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SUMMARY
Processing in cortical circuits is driven by combinations of cortical and subcortical inputs. These inputs are
often conceptually categorized as bottom-up, conveying sensory information, and top-down, conveying
contextual information. Using intracellular recordings in mouse primary visual cortex, we measured neuronal
responses to visual input, locomotion, and visuomotor mismatches. We show that layer 2/3 (L2/3) neurons
compute a difference between top-down motor-related input and bottom-up visual flow input. Most L2/3
neurons responded to visuomotor mismatch with either hyperpolarization or depolarization, and the size
of this response was correlated with distinct physiological properties. Consistent with a subtraction of bot-
tom-up and top-down input, visual and motor-related inputs had opposing influence on L2/3 neurons. In in-
fragranular neurons, we found no evidence of a difference computation and responses were consistent with
positive integration of visuomotor inputs. Our results provide evidence that L2/3 functions as a bidirectional
comparator of top-down and bottom-up input.
INTRODUCTION

Predicting the sensory consequences of self-motion is a central

component of feedback guided motor control and allows the

brain to infer whether sensory stimuli are self-generated or exter-

nally generated (Crapse and Sommer, 2008). It is still unclear

how the nervous system learns and represents the relationships

between movement and sensory feedback. One brain structure

involved in complex sensorimotor learning processes is the

neocortex (Lalazar and Vaadia, 2008; Makino et al., 2016).

Cortical areas receive both bottom-up sensory-driven input

and top-down input that is thought to signal contextual and mo-

tor-related information (Engel et al., 2001). The primary visual

cortex (V1) of mice receives bottom-up visual input from the

lateral geniculate nucleus, as well as top-down input from

various other cortical areas, including higher-order visual

cortices, retrosplenial cortex, and anterior cingulate cortex (Lein-

weber et al., 2017; Oh et al., 2014; Zhang et al., 2016). These top-

down inputs convey various contextual signals, including atten-

tion (Zhang et al., 2014), spatial information (Fiser et al., 2016;

Saleem et al., 2018), head direction (Vélez-Fort et al., 2018),

and locomotion-related signals (Leinweber et al., 2017).

There are different, though not mutually exclusive, ideas about

the computational purpose of integrating bottom-up and top-

down inputs. Locomotion-related input may function to increase

the signal-to-noise ratio of visual responses by enhancing visual
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responses in V1 (Niell and Stryker, 2010). During locomotion,

neuromodulatory inputs are more active (Larsen et al., 2018; Re-

imer et al., 2016), and there is widespread depolarization of

cortical neurons (Bennett et al., 2013; Polack et al., 2013), indi-

cating a locomotion-related state change that likely underlies

the increased gain of visual responses (Fu et al., 2014; Polack

et al., 2013). Another idea is that V1 integrates positively

weighted sums of locomotion speed and visual flow speed to es-

timate an animal’s speed through the world (Saleem et al., 2013).

This was based on the finding that neurons in V1 can be driven by

locomotion in absence of visual input (Keller et al., 2012) and

often have activity that correlates positively with both visual

flow speed and locomotion speed (Saleem et al., 2013). It has

also been proposed that layer 2/3 (L2/3) neurons compute a dif-

ference between visual and locomotion-related input to convey

visuomotor prediction errors (Keller and Mrsic-Flogel, 2018).

This interpretation is based on the computational framework of

predictive processing (Rao and Ballard, 1999) and the discovery

of a subset of L2/3 neurons that strongly respond to a sudden

mismatch between visual flow feedback and locomotion speed

(Keller et al., 2012; Zmarz and Keller, 2016). In predictive pro-

cessing, one of the key circuit elements is prediction error neu-

rons. These neurons compare top-down inputs that convey a

prediction of sensory input with bottom-up sensory-driven in-

puts, rendering them responsive to differences between the

two. Top-down and bottom-up inputs could be compared using
rs. Published by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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a divisive mechanism (Spratling, 2008; Spratling et al., 2009) or a

subtractive mechanism (Keller and Mrsic-Flogel, 2018; Rao and

Ballard, 1999). In the latter case, the weights of these two types

of input would be balanced and opposing in a given prediction

error neuron. If bottom-up sensory input is excitatory, then the

effect of top-down input should be inhibitory, and vice versa.

The predictive processing framework postulates the existence

of two types of prediction error neurons: positive prediction error

neurons that subtract a top-down prediction from the sensory

input and negative prediction error neurons that subtract sen-

sory input from the top-down prediction (Keller andMrsic-Flogel,

2018; Rao and Ballard, 1999). The mismatch-responsive neu-

rons found in L2/3 using calcium imaging are consistent with

the latter type of neurons. V1 receives both bottom-up excitation

and visually driven inhibition (Attinger et al., 2017), as well as a

combination of excitatory and inhibitory top-down inputs (Gilbert

and Li, 2013; Leinweber et al., 2017; Zhang et al., 2014). If the

strengths of the two sources of input were balanced and

opposing in individual neurons, prediction error responseswould

arise from a temporary imbalance between the two inputs.

To test for the existence of a balance between top-down and

bottom-up inputs, we performed intracellular recordings in V1 of

mice exploring a virtual reality environment. We found wide-

spread responses to visuomotor mismatch in L2/3 excitatory

neurons ranging from strongly hyperpolarizing to strongly

depolarizing. The magnitude and sign of these responses is

associated with differences in electrophysiological properties,

visual responses, and membrane potential (Vm) dynamics during

locomotion. Moreover, the influence of visual input and that of

locomotion-related input on Vm were opposing, consistent with

the hypothesis that L2/3 computes a difference between the

two inputs. By contrast, deep-layer neurons did not show this

characteristic, instead exhibiting depolarizing responses to

both types of input.

