
SUPPLEMENTAL MATERIAL

Ostia Localisation and Truncation Methods

To isolate the body of LA, we developed automatic ostia localisation and PV truncation tools using a Voronoi
diagram (1). This diagram was extracted from a surface mesh made from the blood pool segmentation. Each
of the PVs was initially identified by placing landmarks in the centre of gravity for PV labels provided by
the segmentation network. These landmarks represented the distal ends of the PVs in the mesh. Centrelines
were then automatically drawn from these points to the centre of the atrial body, running through the veins.
As the centrelines enter the body, the maximum area of the surrounding structure increases significantly.
This inflection was used to identify the ostium. The rate of change of the area, shown in black polygons in
Figure S1(a), was calculated as:

∆Ai = |Ai −Ai−1|, (1)

where Ai is the area of a polygon at step i on the centreline. The possibility of finding a PV ostium was
then determined based on the following conditions:

Ostium(i) =


False if ∆Ai ≤ Θmin

χB(∆Ai) if Θmax ≥ ∆Ai ≥ Θmin

True if ∆Ai ≥ Θmax

, (2)

where Θmax and Θmin are predefined thresholds based on the average area of atria. To circumvent incorrect
ostia localisation due to irregularities in the surface mesh, an additional function χB(∆Ai) was included that
evaluated to True if the area increased monotonically at the identified ostia.

Figure S1: Ostia Localisation and Truncation: (a) A Voronoi diagram of the left atrium displaying partition-
ing of the geometry into polygons with area of surrounding structure encoded. (b) Computed centrelines are
illustrated in blue running from PV landmarks to the centre of gravity. The localisation of ostia was achieved
by analysing the change in the area of the surrounding structure. The colourful disks represent different PV
truncation techniques. Yellow disks represent a fully automatic truncation method. Green disks represent
the semi-automatic method, where the user has the option to define the size and angle of the clipper’s shape.
The red disk and its surrounding red points are the representative of a fully manual method, in which the
user places a number of seeds around the PV to define the truncation path.

The PVs arrangements differ significantly between patients, which limit the use of the truncation approach
described by Tobon-Gomez et al. (2). Their clipping is performed with an infinite plane, rendering it
susceptible to unwanted cropping. To tackle this issue, we engineered a fully automatic clipper, which
computed geometric properties of the PVs inner walls. This information was used to construct dynamically



shaped clippers. The clipper shapes helped to truncate the blood pool at the ostia and the isolated PVs
were used to relabel the original segmentation.

In addition to the fully automatic clipper, we also devised two other types of truncation methods with
different levels of manual interventions to provide flexibility. The semi-automatic type of truncation method
exploited the visualization toolkit (VTK) implicit functions. The intersection of an infinite plane in conjunc-
tion with a user defined sphere created a ring shaped geometry, which resulted in a convex and flexible shape
for the truncation of veins. For the manual method, the user picked a number of seeds on the surface mesh
to define a contour. These seeds generated a custom shaped surface, which was then used for truncation of
the veins. An example of this manual method is shown as a red disk in Figure S1(b). The wide variation in
patient anatomy makes truncation tools such as these essential.

The labelled MV provided by the network undergoes three sequential steps to be automatically truncated
from the atrial shell. First, the segmented MV is dilated and then converted to a surface using the MIRTK
marching cubes algorithm. The surface of the MV is converted to an implicit function using the VTK
Implicit PolyData Distance class. Finally, the implicit function is used to truncate the atrial shell using the
VTK Clip PolyData filter, which allows for smooth clipped borders suitable for the rest of the estimation
pipeline.

Convolutional Neural Network Implementation

We have a dedicated website to our open-source platform: http://www.cemrgapp.com. This website now has
links to documentations, training videos, wiki pages, binary executables, and the public GitHub repository
(https://github.com/CemrgAppDevelopers/CemrgApp), which host all the platform’s source code. The
convolutional neural network’s source code used in this study is publicly available from this repository:
https://github.com/OrodRazeghi/CemrgNet.

