603
flying foxes to roost and for age outside urban areas \Box Strongly support, \Box	604
Support, \Box Oppose, \Box Strongly oppose	605
Covariates	606
We collected the following information to include as covariates in our model:	607
• State	608
– Based on respondent's confirmed postcode	609
• Gender	610
– What is your gender?	611
* Male	612
* Female	613
* Other	614
• Age	615
– What is your age?	616
* 18-24 years	617
* 25-34 years	618
* 35-44 years	619
* 45-54 years	620
* 55+ years	621
• Education	622
- What is the highest level of education you have completed?	623
* Primary school	624

* Year 7 to Year 9	625
* Year 10	626
* Year 11	627
* Year 12	628
* Non-trade qualification	629
* Trade qualification	630
* Associate Diploma	631
* Undergraduate Diploma	632
* Bachelor Degree (including Honours)	633
* Postgraduate Degree	634
• Income	635
- What is the gross annual income, before tax or other deductions, for you and	636
your family or others living with you from all sources? Please include any	637
pensions and allowances, and income from interest or dividends.	638
\ast Less than \$10,000 per year	639
* \$10,001 to \$15,000 per year	640
* \$15,001 to \$20,000 per year	641
* \$20,001 to \$25,000 per year	642
* \$25,001 to \$30,000 per year	643
* \$30,001 to \$35,000 per year	644
* \$35,001 to \$40,000 per year	645
* \$40,001 to \$45,000 per year	646
* \$45,001 to \$50,000 per year	647
* \$50,001 to \$60,000 per year	648
* \$60,001 to \$70,000 per year	649
* \$70,001 to \$80,000 per year	650
* \$80,001 to \$90,000 per year	651
* \$90,001 to \$100,000 per year	652
* \$100,001 to \$110,000 per year	653

* \$110,001 to \$120,000 per year	654
* \$120,001 to \$130,000 per year	655
* \$130,001 to \$140,000 per year	656
* \$140,001 to \$150,000 per year	657
* \$150,001 to \$160,000 per year	658
* \$160,001 to \$180,000 per year	659
\ast More than \$180,000 per year	660
• Exposure to roosts	661
– How often do you see flying foxes roosting near where you	662
Note: A flying fox roost is a site where flying foxes congregate during the day	663
for rest.	664
*Live? \Box Always, \Box Sometimes, \Box Rarely, \Box Never	665
*Work? \Box Always, \Box Sometimes, \Box Rarely, \Box Never	666
* Recreate ? \Box Always, \Box Sometimes, \Box R arely, \Box Never	667
• Exposure to bats foraging	668
– How often do you see flying foxes for aging near where you	669
Note: Foraging occurs when flying foxes are searching for and eating food.	670
*Live? \Box Always, \Box Sometimes, \Box Rarely, \Box Never	671
*Work? \Box Always, \Box Sometimes, \Box Rarely, \Box Never	672
* Recreate? \Box Always, \Box Sometimes, \Box Rarely, \Box Never	673
The following equations correspond to our conditional process model. Figure S4 Fig	674

The following equations correspond to our conditional process model. Figure S4 Fig 574 shows a statistical diagram of the model. 575

$$M_1 = \gamma_{M1} + \sum_{i=1}^{5} \alpha_i D_i + \alpha_6 W + \sum_{j=7}^{11} \alpha_j D_i W + \sum_{k=1}^{7} \rho_k C_k + \epsilon_{M1}$$
(1)

$$M_{2} = \gamma_{M2} + \sum_{i=12}^{16} \sum_{j=1}^{5} \alpha_{i} D_{j} + \alpha_{17} W + \sum_{k=18}^{22} \alpha_{k} D_{i} W + \delta_{1} M_{1} + \alpha_{23} M_{1} W + \sum_{l=8}^{14} \sum_{m=1}^{7} \rho_{l} C_{m} + \epsilon_{M2}$$
(2)

$$M_{3} = \gamma_{M3} + \sum_{i=1}^{5} \sum_{j=24}^{28} \alpha_{j} D_{i} + \alpha_{29} W + \sum_{k=30}^{34} \alpha_{k} D_{i} W + \delta_{2} M_{1} + \alpha_{35} M_{1} W + \sum_{l=15}^{21} \sum_{m=1}^{7} \rho_{l} C_{m} + \epsilon_{M3}$$
(3)

$$Y = \gamma_Y + \sum_{i=1}^{5} \zeta_i D_i + \zeta_6 W + \sum_{j=7}^{11} \zeta_j D_i W + \sum_{k=1}^{3} \beta_k M_k + \sum_{l=4}^{6} \beta_l M_k W + \sum_{m=22}^{28} \sum_{n=1}^{7} \rho_m C_n + \epsilon_Y$$
(4)