RESULTS

Wemade blindwhole-cell recordings in V1 ofmice head-fixed on

a spherical treadmill with locomotion coupled to visual flow feed-

back in a virtual reality environment (Figures 1A and 1B; Lein-

weber et al., 2014). At the beginning of each recording, full-field

visual flowwas coupled tomouse locomotion. This coupling was

interrupted by suddenly halting visual flow for 1 s at random

times to generate visuomotor mismatch events (Keller et al.,

2012). To minimize the influence of changes in eye position, we

used full-field visual flow halts that induce a uniform mismatch

stimulus independent of eye position and that do not trigger

eye movements (Figure S1; Keller et al., 2012; Zmarz and Keller,

2016). Following the closed-loop session, we decoupled loco-

motion and visual flow to measure the effects of each on

neuronal activity separately. Visual stimuli consisted of 1 s full-

field, fixed-speed flow of the virtual tunnel walls, presented at

random times. Wemade whole-cell recordings from 54 neurons.

Putative interneurons, with an input resistance exceeding 100

MU, or a spike half-width below 0.6 ms (Gentet et al., 2012;

Pala and Petersen, 2015), were excluded from all analyses.

These criteria do not exclude lower-input-resistance, non-fast-

spiking interneurons (Gentet et al., 2012). In total 15% of neurons
were excluded, leaving 46 putative excitatory neurons in the

sample (Figure S2).

Subthreshold Mismatch Responses Are Widespread in
Putative L2/3 Excitatory Neurons
We first assessed the visuomotor mismatch responses of 32 pu-

tative L2/3 excitatory neurons recorded within 400 mm of the

cortical surface. Consistent with mismatch responses described

previously using calcium imaging (Keller et al., 2012; Zmarz and

Keller, 2016), we found neurons with depolarizing responses to

mismatch (Figures 1C and 1D). We also found neurons with hy-

perpolarizing responses (Figures 1E and 1F). Across neurons,

the distribution of mismatch responses was unimodal, with

78% (25/32) responding significantly (see STAR Methods; Fig-

ures 2A, 2B, and S3A). We operationally defined neurons as

either depolarizing mismatch (dMM, n = 17) neurons or hyperpo-

larizingmismatch (hMM, n = 6) neurons if their averagemismatch

response was above 1 mV or below �1 mV, respectively. This

threshold value is arbitrary, and our results are robust using a

range of thresholds. The remaining neurons (9 of 32, denoted

as unclassified) did not exceed the average 1 mV threshold but

often showed brief depolarizing responses at the onset and/or

the offset of mismatch. The different signs ofmismatch response

could not be explained by regression to a common reversal po-

tential, because mismatch responses were not related to pre-

stimulus voltage (Figure S3B). Mean mismatch responses were

comparable in magnitude to the standard deviation (SD) of Vm

for most neurons (Figure S3C), and the mean fraction of trials

with responses larger than 2 SDs across all neurons was

28% ± 19% (Figure S3D). Potentially because of this trial-to-trial

variability, spiking responses were less common in the dataset

but overall reflected the subthreshold responses (Figures 2C

and 2D). Different response types were intermixed, because

they could be recorded from the same craniotomy (Figures

S3E–S3G).

We previously found thatmismatch responses scale with loco-

motion speed (Keller et al., 2012; Zmarz and Keller, 2016).

Congruently, 30% of neurons exhibited significant correlations

betweenmismatch response and locomotion speed across trials

(Figures 2E–2G). The sign of this correlation was significantly

different between dMM neurons and hMM neurons (Figures 2G

and S3H). Given that during mismatch the difference between

predicted and actual visual flow speed is simply a function of

the locomotion speed, an increase in mismatch response with

increasing locomotion speed is consistent with an increased

prediction error.

Mismatch Response Sign Is Associated with Different
Electrophysiological Properties
Biophysical properties can be tuned by the profile of synaptic

input received by the neuron (Angelo et al., 2012; Desai et al.,

1999). We found that certain electrophysiological properties

correlated with mismatch responses, including initial resting

Vm, variance in Vm (when stationary), and baseline spike rates

(Figure 3A). To test whether a neuron’s mismatch response

was predictable from its electrophysiological properties, we

used multiple linear regression to predict mismatch responses

using the following six properties: initial resting Vm, input
Neuron 108, 1194–1206, December 23, 2020 1195
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Figure 1. Whole-Cell Recordings during Visuomotor Coupling and Mismatch

(A) Schematic of whole-cell recordings at the L2/3 depth and of the visuomotor virtual reality setup.

(B) Mice were habituated on the setup for 5 to 7 days before whole-cell recording experiments. Experiments consisted of an initial closed-loop phase, during

which visual flow feedback was coupled to locomotion interspersed with visual flow halts (mismatches). In a second open-loop phase, visual flow was presented

in 1 s pulses of visual flow independent of locomotion.

(C) Example Vm trace (black) from a depolarizing mismatch (dMM) neuron. Dotted lines indicate 0 cm/s. Visuomotor mismatch events are marked by an orange

bar and shading.

(D) Average Vm response (top) and firing rate histogram (bottom) for mismatch trials for the example neuron shown in (C) (averaged over 45 mismatch events).

Shading indicates SEM. The value in gray bold italics indicates the mean pre-stimulus voltage.

(E) As in (C), but for a neuron with a hyperpolarizing mismatch (hMM) response.

