Supporting Information

NMR Analyses of Acetylated H2AZ Isoforms Identify Differential Binding Interactions with the Bromodomain of the NURF Nucleosome Remodeling Complex

Noelle M. Olson¹, Samantha Kroc¹, Jorden A. Johnson¹, Huda Zahid¹, Peter D. Ycas¹, Alice Chan², Jennifer Kimbrough¹, Prakriti Kalra¹, Ernst Schönbrunn², William C. K. Pomerantz^{*},¹

¹Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota, 55455, United States

²Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612, United States

Table of Contents	Page
Methods: Protein Purification	S2
Methods: His ₆ -BPTF Protein Purification for Crystallography	S 3
Methods: Crystallization and Structure Determination	S 3
Figure S1: Sequence Alignment of H2A.Z I, H2A.Z I II, and H2A	S4
Figure S2: Representative MALDI-TOF MS Spectra of H2A.Z II K7ac,K13ac	S5
Table S1: Peptide theoretical and observed masses using MALDI-TOF MS.	S5-7
Figure S3: Representative LC/MS Spectra of 5FW-BPTF	S7
Table S2: LC/MS Characterization of Proteins	S8
Figure S4: Assignment of BRD2(1) Resonances	S8
Figure S5: SPR Sensorgram with GST-BPTF and H2A.Z II K7ac,K13ac	S9
Figure S6: AlphaScreen competition with His ₉ BPTF	S9
Figure S7: X-ray Crystallography	S10
Table S3: Crystallography Statistics	S11

*William Pomerantz email address: wcp@umn.edu

Figure S8: ¹ H CPMG with BPTF and H2A.Z I K7ac, K13ac and Increasing Protein Concentration	S12
Figure S9: ¹ H CPMG Competition with BPTF and H2A.Z I K7ac-d ₃ , K13ac	S 13
Figure S10: ¹ H CPMG with CECR2 and H2A.Z II K7ac, K13ac	S 13
Synthesis of TP-238	S14-21
HPLC Purity Traces of Peptides	S22-32
PrOF NMR Titrations with 5FW-BPTF	S33-61
Bromodomain Scope PrOF NMR Titrations	S62-75
References	S76

Methods: Protein Purification. To the cell pellet was added 40 mL of lysis buffer (50 mM phosphate, 300 mM NaCl, pH 7.4) and 20 mg phenylmethanesulfonyl fluoride (PMSF) and the mixture was allowed to thaw at room temperature for 30 minutes. Cells were put on ice and sonicated in 30 second intervals followed by 60 seconds of cooling for a total of 12 minutes sonication time. The lysed cells were centrifuged at 10,000 g for 30 minutes. The supernatant was decanted from the pelleted cell debris and filtered using Whatman filters. Ni affinity purification was done using a Ni HisTrap FF 5 mL column (GE Healthcare) on an AKTA Fast Protein Liquid Chromatography (FPLC) system by monitoring the absorbance at 280 nm. Proteins were eluted with a 0-100% gradient of wash buffer (50 mM phosphate, 100 mM NaCl, 40 mM imidazole, pH 7.4) and elution buffer (50 mM phosphate, 100 mM NaCl, 400 mM imidazole, pH 7.4) across 20 column volumes. Purified protein was then buffer exchanged into storage buffer (50 mM Tris, 100 mM NaCl, pH 7.4 or 50 mM HEPES, 100 mM NaCl, pH 7.4) using a HiPrep desalting column (GE Healthcare) equilibrated with 1 column volume of buffer. The hexahistidine tag was removed by adding Tobacco Etch Virus (TEV) protease and incubating for 4-16 hours at 4°C. Nickel NTA affinity resin was added, incubated for 2-24 hours at 4°C, then filtered to remove the TEV. Protein purity was assessed using SDS-polyacrylamide gel electrophoresis (12% Bis-Tris, 1.0 mM gels. Running conditions: 120 V, 90 minutes in MES buffer). Protein was concentrated to ~50 μ M using Amicon Ultra-15 (Millipore) centrifugal filters with a 3 kDa molecular weight cut off (MWCO = 3000 Da), flash frozen and stored at -20°C. Quadrupole Time-of-Flight (Q-TOF) LC/MS was used to confirm the identity of the protein and determine percent fluorine incorporation using the following equation.

% Incorporation =
$$\frac{(0 \ F \ protein*0) + (1 \ F \ protein*1) + \dots (n \ F \ protein*n)}{(0 \ F \ protein*n) + (1 \ F \ protein*n) + \dots (n \ F \ protein*n)} * 100$$

Protein masses and fluorine incorporation are shown in Table S2.

Methods: His₆-BPTF Protein Purification for Crystallography. Protein purification was performed at 4 °C by FPLC using columns and chromatography resins from GE Healthcare. Cell pellets were re-suspended in 50 mM Na/K Phosphate buffer (pH 7.4) containing 100 mM NaCl, 20 mM imidazole, 0.01% w/v lysozyme, 0.01% v/v Triton X-100 and 1mM DTT. Cells were lysed using a homogenizer, the lysate was clarified by centrifugation and subjected to purification on immobilized Ni²⁺-affinity chromatography (Qiagen) using a linear gradient of 20 – 500 mM imidazole. Fractions containing BPTF were pooled and incubated overnight with TEV protease at 4 °C. Cleaved BPTF was subjected to a second Ni²⁺-affinity chromatography run to remove His-TEV and the cleaved His-tag. The flow-through containing BPTF was concentrated and purified to homogeneity by size exclusion chromatography using a Superdex Hiload 26/60 column. Protein was eluted using 50 mM Tris/HCl (pH 8.0) containing 100 mM NaCl and 1 mM DTT. Peak fractions were combined, concentrated to 5 mg/mL, flash-frozen in liquid N₂ and stored at -80 °C.