Network Architecture

The number of feature maps k in the convolutions of the first convolutional group was optimised as a
hyperparameter during model selection. These 3 x 3 convolutional filters were connected to each other by
2 x 2 max pooling layers in the contracting path and up-convolutions in the expanding path. The number
of max pooling layers, which is equal to the number of up-convolutions, was generalised to the depth of the
network m as a hyperparameter. The number of feature maps in the output of the convolutions doubled
after every max pooling layer, and this number halved after every up-convolution. The convolutions in these
convolutional groups and those in the up-convolutions used padding, such that the output of the convolution
was the same size as the input of this convolution. The convolutions in the convolutional blocks were followed
by rectified linear unit (ReLU) activation and batch normalisation. The ReLU activation function was used
for all layers apart from the last layer, which used a softmax activation function. The probabilistic output
of this layer was considered to be the output of the model, which was thresholded at 50%.

# Network’s Layers Parameters

Size of the convolution filter = 3 x 3

Size of the max pooling operation = 2 x 2

Output layer threshold = 0.5

Network Training

The types of augmentation used for training the network were rotation between -20 and +20, scaling between -
20% and +20%, shearing between -10% and +10%, additive Gaussian noise with a mean of 0 and a standard
deviation between 1 and 15 pixels, and contrast changing through the power law transformation. The
proportion of the training set used for augmentation was tuned as to introduce a sufficient amount of new
data but not cause overfitting by examining training and validation sets errors.

# Augmentation Parameters

Maximum rotation = +20



Minimum rotation = -20

Maximum scaling = +20

Minimum scaling = -20

Maximum shear = +10

Minimum shear = -10

Gaussian noise mean = 0

Gaussian noise minimum SD = 1

Gaussian noise maximum SD = 15

Transformation minimum gamma = 0.9

Transformation maximum gamma = 1.5

The adaptive moment estimation (ADAM) optimizer was used for optimisation of the network. An initial
learning rate of 0.001 was selected for the ADAM optimizer and the exponential decay rates for the 1st and
2nd moment estimates were set to 0.9 and 0.999, respectively. The Dice coefficient was used as the cost
function, since it was previously used in the 2013 Left Atrial Segmentation Challenge benchmark (2) and is
better suited for datasets with a large label imbalance (3):

DICE =
2|Labelpredicted ∩ Labelgroundtruth|
|Labelpredicted|+ |Labelgroundtruth|

, (3)

where |.| are the cardinalities of the prediction and groundtruth sets.

# Optimiser Parameters

Name of the optimiser = ADAM

Learning rate = 0.001

Decay rate for 1st moment estimates = 0.9

Decay rate for 2nd moment estimates = 0.999

Cost function = Dice coefficient

During training, the accuracy was evaluated on the validation dataset after each iteration of all the
training data through the network. This was repeated until the validation accuracy stopped increasing, and
the best performing model was selected for evaluation on the test set. The maximum number of epochs was
100 and 500 steps were set for each epoch. Early stopping with a patience of 50,000 iterations was used as
a means of regularisation and to reduce training time.

# Training Parameters

Number of epochs = 100

Size of training batch = 16

Size of verification batch = 32

The training was done on two NVIDIA Titan V GPU with 5120 CUDA cores and 12GB of memory each,
and took approximately 6 hours. Training error of the segmentation network was also evaluated using Dice,
accuracy, sensitivity, specificity, and precision measurements for each of the blood pool, PVs, and MV labels.
Table S1 summarises these metrics.

Measurement Blood Pool Pulmonary Veins Mitral Valve

Dice 0.94±0.00 0.67±0.04 0.84±0.06
Accuracy 0.99±0.00 0.99±0.00 0.99±0.00
Sensitivity 0.90±0.01 0.59±0.06 0.85±0.08
Specificity 0.99±0.00 0.99±0.00 0.99±0.00
Precision 0.97±0.01 0.83±0.08 0.85±0.10

Table S1: Evaluation of training error of the CNN network.