(F) Average Vm response to mismatch for the example neuron in (E). Shading indicates SEM over 15 trials. The value in gray bold italics indicates the mean pre-

stimulus voltage. This neuron did not show spontaneous spikes, so the spike histogram is omitted.

ll
OPEN ACCESS Article
resistance, Vm variance (during stationary periods), baseline

spike rate, membrane time constant, and spike threshold (see

STAR Methods). The variance in mismatch response explained

by the linear model was 77% when using all six properties and

was significantly higher than for shuffle controls (p < 0.0001)

(see STAR Methods; Figures 3B and 3C). The contribution of

each electrophysiological property to the variance explained

ranged between 5% and 25%, with no single property domi-

nating the effect (Figure 3D). Using leave-one-out analysis, we

found there were significantly higher positive correlations be-

tween predicted and actual mismatch responses when the

model was generated using actual data compared with

randomly permuted controls (actual: 0.65 ± 0.06; shuffle con-
1196 Neuron 108, 1194–1206, December 23, 2020
trols: �0.06 ± 0.21; p < 0.001) (see STAR Methods; Figure 3E).

Thus, responses to mismatch were correlated with electrophys-

iological properties, potentially indicating differences in synaptic

inputs and/or cell-type-specific and intrinsic properties.

Mismatch Responses Are Anticorrelated with Visual
Flow Responses in Putative L2/3 Excitatory Neurons
The observed mismatch responses either could be computed by

L2/3 neurons as a difference between predicted and actual visual

flow input or could simply be inherited from inputs to these neu-

rons. If the responses are inherited, hyperpolarization would sim-

ply reflect a mismatch-triggered inhibitory input, and depolariza-

tion would reflect a mismatch-triggered excitatory input.
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Figure 2. Subthreshold Mismatch Responses Are Widespread in L2/3, and Responses Correlate with Locomotion Speed

(A) Top: heatmap of average Vm responses to mismatch for 32 neurons, sorted by average response. Neurons classified as dMM and hMM aremarked by orange

and turquoise shading, respectively. Asterisks indicate examples shown in Figure 1. Bottom: average Vm response tomismatch across 17 dMMneurons (orange),

6 hMM neurons (turquoise), and 9 unclassified neurons (gray). Shading indicates SEM over neurons.

(B) Histogram of average mismatch responses. In dark gray are counts of neurons with a significant response (p < 0.05, paired t test between pre- and post-

mismatch average Vm). Turquoise and orange lines indicate hMM and dMM thresholds, respectively. Shown above the histogram are mismatch responses

colored according to their p value. *p < 0.05, **p < 0.01, ***p < 0.001.

(C) Top: heatmap of the average spiking rate during mismatch. Color coding and sorting are as in (A). Bottom: average mismatch-induced change in the spiking

rate for the same groups of neurons as in (A). Shading indicates SEM over neurons.

(D) Boxplots comparing spiking rate responses tomismatch for dMMneurons (orange, n = 17), unclassified neurons (gray, n = 9), and hMMneurons (turquoise, n =

6). One-way ANOVA: p < 0.01, F-statistic = 12.5; dMM versus hMM: p < 0.01, dMM versus unclassified: p = 0.43, hMM versus unclassified: p < 0.02, rank-sum

test. Boxplots show median, quartiles, and range-excluding outliers (see the Statistics section in STAR Methods for details).

(E) Top: average Vm response for the 10 mismatch events with the highest (black) and lowest (gray) locomotion speeds for an example dMM neuron. Shading

indicates SEM over trials. Values in gray bold italics indicate the mean pre-stimulus voltage. Bottom: scatterplot between average locomotion speed and

mismatch response for 45 trials. The dashed gray line shows linear regression.

(F) As in (E), but for an example hMM neuron. Average Vm responses were calculated from five trials with the lowest (gray) and highest (black) locomotion speeds.

(G) Histogram of correlation coefficients between locomotion speed andmismatch response. In dark gray are counts of neurons with a significant correlation (p <

0.05). Boxplot compares values for dMM neurons (orange, n = 15), hMM neurons (turquoise, n = 5), and unclassified neurons (gray, n = 7), with significant

correlations shown as dark data points. One-way ANOVA on ranks: p < 0.02, chi-square = 8; dMMversus hMM: p < 0.02, dMM versus unclassified: p = 0.07, hMM

versus unclassified: p = 0.34, rank-sum test. Boxplots show median, quartiles, and range-excluding outliers.

See Table S1 for inclusion criteria.
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Figure 3. Mismatch Responses Are Predictable from Electrophysiological Properties

(A) Boxplots to compare properties between dMM, hMM, and unclassified categories. From top to bottom: resting Vm (one-way ANOVA: p < 0.01, F-statistic = 6.5;

dMM versus hMM: p < 0.01, dMM versus unclassified: p < 0.05, hMM versus unclassified: p = 0.41, t test), standard deviation (SD) of Vm during stationary periods

(one-way ANOVA: p < 0.01, F-statistic = 6.5; dMM versus hMM: p < 0.01, dMMversus unclassified: p < 0.05, hMM versus unclassified: p = 0.14, t test), and baseline

spike rate (one-way ANOVA: p = 0.06, F-statistic = 6.5; dMM versus hMM: p < 0.05, dMM versus unclassified: p = 0.97, hMM versus unclassified: p = 0.15, t test).

(B) Scatterplot between predictedmismatch response (from amultiple linear regressionmodel including six electrophysiological properties) and actual mismatch

response for each neuron.

(C) Fraction of variance in mismatch response explained as a function of the number of electrophysiological properties included in the model. Red boxplots show

data for all model subsets. In gray are the median (solid line) and 95th percentile (dashed line) for shuffle controls, in which mismatch responses were randomly

permuted with respect to electrophysiological properties.

(D) Top: bar plot of the average additional R2 when including each electrophysiological property in the linear model. Bottom: bar plot of correlation coefficients

between each electrophysiological property and mismatch response. *p < 0.05; **p < 0.01.