Methods: Crystallization and Structure Determination. Crystallization screening campaigns were performed at 18 °C with precipitant solutions from Hampton Research using a Mosquito liquid handler (TTP Labtech). Robust crystallization conditions were established using 25% PEG

3,350, 0.2 M lithium sulfate monohydrate, 0.1 M Bis-Tris pH 6.5 mixed with an equal volume of protein in hanging droplets. H2A.Z peptides were co-crystallized with BPTF at 1 mM final concentration. Crystals were cryoprotected by addition of 20% ethylene glycol in the precipitant and flash-frozen in liquid N₂. During data collection, crystals were maintained under a constant stream of N₂ gas. X-ray diffraction data were recorded at beamlines 22-ID and 22-BM hosted by Ser-Cat of Argonne National Laboratories. Data were indexed and scaled with XDS¹. Phasing and refinement was performed using PHENIX² and model building with Coot³. PDB entry 3UV2 served as the search model for molecular replacement. Initial models for small molecule ligands were generated through MarvinSketch (ChemAxon, Cambridge, MA) and ligands restraints through eLBOW of the PHENIX suite. All structures have been validated by MolProbity. Figures were prepared using PyMOL (Schrödinger, LLC).

Sequence Alignment of H2A.Z I, H2A.Z I II, and H2A

H2A.Z I:AGGKAGKDSGKAKTKAVSRSQRAGLQFPVGRIHRHLKSRTTSHGRVGATAAVYSAAILEH2A.Z II:AGGKAGKDSGKAKAKAVSRSQRAGLQFPVGRIHRHLKTRTTSHGRVGATAAVYSAAILEH2A:-SGR-GKQGGKTRAKAKTRSSRAGLQFPVGRVHRLLRKGNYAE-RVGAGAPVYLAAVLE

YLTAEVLELAGNASKDLKVKRITPRHLQLAIRGDEELDSLI-KATIAGGGVIPHIHKSLIGKKGQQ-KTV YLTAEVLELAGNASKDLKVKRITPRHLQLAIRGDEELDSLI-KATIAGGGVIPHIHKSLIGKKGQQ-KTA YLTAEILELAGNAARDNKKTRIIPRHLQLAVRNDEELNKLLGRVTIAQGGVLPNIQSVLLPKKTDSSKSKAK

Figure S1: Sequence alignment of H2A.Z isoforms with canonical H2A. Divergent amino acids between the two isoforms are highlighted in yellow (T14/A14, S38/T38, and V127/A127). Divergent amino acids in the H2A sequence are shown in red. The N-terminal region corresponding to the synthetic peptide sequence used in these experiments is highlighted in blue.

Representative MALDI-TOF MS Spectra of H2A.Z II K7ac, K13ac

Figure S2. Representative MALDI-TOF MS spectra of H2A.Z II K7ac,K13ac showing major peak corresponding to expected [M+H]⁺ of the peptide. The masses of each peptide synthesized for these experiments were confirmed using this method.

Table S1: Peptide theoretical and observed masses using MALDI-TOF MS.

Peptide	Sequence	Calculated [M+H] ⁺	Observed [M+H] ⁺
H4 K16ac	H ₂ N-YSGRGKGGKGLGKGGAKacRHRK C(O)NH ₂ -	2196.27	2196.01
H2A.Z II unacetylated	H ₂ N-YAGGKAGKDSGKAKAKAVSR-C(O)NH ₂	1949.11	1949.17
H2A.Z II K4ac	H ₂ N-YAGGKacAGKDSGKAKAKAVSR-C(O)NH ₂	1991.12	1991.56
H2A.Z II K7ac	H ₂ N-YAGGKAGKacDSGKAKAKAVSR-C(O)NH ₂	1991.12	1991.41
H2A.Z II K11ac	H ₂ N-YAGGKAGKDSGKacAKAKAVSR-C(O)NH ₂	1991.12	1991.63
H2A.Z II K13ac	H ₂ N-YAGGKAGKDSGKAKacAKAVSR-C(O)NH ₂	1991.12	1991.80
H2A.Z II K15ac	H ₂ N-YAGGKAGKDSGKAKAKacAVSR-C(O)NH ₂	1991.12	1991.40
H2A.Z II K4ac,K7ac	H ₂ N-YAGGKacAGKacDSGKAKAKAVSR- C(O)NH ₂	2033.13	2033.25
H2A.Z II K4ac,11ac	H ₂ N-YAGGKacAGKDSGKacAKAKAVSR- C(O)NH ₂	2033.13	2032.86