Network Model Selection

To select the optimal network architecture, a grid search of hyperparameters was performed using five
separate models. Each model was trained and tested on the validation set. The models were permutations
of the following hyperparameters: varying depth m ∈ 4, 5, 6, number of feature maps k ∈ 32, 64, and dropout
rates f ∈ 25, 50, 75. We chose a depth of 5 and 32 feature maps for the first layer of network. Table S2
summarises Dice scores of segmenting the body of LA using the validation set. Overfitting is a potential
issue in larger neural networks due to the large number of trainable parameters. To minimise this issue,
dropout rates of 25%, 50%, and 75% were evaluated to find the most effective number of nodes to remove,
while still keeping enough nodes for sufficient feature learning. We selected a dropout of 50% as the result
of tuning this parameter.

# Network’s Hyperparameters

number of layers in the net = 5

Number of features in the first layer = 32

Dropout probability = 0.5

Model Network Depth Feature Maps No. of Parameters Dice

A 4 32 1926536 0.86
B 5 32 7762568 0.89
C 6 32 31100040 0.83
D 4 64 7699208 0.80
E 5 64 31036680 0.85

Table S2: Hyperparameter selection explored in possible models with grid search. Models deeper than 6
with feature maps larger than 64 were too large to fit into GPU memory.

Rigid Registration Implementation

The rigid transform can register objects that are related by rotation and translation by optimising a similarity
measure. The source code of registration algorithm can be downloaded from MIRTK GitHub1. The set of
parameters for use within MIRTK framework can be downloaded from our website2. Below is the full list of
chosen hyperparameters for the rigid MIRTK registration method:

# Registration parameters

Maximum no. of line search iterations = 20

Reuse previous step length = Yes

Strict step length range = Yes

Maximum streak of rejected steps = 5

Transformation model = Rigid

Multi-level transformation = Default

Merge global and local transformation = No

Optimization method = ConjugateGradientDescent

No. of resolution levels = 4

Interpolation mode = Fast linear

Extrapolation mode = Default

Precompute image derivatives = No

Normalize weights of energy terms = Yes

Downsample images with padding = Yes

Crop/pad images = Yes

1https://github.com/BioMedIA/MIRTK/tree/master/Modules/Registration
2https://www.cemrg.co.uk/software/Rigid MRI.cfg