(E) Results of leave-one-out analysis. Plotted in red are correlation coefficients between predicted and actual mismatch responses (for the neurons left out during

model generation) for all seven model subsets including five or six properties. The gray boxplot shows the values for models generated with data in which

mismatch responses were randomly permuted relative to electrophysiological properties.
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However, if mismatch responses are driven by a reduction in visu-

ally driven input, we should find an opposing relationship between

mismatch responses and visual responses. If visual input is excit-

atory, then its removal during mismatch would evoke hyperpolar-

ization. Similarly, assuming visual input is inhibitory, removal of

this inputwould evoke depolarization. To test this, we analyzed re-

sponses to 1 s visual flow stimuli, presented at random times in-

dependent of locomotion. Given that these stimuli are not predict-

able from locomotion or stimulus history, they constitute a positive

prediction error (i.e., more visual flow than predicted). Because vi-

sual flow responses during locomotion and during stationary pe-

riods were correlated (Figures S4A–S4C), we included all presen-

tations in our analysis. We lost 5 putative L2/3 pyramidal neurons

before being able to record visual responses. 60% of the remain-

ing neurons responded significantly to visual flow presentations
1198 Neuron 108, 1194–1206, December 23, 2020
(Figures 4A–4C; see STAR Methods). Subthreshold responses

to visual flow were significantly different in dMM and hMM neu-

rons (mean ± SD, dMM: �0.3 ± 1.6 mV, n = 14; hMM: 3.5 ±

3.0 mV, n = 5; p < 0.003, t test) (Figure 4D), and there was a signif-

icant negative correlation between visual flow response and

mismatch response (R = �0.49, p < 0.01, n = 27) (Figure 4E).

The different signs of visual response could not be explained by

regression to a common reversal potential, because spiking re-

sponses largely reflected subthreshold responses (Figure S4E),

and pre-stimulus Vm was a poor predictor of visual flow response

(Figures S4F and S4G). Visual responses were comparable in

magnitude to mismatch responses (Figure S4H).

In addition to responses to visual flow onset, we found that

many neurons exhibited depolarizing responses or persistent de-

polarization after visual flow offset (Figure 4C). One interpretation
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Figure 4. Visual Flow Responses Inversely Relate to Mismatch Responses in L2/3 Neurons

(A) Example Vm trace (black) recorded from a dMM neuron during the open-loop phase. Brief 1 s visual flow stimuli (shaded green) evoked hyperpolarization.

Dotted lines indicate 0 cm/s.

(B) Average Vm response to visual flow stimuli for the example neuron in (A). Gray shading indicates SEM over 42 trials. The value in gray bold italics indicates the

mean pre-stimulus voltage.

(C) Top: heatmap of the average Vm response to visual flow stimuli across all L2/3 neurons, sorted as in Figure 2A. Gray shading marks neurons for which we did

not have sufficient data. Bottom: average response across 14 dMM neurons (orange), 5 hMM neurons (turquoise), and the remaining 8 neurons (gray). Shading

indicates SEM over neurons. The asterisk indicates the example shown in (A).

(D) Average Vm responses to 1 s visual flow stimuli, compared for 5 hMM, 14 dMM, and 8 unclassified neurons. Dark data points indicate significant responses,

p < 0.05, paired t tests. One-way ANOVA: p < 0.01, F-statistic = 6.5; dMM versus hMM: p < 0.003, dMM versus unclassified: p < 0.01, hMM versus unclassified:

p = 0.68, t test.

(E) Scatterplot between average visual response and average mismatch response (gray triangles) for 27 L2/3 neurons. For red data points, the average response

to visual flow offset was subtracted from the mismatch response. Dashed gray and red lines show linear fits to the respective data.

(F) Top: average response to visual flow stimuli of the lowest two (gray, 7 trials) and the highest two (black, 11 trials) visual flow speeds for an example neuron.

Shading indicates SEM over trials. Values in gray bold italics indicate the mean pre-stimulus voltage. Bottom: scatterplot between visual flow speed and visual

flow response across trials for the example neuron.

(G) Scatterplot between correlation coefficients (between visual flow speed and visual flow response) and mismatch response. Boxplots above compare values

for 6 dMM (orange), 4 hMM (turquoise), and 5 unclassified neurons (gray). One-way ANOVA: p < 0.002, F-statistic = 12.5; dMM versus hMM: p < 0.001, dMM

versus unclassified: p = 0.18, hMM versus unclassified: p < 0.02, t test.
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of this is that the offset of visual flow results in separate excitatory

input to L2/3 neurons. Consequently, mismatch responses would

arise from a reduction in visual flow-driven input and a parallel in-

crease in input driven by the visual flow offset. Correcting the
mismatch responses for this visual flow offset response revealed

a strong anticorrelation between visual flow and mismatch re-

sponses (R = �0.81, p < 10�6, n = 27) (Figure 4E; see STAR

Methods). In a subset of neurons,wepresented four distinct visual
Neuron 108, 1194–1206, December 23, 2020 1199
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flow speeds (Figure 4F). In dMMneurons, visually driven hyperpo-

larization increased with visual flow speed, resulting in negative

correlations between visual flow speed and Vm response (mean

R value ± SD, = �0.54 ± 0.21, n = 6) (Figure 4G). By contrast, in

hMM neurons, visually driven depolarization increased with visual

flow speed, resulting in positive correlations (mean R value ± SD=

0.1 ± 0.1, n = 4; dMM versus hMM: p < 0.001, t test). Overall, the

opposing relationship between visual responses and mismatch

responses is consistent with the latter arising from transient

removal of visual flow input.