H2A.Z II K4ac K13ac	H ₂ N-YAGGKacAGKDSGKAKacAKAVSR- C(O)NH ₂	2033.13	2033.31
H2A.Z II	H ₂ N-YAGGKacAGKDSGKAKAKacAVSR-	2033.13	2032.91
K4ac,K15ac	C(O)NH ₂	2000.00	200201
H2A.Z II K7ac,11ac	H ₂ N-YAGGKAGKacDSGKAKacAKAVSR- C(O)NH ₂	2033.13	2033.13
H2A.Z II K7ac,K13ac	H ₂ N-YAGGKAGKacDSGKAKacAKAVSR- C(O)NH ₂	2033.13	2032.64
H2A.Z II K7ac- d ₃ ,K13ac	H ₂ N-YAGGKAGKac(d ₃)DSGKAKacAKAVSR- C(O)NH ₂	2036.13	2036.37
H2A.Z II K7ac,K15ac	H ₂ N-YAGGKAGKacDSGKAKAKacAVSR- C(O)NH ₂	2033.13	2033.51
H2A.Z II K11ac,K13ac	H ₂ N-YAGGKAGKDSGKacAKacAKAVSR- C(O)NH ₂	2033.13	2032.46
H2A.Z II K11ac,K15ac	H ₂ N-YAGGKAGKDSGKacAKAKacAVSR- C(O)NH ₂	2033.13	2032.49
H2A.Z II K13ac,K15ac	H ₂ N-YAGGKAGKDSGKAKacAKacAVSR- C(O)NH ₂	2033.13	2032.71
H2A.Z II K4ac,K7ac,K11ac	H ₂ N-YAGGKacAGKacDSGKacAKAKAVSR- C(O)NH ₂	2075.14	2074.71
H2A.Z II K7ac,K13ac,K15ac	H ₂ N-YAGGKAGKacDSGKAKacAKacAVSR-C(O)NH ₂	2075.14	2075.62
H2A.Z II K4me,K7ac,K13ac	H ₂ N-YAGGKmeAGKacDSGKAKacAKAVSR- C(O)NH ₂	2048.13	2047.22
H2A.Z I K4ac,K11ac	H ₂ N-YAGGKacAGKDSGKacAKTKAVSR- C(O)NH ₂	2063.14	2063.13
H2A.Z I K4ac,K13ac	H ₂ N-YAGGKacAGKDSGKAKacTKAVSR- C(O)NH ₂	2063.14	2062.96
H2A.Z I K4ac,K15ac	H ₂ N-YAGGKacAGKDSGKAKTKacAVSR- C(O)NH ₂	2063.14	2063.65
H2A.Z I K7ac,K13ac	H ₂ N-YAGGKAGKacDSGKAKacTKAVSR- C(O)NH ₂	2063.14	2063.02

H2A.Z K7ac,K15ac	Ι	H ₂ N-YAGGKAGKacDSGKAKTKacAVSR- C(O)NH ₂	2063.14	2062.82
H2A.Z K11ac,K13ac	Ι	H ₂ N-YAGGKAGKDSGKacAKacTKAVSR- C(O)NH ₂	2063.14	2062.70
H2A.Z K11ac,K15ac	Ι	H ₂ N-YAGGKAGKDSGKacAKTKacAVSR- C(O)NH ₂	2063.14	2062.65
H2A.Z K13ac,K15ac	Ι	H ₂ N-YAGGKAGKDSGKAKacTKacAVSR- C(O)NH ₂	2063.14	2062.62
H2A.Z K7ac,K13ac,K15a	I ac	H ₂ N-YAGGKAGKacDSGKAKacTKacAVSR- C(O)NH ₂	2105.15	2105.47

Representative LC/MS Spectra of 5FW-BPTF

Figure S3. Representative LC/MS spectra of purified 5FW-BPTF showing peaks for unlabeled and 5FW BPTF. The intensities of these peaks were used to determine percent fluorine incorporation. All fluorinated proteins expressed and used in these experiments were characterized in this manner.

Protein	Calculated m/z (Da)	Observed m/z (Da)	% Fluorine Incorporation
Unlabeled BPTF	14437	14437	N.A.
5FW-BPTF	14455	14453	95
5FW-CECR2	13852	13853	93
5FW-PCAF	17182	17182	86
5FW-BRD2(1)	14951	14951	96
5FW-BRD2(2)	13369	13369	99
5FW-BRD4(1)	15137	15135	95-98
5FW-BRD4(2)	15054	15054	95
5FW-BRDT(1)	14184	14183	93

Table S2: LC/MS Characterization of Proteins.

Assignment of BRD2(1) Resonances

Figure S4. A) PrOF NMR titration of 5FW-BRD2(1) with Bromosporine (BSP) to assign WPF shelf 5FW resonance. The ¹⁹F NMR spectrum of 5FW-BRD2(D2) shows only two resonances although there are three tryptophan residues in this protein. Upon the addition of BSP, the resonance at -124.75 ppm decreases in intensity and a resonance at -123.70 appears. This allows us to tentatively assign this resonance to W97, which lies in the WPF shelf. B) X-ray crystal structure of BRD2(1) (PDB: 2DVS) showing its three tryptophan residues.

Figure S5. A) Sensorgram of SPR titration with H2A.Z II K7ac,K13ac. B) Binding isotherm of H2A.Z II K7ac,K13ac fitted with GraphPad Prism 5 software.

AlphaScreen competition with His₉ BPTF.

Figure S6. Alpha Screen titration with His₉ BPTF and A) positive control H4 K5ac,K8ac,K12ac,K16ac peptide giving an IC₅₀ of $65 \pm 18 \,\mu$ M across three technical replicates. The K_d determined by PrOF NMR, 70 μ M is in close agreement, validating the robustness of this competition-based assay. B) AlphaScreen titration of H2A.Z II K7ac,K13ac yielded average IC₅₀ of 830 μ m from two technical replicates.