Crop/pad FFD lattice = Yes

Adaptive surface remeshing = No

Padding value = -1

Resolution [mm] = 1 1 1

Blurring [mm] = -1

# Registration parameters for resolution level 1,2,3

Image dissimilarity weight (signed) = 1

Image dissimilarity relative to initial value = Yes

Image dissimilarity approximate gradient = No

Image dissimilarity preconditioning (voxel-wise) = 0

Image dissimilarity preconditioning (node-based) = 0

Image dissimilarity blurring of image gradient = 0

Image dissimilarity blurring of image hessian = 0

Normalize energy gradients (experimental) = No

Energy preconditioning = 0

Maximum no. of iterations = 100

Epsilon = -0.0001

Delta = 1e-12

Maximum no. of line iterations = 20

Maximum streak of rejected steps = 5

Reuse previous step length = Yes

Strict incremental step length range = Yes

Step length rise = 1.1

Step length drop = 0.5

Maximum no. of line search iterations = 20

Strict step length range = Yes

Maximum no. of restarts = 100

Maximum no. of failed restarts = 5

Line search strategy = Adaptive

Blurring [mm] = 0

# Registration parameters for resolution level 1

Resolution level = 1

Minimum length of steps = 0.01

Maximum length of steps = 1

No. of bins = 64

Resolution [mm] = 1 1 1

# Registration parameters for resolution level 2

Resolution level = 2

Minimum length of steps = 0.02

Maximum length of steps = 2

No. of bins = 64

Resolution [mm] = 2 2 2

# Registration parameters for resolution level 3

Resolution level = 3

Minimum length of steps = 0.04

Maximum length of steps = 4

No. of bins = 64

Resolution [mm] = 4 4 4

# Registration parameters for resolution level 4



Resolution level = 4

Minimum length of steps = 0.08

Maximum length of steps = 8

No. of bins = 30

Resolution [mm] = 8 8 8

Segmentation Test Results

Permutation Tests

We examined our pipeline efficacy by training on a 70% random selection of scans from all five operators.
For further analysis, we also examined training our pipeline on one operator, who had the largest number
of scans processed. We then tested this pipeline’s performance against independent scans from the same
operator and also the 60 scans analysed by the other four operators. The results can be found in tables S3,
S4, S5, and S6.

Measurement Blood Pool Pulmonary Veins Mitral Valve

Dice 0.92±0.01 0.65±0.09 0.76±0.08
Accuracy 0.99±0.00 0.99±0.00 0.99±0.00
Sensitivity 0.93±0.01 0.68±0.08 0.88±0.08
Specificity 0.99±0.00 0.99±0.00 0.99±0.00
Precision 0.91±0.03 0.63±0.12 0.69±0.14

Table S3: Average segmentation results obtained from training the CNN network with a random selection of
annotations from one operator with the largest number of analysed scans. The testing sets were independent
scans made out of annotations from the same operator.

Measurement Blood Pool Pulmonary Veins Mitral Valve

Dice 0.90±0.04 0.66±0.06 0.72±0.08
Accuracy 0.99±0.00 0.99±0.00 0.99±0.00
Sensitivity 0.94±0.03 0.69±0.10 0.76±0.16
Specificity 0.99±0.00 0.99±0.00 0.99±0.00
Precision 0.86±0.06 0.63±0.09 0.72±0.14

Table S4: Average segmentation results obtained from training the CNN network with a random selection
of annotations from one operator with the largest number of analysed scans. The testing sets were the 60
scans analysed by the other four operators.

Measurement IIR 0.97 IIR 1.61 Mean+3.3SD

ICC 0.94 0.99 0.98
PCC 0.94 1.00 0.99
RMSE 2.83 0.03 0.19

Table S5: Fibrosis scores calculated from segmentations generated manually by one operator and automati-
cally by our CNN. ICC is the intra-class correlation coefficients, PCC is the Pearson correlation coefficient,
and RMSE is the root mean square error.

Measurement IIR 0.97 IIR 1.61 Mean+3.3SD

ICC 0.88 0.99 0.98
PCC 0.93 0.99 0.99
RMSE 4.32 0.08 0.38

Table S6: Fibrosis scores calculated from segmentations generated manually by four operators and automat-
ically by our CNN using similar measurement metrics.

Table S3 and S4 represent the results from two separate subsets. Table S3 represents the results from



scans analysed only by one operator in training and testing pools, whereas table S4 represents results from
the model that was trained only on scans analysed by one operator and tested on scans analysed by four
separate operators, which were completely absent in the training set. Retraining the model on a larger
dataset with labelled samples from equally skilled operators will decrease these minor differences, as the
available data will be from a more uniform distribution.

Challenge Dataset Tests

Current state-of-the-art deep learning segmentation methods are deep artificial neural networks. We chose
the U-Net architecture as recent reviews of cardiac image segmentation methods have confirmed their success
in dealing with limited size datasets (4, 5, 6). The proceedings of the 2018 international workshop on
statistical atlases and computational models of the heart cover a range of 2D and 3D CNN based methods
for segmenting the atria (4). We trained our network on 2D slices of scans, as it was observed that feeding
in 3D sets does not have a significant effect on the accuracy of results and requires more processing power.
The benchmarking of architectures used in the 2018 Atrial Segmentation Challenge confirmed the lack of
significant difference between 2D and 3D models (4, 6).