The Influence of Locomotion onVmDiffersDepending on
Mismatch Response
Computing visuomotor prediction errors requires a top-down

input to convey a prediction of visual flow given movement. If a

motor-related input is used to compute prediction error re-

sponses, we would expect to find that the motor-related input

to a given neuron is correlated with the strength of the mismatch

responses and anticorrelated with the strength of visual

response. Thus, dMM neurons should receive motor-related

excitation, whereas hMM neurons should receive motor-related

inhibition (Keller andMrsic-Flogel, 2018). Complicating this anal-

ysis somewhat, locomotion is associated with a brain state

change, likely driven by neuromodulatory inputs (Fu et al.,

2014; Polack et al., 2013).We quantified the influence of locomo-

tion on L2/3 neurons in the open-loop condition in absence of

coupled visual flow. Consistent with previous work (Bennett

et al., 2013; Polack et al., 2013), we observed during locomotion

a systematic depolarization in Vm that began before locomotion

onset, a reduction in Vm variance, and only a small change in

spike rates across the dataset (Figures 5A–5C and S5A–S5C).

Although all neurons depolarized, locomotion onset responses

correlated positively with mismatch responses (Figure 5D).

Locomotion also caused visual responses to become more de-

polarizing (Figures S4A–S4D), consistent with previous findings

(Bennett et al., 2013). These results are consistent with a neuro-

modulatory state change causing widespread depolarization of

neurons (Polack et al., 2013), alongside a separate locomotion-

related drive that correlates with mismatch response. To

minimize the influence of state transitions associated with loco-

motion onsets and offsets, we analyzed the correlation between

Vm and locomotion speed only during times of locomotion (see

STAR Methods; Figure S7). We found that dMM neurons depo-

larized with increasing locomotion speed, whereas hMM neu-

rons hyperpolarized with increasing locomotion speed (dMM:

mean R value ± SD = 0.14 ± 0.13, n = 12; hMM: �0.06 ± 0.07,

n = 5; p < 0.005, t test) (Figure 5E). This is consistent with a loco-

motion-related excitation onto dMM neurons and inhibition onto

hMM neurons that both scale with locomotion speed, in addition

to state-dependent depolarization.

If mismatch responses are the result of opposing visual flow

and locomotion speed inputs, the effects of locomotion speed

and visual flow speed on Vm should have opposing signs. This

was indeed the case: the correlation coefficients between Vm

and locomotion speed were positively correlated with mismatch

responses (R = 0.59, p < 0.01) (Figures 5E, 5F, and S7), whereas

the correlation coefficients between Vm and visual flow speed

showed a similarly strong negative correlation with mismatch re-
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sponses (R =�0.54, p < 0.01). Consistent with this, in the closed-

loop condition, the change in Vm during locomotion (and concur-

rent visual flow) did not depend on mismatch response (Fig-

ure S5D), whereas the difference in locomotion-related Vm

changes between closed-loop and open-loop epochs was anti-

correlated with mismatch response (Figure S5E). Although we

cannot determine from our data whether locomotion and visual

flow inputs are perfectly coincident, we found that the timing of

the peak cross-correlation of Vm with locomotion was well

matched with that of the cross-correlation of Vm with visual

flow (Figure 5F). These data are consistent with L2/3

mismatch-responsive neurons computing the difference be-

tween a visual flow input and a locomotion-related input using

balanced and opposing excitatory and inhibitory input.

Infragranular Layers Integrate Visual andMotor-Related
Input Differently from L2/3
It has been suggested that infragranular layers 5 and 6 (L5/6) are

computationally distinct from L2/3 (Harris and Mrsic-Flogel,

2013; Rao and Ballard, 1999). To probe for layer specificity in

mismatch computation, we examined responses of neurons re-

corded between 480 and 750 mm from the cortical surface (Fig-

ure 6A), which we consider putative L5/6 excitatory neurons (n =

14). These L5/6 neurons had higher input resistances and higher

firing rates than L2/3 neurons (Figures S6A and S6B), consistent

with differences previously found between L5 and L2/3 neurons

(de Kock and Sakmann, 2009; Lefort et al., 2009; Sakata and

Harris, 2009). In contrast to L2/3 neurons, only 36% (5/14) of

neurons responded significantly to mismatch (Figures 6B and

6C). Depolarizing responses (exceeding 1 mV, dMM) were rare

(1 of 14 neurons), whereas half of the neurons (7 of 14) exhibited

hyperpolarizing responses (exceeding�1mV, hMM) (Figures 6D

and S6C). Congruently, there was no evidence of positive corre-

lations between mismatch response and locomotion speed in

L5/6 neurons (Figure S6D). Overall, there was a significant differ-

ence between average mismatch responses in L2/3 and L5/6

neurons (mean ± SD, L2/3: 0.8 ± 2.4 mV, 32 neurons; L5/6:

�1.5 ± 2.0 mV, 14 neurons; p < 0.01, t test) (Figures 6E and

6F). The paucity of dMM responses in L5/6 could be the result

of (1) reduced bottom-up visual inhibition, (2) reduced excitatory

locomotion-related input, (3) a lack of balanced and opposing

tuning between these inputs, or (4) any combination of these.