Figure S7. Co-crystal structures of BPTF BRD with acetylated peptides. A) View of the acetylated lysine of peptide H2A.Z I (K4ac,K11ac) in the Kac site. The blue mesh is the 2Fo-Fc density contoured at 1 σ and determined at 1.51 Å resolution. Water molecules are shown as cyan spheres, H-bonding interactions as black dotted lines. B) Same as A) for peptide H2A.Z II (K7ac,K13ac) determined at 1.22 Å resolution.

Inhibitor		Hac_RS2016 (H2A.Z I K4ac,K11ac)	NO2021 (H2A.Z II K7ac,K13ac)	
Data collection				
Space gro	up	C 1 2 1	C 1 2 1	
	а	111.71	111.32	
	b	27.15	27.16	
Unit cell	С	38.01	38.03	
dimensions	α	90	90	
	β	97	96	
	Ŷ	90	90	
Resolution range (Å)		37.73 - 1.51	37.79 - 1.22	
		(1.564 - 1.51)	(1.264 - 1.22)	
Unique reflec	tions	18040 (1745)	31161 (2748)	
Rmeas (%)		5.4 (31.7)	5.9 (68.4)	
Completeness (%)		99.64 (99.94)	91.51 (81.71)	
Ι/σΙ		24.71 (8.0)	14.06 (3.1)	
	Stru	cture refinement		
Rwork (%)		16.65 (15.98)	19.19 (34.14)	
Rfreeª (%	b)	19.50 (17.96)	22.31 (32.54)	
Wilson B (Ų)	13.3	12.2	
	all	19.40	18.1	
Average $\mathbf{P}(\hat{\lambda}^2)$	protein	18.77	17.4	
Average D (A-)	ligand	34.80	41.0	
	solvent	25.46	24.6	
rmsd ^ь bond lengths (Å)		0.005	0.005	
rmsd angles (deg)		0.80	0.79	
	favored (%)	100.00	100.00	
Ramachandran	allowed (%)	0.00	0.00	
	outliers (%)	0	0	

Table S3: Crystallography Statistics.

Values in parenthesis are for the highest resolution bins.

^aRfree is Rcryst calculated for randomly chosen unique reflections

^b rmsd = root-mean-square deviation from ideal values, which were excluded from the refinement.

¹H CPMG with BPTF and H2A.Z I K7ac, K13ac increasing protein concentration.

Figure S8. Ligand-observed ¹H NMR CPMG competition experiment evaluating H2A.Z II K7,K13ac for BPTF binding site engagement. A) The experimental spectrum for H2A.Z II K7,K13ac peptide alone (black), with the addition of 5μ M BPTF (red), 10μ M BPTF (blue), 20μ M BPTF (green), and 30μ M BPTF (magenta). The upfield resonance that has been assigned to K7ac decreases significantly more than the downfield resonance (K13ac) in a protein dependent manner. B) Percent drop in acetyl methyl resonance intensity for K13ac and K7ac upon the addition of BPTF.

¹H CPMG competition with BPTF and H2A.Z I K7ac-d₃, K13ac

Figure S9. A) Overlaid spectra of H2A.Z II K7ac-d3,K13ac peptide alone (black) and with the addition of H2A.Z II K7,K13 peptide (grey). (B) Experimental spectra for H2A.Z II K7ac-d3,K13ac peptide alone (red), with the addition of BPTF (red), and with addition of competitor TP-238 (blue) are overlaid. A significant drop in resonance intensity is not observed, with no restoration upon competitor addition. This confirms the preferential engagement of K7ac on H2A.Z II by BPTF.

¹H CPMG with CECR2 and H2A.Z II K7ac, K13ac.

Figure S10. Ligand-observed ¹H NMR CPMG competition experiment evaluating H2A.Z II K7ac,K13ac for CECR2 binding site engagement. Experimental spectra for peptide alone (red), with the addition of 5FW-CECR2 (red), and with addition of competitor TP-238 (blue) are overlaid.

Synthesis of TP-238

Scheme 1: Synthesis of TP-238

Experimental Procedures:

2-(3-bromopropyl)isoindoline-1,3-dione: To a suspension of NaH (60%) (881 mg, 22.0 mmol) in THF (50 mL) at 0 °C was added pyrazole (1.50 g, 22.0 mmol) dropwise at 0 °C. The resultant solution stirred at 0 °C for 1.5 h before *N*-(3-Bromopropyl)phthalimide (5.37 g, 20.0 mmol) was added and the mixture was slowly warmed to room temperature and stirred overnight. It was then concentrated and purified $V_{\rm eff} = \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \int_{-\infty}$

by Combiflash Rf system (hexanes/ EtOAc, 0-100% EtOAc) to yield 3.64 g (71%) of **S1** as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.84 (dd, J = 5.4, 3.1 Hz, 2H), 7.75 – 7.68 (m, 2H), 7.52 – 7.45 (m, 2H), 6.21 (t, J = 2.1 Hz, 1H), 4.19 (t, J = 6.8 Hz, 2H), 3.72 (t, J = 6.7 Hz, 2H), 2.28 (p, J = 6.8 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 168.5, 139.6, 134.2, 132.2, 129.6, 123.4, 123.1, 116.3, 105.5, 105.3, 49.7, 35.5, 29.5. HRMS (ESI): calc'd for C₁₄H₁₄N₃O₂[M+H]⁺: 278.0900; found 278.0882.