We additionally tested our CE-MRA based network on 100 LGE-CMR scans from the 2018 Atrial Seg-
mentation Challenge dataset and evaluated its potential limitations on analysing different scans from a
different centre. The network without any retraining achieved a Dice score of 0.80 ± 0.05. Our previous
work specifically trained on the LGE-CMR scans from the challenge dataset had achieved a Dice score of
0.89 (3). We took these cross-centre evaluations further by processing the scans from the 2013 Left Atrial
Segmentation Challenge and performing a direct comparison to Mortazi et al. work (7). By training our
network architecture on the 2D planes of scans, we found a LA Dice score of 0.90±0.09, 0.81±0.08, and
0.78±0.07, whereas Mortazi et al. reported Dice scores of 0.90, 0.80, and 0.78 for axial, coronal, and sagittal
planes, respectively. The same analysis for PVs showed a Dice score of 0.61±0.09, 0.47±0.08, and 0.40±0.12
for our method, versus their Dice scores of 0.56, 0.47, and 0.39. The combination of LA and PVs resulted in
Dice scores of 0.86±0.02, 0.71±0.05, and 0.78±0.07, versus 0.84, 0.69, and 0.73. As Mortazi et al. reported,
training three separate networks with identical architecture on each of the planes and combining their out-
puts result in the Dice scores of 0.95, 0.68, and 0.90 for LA, PVs, and LA and PVs combined. However, this
comes at the expense of three times training and running times, in addition to three times of parameters
to tune. The segmented PVs from Mortazi et al. work are also merely the continuation of blood pool in
the adjacent regions and their algorithm cannot in fact differentiate between the anatomies. Evaluating MV
labels were not possible, as this label was not available in any of the datasets.

Previous automatic atrial segmentation work (8, 7, 9, 10) have relied on one expert delineation per subject
and do not provide any inter-observer error margin. For example AtriaNet (10), consisted of a dual pathway
CNN architecture and was validated on LGE-CMR dataset of 154 patients from the University of Utah. In
contrast, we trained our network on 207 scans with labels of blood pool, MV, and PVs. Jia et al. introduces
another solution consisting of two successive networks based on the U-Net architecture and a contour loss
on a dataset of 100 subjects (9). Their first network was used to locate the target and the second performed
single label segmentation from the cropped region of interest. Our experiments showed training one network
with sufficient data is able to delineate LA as accurately as a trained operator.

By quantifying the inter-observer variability, we provide an estimate of the error in manual segmentations
and an estimate of the degree of accuracy that we could achieve with an automatic segmentation network,
given the inherent inaccuracies in the annotation processes, which are subject to operator’s interpretation
of the blood pool, landmarks defining the MV’s plane, and position of PVs ostia. In fact, the network
outperformed operators on all the three labels (p < 0.05), with the greatest improvement in the PVs and
MV (blood pool: 0.91, PVs: 0.61, MV: 0.73). This more accurate automatic segmentation gives rise to
improved or equal inter-observer scores between the pipeline and the operators, in comparison to between
the operators across all methods for estimating fibrosis.

Studies like (8, 9, 10) segmented LGE-CMR scans. In contrast, we used our clinically validated LGE-CMR
interrogation technique (11) and preformed our segmentation on the higher contrast CE-MRA scans. This
potentially allowed more accurate segmentations. It is worth noting that the operators were not instructed
to segment the PVs fully and were asked to segment enough tissue to localise ostia. Therefore, the suggested
proximal PVs manually generated labels varied and a low inter-observer score was seen in the results. Our



pipeline is not influenced by this variance, as the ostia localisation algorithm finds the centre of mass for any
quantity of PV segmentation and uses it as a landmark for finding ostia. The automatic clipping tool then
removes the unwanted tissue.

Effect of Wall Thickness on Fibrosis Burden

The results of a one way ANOVA in Figure S2 revealed no significant difference (p = 0.06) in the global
fibrosis burdens calculated by varying the length of the normal projections initiating from the nodes of the
atrial surface mesh by considering the significance level as 0.05.

Figure S2: Wall Thickness Analysis: A one way ANOVA test confirms that varying the length of normal
projections initiating from the nodes of the mesh does not significantly change the mean of fibrosis burdens.
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