To examine these possibilities, we first analyzed visual flow re-

sponses. 70% of L5/6 neurons had significant responses to vi-

sual flow, all of which were depolarizing (Figure 6G). However,

we found no evidence of a significant difference in average visual

responses between L5/6 and L2/3 neurons (mean ± SD, L2/3:

1.3 ± 2.8 mV, 27 neurons; L5/6: 2.0 ± 1.9 mV, 13 neurons; p =

0.40, t test) (Figures 6H and 6I). In L5/6 neurons, we also found

no evidence of a correlation between visual responses and

mismatch responses (Figure S6E). Next, we looked at locomo-

tion onset responses in L5/6 neurons. Nearly all L5/6 neurons un-

derwent depolarization beginning before locomotion onset that

was similar to that of L2/3 neurons (mean ± SD, L2/3: 3.5 ±

2.2 mV; L5/6: 2.8 ± 2.2 mV; p = 0.36, t test) (Figures 6J–6L). How-

ever, unlike in L2/3 neurons, locomotion did not affect visual re-

sponses in L5/6 neurons (Figures S4C–S4D), similar to findings in

the somatosensory cortex (Ayaz et al., 2019).
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Figure 5. The Influence of Locomotion on Vm Differs Depending on Mismatch Response

(A) Example Vm trace (black) from a neuron during locomotion onset (vertical dashed line) in the open-loop condition. Dotted lines indicate 0 cm/s.

(B) Average Vm response to locomotion onset (purple dashed line) for the example neuron in (A). Shading indicates SEM over 4 trials. The value in gray bold italics

indicates the mean pre-locomotion voltage.

(C) Top: heatmap of average Vm responses to locomotion onset for all L2/3 neurons. Responses are sorted as in Figure 2A. Gray shadingmarks neurons for which

we did not have sufficient data. Bottom: average locomotion onset response across 10 dMM neurons (orange), 4 hMM neurons (turquoise), and 8 unclassified

neurons (gray). Shading indicates SEM over neurons.

(D) Scatterplot between locomotion onset response and mismatch response for 22 neurons. Boxplots compare responses for 4 hMM neurons (turquoise), 10

dMM neurons (orange), and 8 unclassified neurons (gray). One-way ANOVA, p = 0.43, F-statistic = 0.9.

(E) As in (D), but for correlation coefficients between locomotion speed and Vm (when excluding stationary periods). Boxplots above compare values for 12 dMM

(orange), 5 hMM (turquoise), and 5 unclassified neurons (gray). One-way ANOVA, p < 0.02, F-statistic = 5.8; dMM versus hMM: p < 0.005, dMM versus un-

classified: p = 0.37, hMM versus unclassified: p < 0.05, t test.

(F) Average cross-correlations between Vm and locomotion speed (black) or visual flow speed (gray). Negative time values indicate locomotion/visual speed

preceding Vm. Shading indicates SEM over neurons.
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Finally, we compared how Vm in L2/3 and L5/6 neurons scaled

with locomotion speed and visual flow speed. Vm in L2/3 neurons

tended to exhibit a positive correlation with visual flow and a

negative correlation with locomotion, or vice versa, resulting in

a significant anticorrelation between the two correlation values

(R = �0.65, p < 0.001, n = 22 neurons) (Figures 7A and S7). In

contrast, Vm in L5/6 neurons tended to exhibit positive correla-

tions with both visual flow and locomotion (Figures 7A and S7).

To quantify this difference between L2/3 and L5/6 neurons, we

computed the angle from 0� in the two-dimensional scatterplot

of correlation values for each neuron. This angle is between

0� and 90� for neurons with positive correlations for both visual

flow and locomotion and either between 90� and 180� (negative
prediction error) or between 270� and 360� (positive prediction
error) for neurons with opposing signs of the correlations. We

found that this distribution is bimodal for L2/3 neurons, with a

significantly higher proportion of neurons with angles corre-

sponding to opposing signs of correlation than that observed

in L5/6 neurons (L2/3: 17 of 22 neurons; L5/6: 2 of 12 neurons;

p < 0.002, tea tasting exact test) (Figure 7B). The distribution of

angles for L2/3 and L5/6 neuronswere significantly more anticor-

related than expected by chance (p < 0.01) (see STARMethods).

The difference between the correlation of Vm with locomotion

and the correlation of Vm with visual flow was a good predictor

of mismatch responses in L2/3 neurons (R = 0.58, p < 0.01),

but not in L5/6 neurons (R = �0.10, p = 0.75) (Figure 7C). Thus,

the relative lack of dMM responses in L5/6 neurons is likely a

result of a lack of balanced and opposing tuning between visual
Neuron 108, 1194–1206, December 23, 2020 1201
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Figure 6. Deep-Layer Neurons Show a Lack of dMM Responses

(A) Neurons recorded at a vertical depth greater than 480 mm were classified as putative L5/6 neurons.

(B) Example Vm trace (black) from a putative L5/6 neuron recorded during the closed-loop condition with mismatch stimuli (orange bar and shading). Dotted lines

indicate 0 cm/s.

(C) Average Vm response to mismatch stimulus for the example neuron in (B). Shading indicates SEM over 13 trials. The value in gray bold italics indicates the

mean pre-locomotion voltage.

(D) Heatmap of average Vm responses to mismatch across all L5/6 neurons. Neurons are sorted by average mismatch response. Neurons were assigned dMM

(orange shading) or hMM (turquoise shading) according to the same criteria used for L2/3 neurons: mismatch responses of at least 1 or �1 mV, respectively.

(E) Average response tomismatch across all L5/6 neurons (black, 14 neurons) comparedwith the average response tomismatch across all L2/3 neurons (gray, 32

neurons). Shading indicates SEM over neurons. Average pre-mismatch voltages were �68 ± 8 mV for L2/3 neurons and �64 ± 9 mV for L5/6 neurons.

(F) Average mismatch responses of L2/3 and L5/6 neurons. Dark data points indicate neurons with a significant response to mismatch. **p < 0.01, t test.

(G) As in (D), but for visual flow responses. Gray shading indicates a neuron with insufficient data.

(H) As in (E), but for visual flow responses. Average pre-visual stimulus voltages were �64 ± 8 mV for L2/3 neurons and �63 ± 9 mV for L5/6 neurons.

(I) As in (F), but for visual flow responses. Dark data points indicate neurons with a significant response to visual flow.