3-(1*H***-pyrazol-1-yl)propan-1-amine:** To a solution of **S1** (2.88 g, 11.3 mmol) in EtOH (30 mL) and H₂O (10 mL) was added hydrazine hydrate (1.21 mL, 24.8 mmol). The solution was stirred and heated to reflux for 18 h at which point concentrated HCl (7.72 mL) was added and the solution refluxed for an additional 6 h. It was then cooled to room temperature, filtered and concentrated partially *in vacuo* before washing with DCM (2 x 10 mL). The aqueous layer was then adjusted to pH *ca.* 12 with NaOH pellets before extraction with DCM (2x 10 mL). The extracts were dried (MgSO₄), filtered and concentrated *in vacuo* to yield 1.41 g (78%) of amine **S2** as a yellow oil and was used without further purification. ¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, *J* = 2.0 Hz, 1H), 7.34 (d, *J* = 2.3 Hz, 1H), 6.18 (t, *J* = 2.1 Hz, 1H), 4.17 (t, *J* = 6.9 Hz, 2H), 2.63 (t, *J* = 6.8 Hz, 2H), 1.93 (p, *J* = 6.8 Hz, 2H), 1.68 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 139.1, 129.0, 105.3, 49.5, 39.0, 33.9. HRMS (ESI): calc'd for C₆H₁₂N₃[M+H]⁺: 126.1026; found 126.1039.

N-(3-(1*H*-pyrazol-1-yl)propyl)-6-chloro-2-(methylthio)pyrimidin-4-amine: To a solution of the sulfide (162 mg, 0.833 mmol) in isopropanol (3 mL) was added amine S2 (125 mg, 0.999 mmol) and Et₃N (116 uL, 0.833 mmol) at room temperature. The solution was then warmed to reflux and stirred for 18 h at which point it was concentrated *in vacuo* and purified by Combiflash Rf system (hexanes/ EtOAc, 0-100% EtOAc) to yield 222 mg (94%) of sulfide S3 as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.53 (d, *J* = 1.9 Hz, 1H), 7.39 (d, *J* = 2.3 Hz, 1H), 6.28 (t, *J* = 2.1 Hz, 1H), 5.98 (s, 1H), 5.52 (t, *J* =

6.2 Hz, 1H), 4.30 - 4.19 (m, 2H), 3.36 (s, 2H), 2.47 (s, 3H), 2.13 (p, J = 6.4 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 172.4, 162.7, 139.7, 129.5, 106.1, 49.4, 38.6, 29.8, 14.2.¹ HRMS (ESI): calc'd for C₁₄H₁₄N₃O₂[M+H]⁺: 284.0731; found 284.0746.

4-(6-((3-(1*H***-pyrazol-1-yl)propyl)amino)-2-(methylsulfonyl)pyrimidin-4yl)phenol:** A solution of (4-hydroxyphenyl)boronic acid (66 mg, 0.479 mmol), sulfide **S3** and K₂CO₃ (110 mg, 0.798 mmol) in dioxanes (1.5 mL) and H₂O (0.5 mL) was degassed prior to the addition of Pd(PPh₃)₄ (46 mg, 0.40 mmol). The solution was warmed to reflux and stirred under N₂ for 18 h, at which point it was quenched with H₂O (2 mL), extracted with EtOAc (3 x 3 mL), dried (MgSO₄),

filtered, and concentrated *in vacuo*. Purified by Combiflash Rf system (hexanes/ EtOAc, 0-100% EtOAc) to yield 80 mg (59%) of phenol **S4** as a white solid. ¹H NMR (500 MHz, DMSO) δ 9.86 (s, 1H), 7.84 (s, 1H), 7.74 (d, J = 2.2 Hz, 1H), 7.44 (d, J = 1.8 Hz, 2H), 6.88 – 6.81 (m, 2H), 6.51 (s, 1H), 6.23 (t, J = 2.0 Hz, 1H), 4.18 (t, J = 6.9 Hz, 2H), 2.45 (s, 3H), 2.03 (p, J = 6.9 Hz, 2H). ¹³C NMR (126 MHz, DMSO) δ 169.9, 162.6, 159.5, 138.6, 129.9, 127.9, 127.6, 115.4, 104.9, 48.8, 37.5, 29.8, 13.3. HRMS (ESI): calc'd for C₁₇H₂₀N₅OS [M+H]⁺: 342.1383; found 342.1427.

N-(3-(1*H*-pyrazol-1-yl)propyl)-6-(4-(3-(dimethylamino)propoxy)phenyl)-2-(methylsulfonyl)pyrimidin-4-amine: To a solution of sulfide S4 (31 mg, 0.091 mmol) in THF (1.5 mL) at room temperature was added Oxone (140 mg, 0.227 mmol) in H₂O (0.5 mL) dropwise. The solution stirred for 18 h at room temperature before the addition of H₂O (2.0 mL). The product was extracted from the aqueous layer with EtOAc (3 x 3 mL) and the organic extracts were combined, dried (MgSO₄) filtered and concentrated *in vacuo*. The crude sulfone was then dissolved