(J) As in (D), but for locomotion onset responses. Average pre-running onset voltages were �64 ± 8 mV for L2/3 neurons and �62 ± 7 mV for L5/6 neurons.

(K) As in (E), but for locomotion onset responses.

(L) As in (F), but for locomotion onset responses.
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and locomotion-related inputs. Altogether, opposing visual and

locomotion-related inputs necessary to compute visuomotor

mismatch responses is a specific feature of L2/3 neurons and

appears to be absent from L5/6 neurons, indicative of separate

computational roles of L2/3 and L5/6 in visuomotor integration.
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DISCUSSION

Our results are consistent with the key postulate of the predic-

tive processing framework: visuomotor mismatch responses

observed in L2/3 of V1 are the result of a difference
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Figure 7. L2/3 Neurons, but Not L5/6 Neurons, Integrate Locomotion and Visual Inputs with Opposing Signs

(A) Scatterplots of the correlation coefficient between Vm and visual flow speed and the correlation coefficient between Vm and locomotion speed for 22 L2/3

neurons (left) and 12 L5/6 neurons (right). The gray dashed line is a linear regression to the data. Pale solid lines indicate the average population vector for hMM

neurons (turquoise), dMM neurons (orange), and unclassified neurons (gray).

(B) Histogram of the angles in (A) for each neuron. The two histograms are significantly anticorrelated (p < 0.02, see STAR Methods).

(C) Difference between the correlation of Vm with visual flow and the correlation of Vm with locomotion speed is a good predictor of mismatch responses in L2/3

neurons (R = 0.58, vertical red line denoted as actual), but not in L5/6 neurons (R =�0.1, vertical red line). Gray histograms are shuffle controls in which correlation

coefficients were scrambled across neurons.

(D) Schematic of a hypothesized L2/3 circuit. Excitatory neurons (triangles) have visuomotor mismatch responses ranging from strong depolarization (orange) to

strong hyperpolarization (turquoise), reflecting the balance between bottom-up and top-down excitation and inhibition. Inhibitory interneurons are shown in gray.

Locomotion also evokes a state change affecting all neurons via neuromodulatory input. The width of the arrows indicates the relative strength of the input.
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computation between predicted visual flow and actual visual

flow (Keller and Mrsic-Flogel, 2018; Rao and Ballard, 1999).

Although the visuomotor integration characteristics of L5/6

could support several models, they are consistent with a

role in maintaining an internal representation by integrating

over L2/3 and top-down input (Keller and Mrsic-Flogel,

2018). This interpretation assumes that visual flow responses

are mainly bottom-up driven and locomotion responses are

mainly top-down driven.

Several limitations of current-clamp recordings should be kept

in mind when interpreting our results. First, we cannot directly

determine from changes in Vm the underlying changes in excit-

atory and inhibitory inputs. A depolarizing response, for

example, can be caused by an increase in excitatory input or a

decrease in inhibitory input. Second, somatic recordings do

not have direct access to inputs arising on distal dendrites,

particularly in awake in vivo recordings, in which input resis-

tances are typically low (Figure S2A). Consequently, inhibition

is underestimated if it arises primarily on distal dendritic com-

partments or when it shunts depolarizing currents rather than
evoking overt hyperpolarization. The sources of the visually

driven inhibition onto negative prediction error neurons are so-

matostatin-positive interneurons (Attinger et al., 2017), which

preferentially target the apical dendrites of L2/3 excitatory neu-

rons (Markram et al., 2004). This could explain why we only

see overt hyperpolarization to visual flow in a subset of dMM

neurons. To overcome these limitations, ideally one would

want to use genetically encoded voltage indicators to measure

voltage changes in the dendrites optically.

It is possible that hMM and dMM neurons are differentially

tuned for visual features such as grating orientation and that

dMM responses arise from relief from a form of cross-orientation

suppression. In the limited recording time of intracellular record-

ings, it would be difficult to quantify mismatch responses and vi-

sual tuning curves in the same neurons. However, a purely visual

explanation of the difference between dMM and hMM neurons

would not account for the effect of locomotion-related input anti-

correlating with that of the visual flow input (Figures 5F and 7A).

This is consistent with suprathreshold mismatch responses not

being accounted for by visual responses alone (Zmarz and
Neuron 108, 1194–1206, December 23, 2020 1203
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Keller, 2016). In addition, cross-orientation suppression likely is

not driven by intra-cortical inhibition but instead is the conse-

quence of reduced thalamic drive (Freeman et al., 2002). Thus,

a model based purely on bottom-up visually driven responses

cannot account for our results.

Assuming hMM and dMM neurons correspond to positive and

negative prediction error neurons, why signal the two types of er-

rors in separate populations of neurons? In themidbrain dopami-

nergic system, positive and negative reward prediction errors

are thought to be encoded bidirectionally in individual neurons

via increases and decreases in firing rate (Schultz et al., 1997).

In the case of cortical L2/3 neurons, baseline firing rates are

probably too low to reliably signal with a decrease in firing rate.

Splitting negative and positive prediction error responses into

two separate populations of neurons alleviates this problem. In

addition, this could simplify learning, because the activity of pre-

diction error neurons could be used directly as an error signal to

drive plasticity (Hert€ag and Sprekeler, 2020).

How many spiking responses to mismatch would we expect,

assuming the predictive processing framework were a useful

model? A simple upper bound on this would be half of the predic-

tion error neuron population: half responds to positive prediction

errors, and the other half responds to negative prediction errors.