in DMF (2.0 mL) before the addition of K₂CO₃ (38 mg) and 3-(dimethylamino)propyl methanesulfonate hydrochloride² (59 mg, 0.272 mmol). The solution was heated to 80°C for 18 h. The reaction was then quenched with H₂O (2 mL) and extracted with EtOAc (3 x 3 mL). Organic extracts were dried (MgSO₄), filtered and concentrated *in vacuo*. Purified via CombiFlash Rf system (hexanes/ EtOac, 0-100% EtOAc, then DCM/MeOH, 0-30% MeOH). Isolated 9 mg, (22%) TP-238 as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.55 (s, 1H), 7.42 (s, 1H), 7.04 – 6.88 (m, 2H), 6.68 (d, *J* = 2.7 Hz, 1H), 6.27 (t, *J* = 2.2 Hz, 1H), 6.00 (s, 1H), 4.27 (d, *J* = 6.9 Hz, 2H), 4.07 (dt, *J* = 6.6, 4.2 Hz, 2H), 3.54 – 3.39 (m, 2H), 3.34 (d, *J* = 2.5 Hz, 3H), 2.48 (td, *J* = 7.7, 2.4 Hz, 2H), 2.27 (d, *J* = 2.6 Hz, 6H), 2.17 (t, *J* = 6.8 Hz, 2H), 2.04 – 1.91 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 165.8, 163.9, 161.7, 139.7, 129.7, 128.7, 128.2, 114.8, 106.0, 66.5, 56.4, 45.6, 38.9, 29.7, 27.6. HRMS (ESI): calc'd for C₂₂H₃₀N₆NaO₃S [M+Na]⁺: 481.1992; found 481.2622.

Notes:

- We did not observe two shifts from the aromatic region that correspond to two carbons on the substituted pyrimidine ring for S3, S4 or TP-238. However, the supporting ¹H NMR and HRMS data unequivocally confirm the indicated structures.
- 2. 3-(dimethylamino)propyl methanesulfonate hydrochloride was prepared according to literature procedure from *J. Am. Chem. Soc.* **1999**, *121*, 1452-1459.

 ^1H NMR (500 MHz, CDCl_3) and $^{13}\text{CNMR}$ (126 MHz) of S1

 ^1H NMR (500 MHz, CDCl_3) and $^{13}\text{CNMR}$ (126 MHz) of S2

¹HNMR (500 MHz, CDCl₃) and ¹³CNMR (126 MHz) of $\mathbf{S3}$

 ^1H NMR (500 MHz, d_6-DMSO) and $^{13}\text{CNMR}$ (126 MHz, d_6-DMSO) of S4

¹H NMR (500 MHz, CDCl₃) and ¹³CNMR (126 MHz, CDCl₃) of **TP-238**

HPLC analytical purity traces for synthesized peptides. Peptide purity was assessed with a Dionex Ultimate RP-HPLC system using a Vydac C-18 column and a 0-50% CH₃CH gradient over 50 minutes. Traces are shown below.

H2A.Z II K7ac-	900 - NO-3015 (QC) #3	NO-3015 peak 2	UV_VIS
d ₃ ,K13ac	= mAU		
	750		
	1		
	625 -		
	500 -		
	375 -		
	3		
	250 -		
	125		
	•		
	-125 -		
	-200		
		20.0 40.0	50.0
	0.0 10.0 2	0.0 30.0 40.0	50.0
H2A.Z II	0.0 10.0 21	0.0 30.0 40.0 NO-1096 (QC)	50.0 UV_VIS_1 VVVL
H2A.Z II K7ac,K15ac	0.0 10.0 21	0.0 30.0 40.0 NO-1096 (QC)	50.0 UV_VIS_1 WVL
H2A.Z II K7ac,K15ac	0.0 10.0 21	0.0 30.0 40.0 NO-1096 (QC)	50.0
H2A.Z II K7ac,K15ac	0.0 10.0 2)	0.0 30.0 40.0 NO-1096 (QC)	0.0 UV_VIS_1 WVL
H2A.Z II K7ac,K15ac	0.0 10.0 21	0.0 30.0 40.0 NO-1096 (QC)	UV_VIS_1 WVL
H2A.Z II K7ac,K15ac	0.0 10.0 2)	0.0 30.0 40.0 NO-1096 (QC)	UV_VIS_1 WVL
H2A.Z II K7ac,K15ac	150 0.0 10.0 2)	0.0 30.0 40.0 NO-1096 (QC)	UV_VIS_1 WVL
H2A.Z II K7ac,K15ac	0.0 10.0 21	0.0 30.0 40.0 NO-1096 (QC)	UV_VIS_1 WVL
H2A.Z II K7ac,K15ac	0.0 10.0 2)	0.0 30.0 40.0 NO-1096 (QC)	UV_VIS_1 WVL
H2A.Z II K7ac,K15ac	150 10.0 21 150 NO-1096 (QC) #2 mAU 100 - 50 - -50 - -100 -	0.0 30.0 40.0 NO-1096 (QC)	UV_VIS_1 WVL
H2A.Z II K7ac,K15ac	150 0.0 10.0 21 150 MO-1096 (QC) #2 100 - 50 - -50 - -100 - -150 -	0.0 30.0 40.0 NO-1096 (QC)	
H2A.Z II K7ac,K15ac	0.0 10.0 21 150 MO-1096 (QC) #2 mAU 100 - 50 - -50 - -100 - -150 - -200 -	0.0 30.0 40.0 NO-1096 (QC)	UV_VIS_1 WVL
H2A.Z II K7ac,K15ac	150 0.0 10.0 21 150 MO-1096 (QC) #2 mAU 50	0.0 30.0 40.0 NO-1096 (QC)	UV_VIS_1 WVL
H2A.Z II K7ac,K15ac	150 0.0 10.0 21 150 MO-1096 (QC) #2 100 - 50 - -50 - -100 - -200 - -250 - -200	0.0 30.0 40.0 NO-1096 (QC)	UV_VIS_1 WVL

H2A 7	T	400 - 🖥 NO-1001 (QC) #3	NO-1001 (peak2) UV_VIS_1 WVL
		mAU	
K4ac,K11ac			
		300 -	
		-	
		200 -	
		-	
		100	
		1	
		0	
		1	
		-100-	hay
			n n n n n n n n n n n n n n n n n n n
		-200]	
		0.0 5.0	10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0
H2A 7	T	1 400	٥٠-١٢٢٥ (۵۵) UV_VB_1 WVL220 rm
K4ac K13ac			
ix ide,ixi5de		-	11
		1,000 -	
		an]	
		em -]	
			Δ
		-200-]	
		- 400 -	
]	mIn
		DD 5D	100 150 200 250 300 360 400 450 500 560 600
H2A.Z	Ι	400] [₩0-1152 (QC) #2	NO-1152 (00) UV_VR_1 WVL 220 nm
K4ac,K15ac		1	
·		300-1	
		200	
		-100	
		-200 -	
		- - - 3000 -	
		1	min
		-400 JL	10D 15D 2DD 25D 30D 36D 40D 45D 50D 56D 60D

PrOF NMR Titrations with 5FW-BPTF.

PrOF NMR titration with 5FW-BPTF and H4 K16ac peptide.

.0 -120.5 -121.0 -121.5 -122.0 -122.5 -123.0 -123.5 -124.0 -124.5 -125.0 -125.5 -126.0 -126.5 -127.0 -127.5

5FW BPTF, H4AcK16

5FW 2950	
(ppm)	Δδ
-123.7473	
-123.8571	-0.1098
-123.8989	-0.1516
-123.9329	-0.1856
-123.972	-0.2247
	5FW 2950 (ppm) -123.7473 -123.8571 -123.8989 -123.9329 -123.972

PrOF NMR titration with 5FW-BPTF and H2A.Z II unacetylated peptide.

-122.6 -122.8 -123.0 -123.2 -123.4 -123.6 -123.8 -124.0 -124.2 -124.4 -124.6 -124.8 -125.0 -125.2 -125.4 -125.6

5FW BPTF, H2A.Z II unAcK

[Ligand]	5FW 2950 (ppm)	Δδ	
0 μΜ	-123.7598		
200 µM	-123.7591	0.0007	
400 µM	-123.7629	-0.0031	
800 µM	-123.7692	-0.0094	
1600 µM	-123.7815	-0.0217	

PrOF NMR titration with 5FW-BPTF and H2A.Z II K4ac peptide.

[Ligand]	5FW 2950 (ppm)	Δδ
0 µM	-123.7588	
113 µM	-123.7868	-0.028
300 µM	-123.8219	-0.0631
600 µM	-123.8688	-0.11
1200 µM	-123.9238	-0.165

PrOF NMR titration with 5FW-BPTF and H2A.Z II K7ac peptide.

PrOF NMR titration with 5FW-BPTF and H2A.Z II K11ac peptide.

[Ligand]	5FW 2950 (ppm)	Δδ
0 μΜ	-123.7635	
200 µM	-123.8136	-0.0501
400 µM	-123.8591	-0.0956
800 µM	-123.9223	-0.1588
1600 µM	-123.996	-0.2325

[Ligand]	5FW 2950 (ppm)	Δδ
0 μΜ	-123.7621	
200 µM	-123.7818	-0.0197
400 µM	-123.8017	-0.0396
800 µM	-123.8377	-0.0756
1600 µM	-123.8658	-0.1037

-123.843

-0.0836

1600 µM

PrOF NMR titration with 5FW-BPTF and H2A.Z II K15ac peptide.

PrOF NMR titration with 5FW-BPTF and H2A.Z II K4ac,K7ac peptide.

PrOF NMR titration with 5FW-BPTF and H2A.Z II K4ac,K11ac peptide.

PrOF NMR titration with 5FW-BPTF and H2A.Z II K4ac,K13ac peptide.

PrOF NMR titration with 5FW-BPTF and H2A.Z II K4ac,K15ac peptide.

PrOF NMR titration with 5FW-BPTF and H2A.Z II K7ac,K11ac peptide.

PrOF NMR titration with 5FW-BPTF and H2A.Z II K7ac,K13ac peptide.

PrOF NMR titration with 5FW-BPTF and H2A.Z II K7ac,K15ac peptide.

PrOF NMR titration with 5FW-BPTF and H2A.Z II K11ac,K13ac peptide.

PrOF NMR titration with 5FW-BPTF and H2A.Z II K13ac,K15ac peptide.

PrOF NMR titration with 5FW-BPTF and H2A.Z II K4ac,K7ac,K11ac peptide.

PrOF NMR titration with 5FW-BPTF and H2A.Z II K4me,K7ac,K13ac peptide.

Ligand Concentration (µM)

[Ligand]	5FW 2950 (ppm)	Δδ
0 uM	-123.7566	
200 uM	-123.7264	0.0302
400 uM	-123.703	0.0536
800 uM	-123.6854	0.0712
1600 uM	-123.6791	0.0775

PrOF NMR titration with 5FW-BPTF and H2A.Z I K4ac,K11ac peptide.

5FW BPTF, H2A.Z I AcK 4,11

[Ligand]	5FW 2950 (ppm)	Δδ
0 μΜ	-123.763	
200 µM	-123.848	-0.085
400 µM	-123.916	-0.153
800 µM	-123.972	-0.209
1600 µM	-124.052	-0.289

PrOF NMR titration with 5FW-BPTF and H2A.Z I K4ac,K13ac peptide.

PrOF NMR titration with 5FW-BPTF and H2A.Z I K4ac,K15ac peptide.

PrOF NMR titration with 5FW-BPTF and H2A.Z I K7ac,K13ac peptide.

PrOF NMR titration with 5FW-BPTF and H2A.Z I K7ac,K15ac peptide.

[Ligand]	5FW 2950 (ppm)	Δδ
0 uM	-123.7521	
200 uM	-123.8173	-0.0652
400 uM	-123.8553	-0.1032
800 uM	-123.8992	-0.1471
1600 uM	-123.9584	-0.2063

PrOF NMR titration with 5FW-BPTF and H2A.Z I K11ac,K13ac peptide.

PrOF NMR titration with 5FW-BPTF and H2A.Z I K11ac,K15ac peptide.

PrOF NMR titration with 5FW-BPTF and H2A.Z I K13ac,K15ac peptide.

-0.1834

0.05

0.00

[Ligand]

200 uM

400 uM

800 uM

1600 uM

0 uM

0

500

1000

Ligand Concentration (µM)

5FW 2950 (ppm)

1500

-123.7509

-123.8308

-123.8734

-123.9269

-123.9882

2000

Δδ

-0.0799

-0.1225

-0.176

-0.2373

PrOF NMR titration with 5FW-BPTF and H2A.Z I K7ac,K13ac,K15ac peptide.

Bromodomain Scope PrOF NMR Titrations.

PrOF NMR titration with 5FW PCAF and H2A.Z I K7ac,K13ac peptide.

PrOF NMR titration with 5FW PCAF and H2A.Z II K7ac,K13ac peptide.

5FW 746 (ppm)	Δδ
-123.8154	
-123.8449	-0.0295
-123.8821	-0.0667
-123.9398	-0.1244
-124.0036	-0.1882
	5FW 746 (ppm) -123.8154 -123.8449 -123.8821 -123.9398 -124.0036

PrOF NMR titration with 5FW CECR2 and H2A.Z I K7ac,K13ac peptide.

PrOF NMR titration with 5FW CECR2 and H2A.Z II K7ac,K13ac peptide.

5FW CECR2, H2A.Z II K7,13ac

5FW 457 (ppm)	Δδ
-124.8211	
-124.8235	-0.0024
-124.8265	-0.0054
-124.829	-0.0079
-124.8339	-0.0128
	5FW 457 (ppm) -124.8211 -124.8235 -124.8265 -124.829 -124.8339

PrOF NMR titration with 5FW BRD2(1) and H2A.Z I K7ac,K13ac peptide.

PrOF NMR titration with 5FW BRD2(1) and H2A.Z II K7ac,K13ac peptide.

PrOF NMR titration with 5FW BRD2(D2) and H2A.Z I K7ac,K13ac peptide.

5FW BRD2(D2) vs. H2A.Z I K7,13ac

[Ligand]	5FW 370 (ppm)	Δδ
0 uM	-125.4084	
200 uM	-125.3927	0.0157
400 uM	-125.3864	0.022
800 uM	-125.3699	0.0385
1600 uM	-125.3616	0.0468

PrOF NMR titration with 5FW BRD2(D2) and H2A.Z II K7ac,K13ac peptide.

5FW BRD2(D2) vs. H2A.Z II K7,13ac

5FW 370 (ppm)	Δδ
-125.4053	
-125.3953	0.01
-125.3883	0.017
-125.3742	0.0311
-125.3609	0.0444
	5FW 370 (ppm) -125.4053 -125.3953 -125.3883 -125.3742 -125.3609

PrOF NMR titration with 5FW BRD4(1) and H2A.Z II K7ac,K13ac peptide.

PrOF NMR titration with 5FW BRD4(D2) and H2A.Z I K7ac,K13ac peptide.

PrOF NMR titration with 5FW BRD4(D2) and H2A.Z II K7ac,K13ac peptide.

PrOF NMR titration with 5FW BRDT(1) and H2A.Z I K7ac,K13ac peptide.

REFERENCES

1. Kabsch, W. (2010) Xds. Acta. Crystallogr. D. Biol. Crystallogr. 66, 125-32.

Adams, P. D.; Afonine, P. V.; Bunkoczi, G.; Chen, V. B.; Davis, I. W.; Echols, N.; Headd,
J. J.; Hung, L. W.; Kapral, G. J.; Grosse-Kunstleve, R. W.; McCoy, A. J.; Moriarty, N. W.; Oeffner,
R.; Read, R. J.; Richardson, D. C.; Richardson, J. S.; Terwilliger, T. C.; Zwart, P. H. (2010)
PHENIX: a comprehensive Python-based system for macromolecular structure solution. *Acta. Crystallogr. D. Biol. Crystallogr.* 66, 213-21.

3. Emsley, P.; Lohkamp, B.; Scott, W. G.; Cowtan, K. (2010) Features and development of Coot. *Crystallogr. D. Biol. Crystallogr.* 66, 486-501.