However, here we probed prediction errors by breaking the

coupling between forward locomotion and backward visual

flow, which represents only a small fraction of the total space of

visuomotor coupling a mouse will experience. V1 receives top-

down input that conveys predictions of visual input given locomo-

tion (Leinweber et al., 2017), spatial location (Fiser et al., 2016),

and visual surround (Keller et al., 2020). In addition, V1 receives in-

puts that convey vestibular signals (Vélez-Fort et al., 2018) and

auditory signals (Ibrahim et al., 2016; Iurilli et al., 2012). In principle,

all these top-down inputs could be associatedwith a population of

prediction error neurons selective for a particular type of error.We

previously found that L2/3 neurons responsive to the omission of a

visual input expected based on spatial location are different from

those that respond to the visuomotor mismatches we used here

(Fiser et al., 2016). Thus, there likely is some specificity in the cod-

ing of prediction errors. Although L5/6 neurons in our study did not

have the opposing influence of locomotion and visual flow input

necessary to compute prediction errors, it is possible that they

compute prediction errors in different dimensions, for example,

when integrating vestibular and visual signals. Furthermore, only

2 of 14 of our infragranular recordings were recorded at the layer

6 depth (>600 mm), and it is possible that in larger datasets,

distinct visuomotor integration characteristics may be observed

for layer 6 neurons.

Calcium imaging experiments show that 20%–30% of L2/3

neurons respond to mismatch (Attinger et al., 2017; Keller et al.,

2012)—a proportion larger than that estimated to respond to

one particular natural scene (3%) or one particular drifting grating

(12%) (Yoshida and Ohki, 2020). Not surprisingly, the subthresh-

old tuning formismatch is broader than the suprathreshold tuning.

However, only 10% of our L2/3 neurons show spiking responses

to mismatch. Potential causes of this smaller fraction of supra-

threshold responses could be internal solution dialysis, the higher

rate of mismatch presentation used during the whole-cell record-

ings, or intracellular calcium rises independent of spiking activity
1204 Neuron 108, 1194–1206, December 23, 2020
during calcium imaging. Although the cause of this discrepancy

is unclear, it does not alter our conclusions.

Altogether, we find L2/3 neurons with responses consistent

with signaling either positive or negative prediction errors, which

can be explained by opposing visual and locomotion-related in-

puts. This computation appears confined to L2/3 neurons. It is

conceivable that the two functional neuron types in L2/3 are

associated with different synaptic input distributions and

possibly gene expression profiles. Identifying molecular markers

for these different neuron types would allow us to test the hy-

potheses put forward in the predictive processing framework.
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Materials Availability
No new unique reagents or mouse lines were generated in this study.

Data and Code Availability
All data and analysis code are available online at https://data.fmi.ch/.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All animal procedures were approved by and carried out in accordance with guidelines of the Veterinary Department of the Canton

Basel-Stadt, Switzerland.

Subjects
32 experimentally naive C57BL/6J mice (RRID:IMSR_JAX:000664) were used in this study, procured from Charles River Laboratories.

Mice were a mixture of males and females and aged between 6 and 10 weeks of age at the time of electrophysiological recording.

METHOD DETAILS

Head implant surgery
Mice were anesthetized using a mix of fentanyl (0.05 mg/kg), medetomidine (0.5 mg/kg) and midazolam (5 mg/kg). Analgesics were

applied perioperatively. Lidocaine was injected locally on the scalp (10 mg/kg s.c.) prior to surgery, while metacam (5 mg/kg, s.c.),

and buprenorphine (0.1 mg/kg s.c.) were injected just after completion of the surgery. An incision was made in the skin above the cra-

nium and the periosteumwas completely removed from the skull. The surface of the skull was roughenedwith a dental drill. To optimize

stability of the brain for later recordings, a blunt tool was used to apply gentle force to one of the parietal skull plates just anterior to

bregma until small forces applied to either intra-parietal or parietal skull plates did not result in relative movement of the bones. In

this position, layers of tissue glue (Histoacryl, B.Braun, Germany) were used to fuse the skull plates along the sutures. Tissue glue

was then applied to the whole skull surface, and a custom-made titanium head-bar was glued to the skull. At this point, right V1

was marked 2.5 mm lateral to the midline, just anterior to the lambdoid suture. Dental cement was used to fix the head-bar in place

and build a recording chamber around V1. Anesthesia was then antagonized (Flumazenil, 0.5 mg/kg and Atipamezole, 2.5 mg/kg

i.p.), and the mouse was allowed to recover for 3 days. Buprenorphine or Metacam were provided as a general analgesia on the sub-

sequent 2 days.
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Whole cell recordings
Micropipettes (5 MU to 8 MU resistance) were fabricated using a PC-100 puller (Narishige, Tokyo, Japan) from 1.5 mm diameter fi-

lamented borosilicate glass (BF150-86-10, Sutter, California, USA). A small 1 mm craniotomy and durectomy were made over the

right primary visual cortex (spanning 2 mm to 3 mm lateral from the midline) under isoflurane anesthesia. To stabilize the brain,

the craniotomy was covered in a layer (0.5 mm to 1 mm) of 4% low-melting point agar (A9793, Sigma-Aldrich), dissolved in bath

recording solution. The recording chamber was submerged in bath recording solution (126 mM NaCl, 5 mM KCl, 10 mM HEPES,

2 mM MgSO4, 2 mM CaCl2, 12 mM glucose, brought to pH 7.4 using NaOH, with a final osmolarity 280 mOsm to 290 mOsm).

The mouse was allowed to recover from isoflurane anesthesia for at least 20 minutes head-fixed prior to recordings, which were

only attempted after themouse had displayed regular locomotion behavior.Whole cell recordingswere performed blindly by lowering

the micropipette, back-filled with intracellular recording solution (135 mM KMeSO3, 5 mM KCl, 0.1 mM EGTA, 10 mM HEPES, 4 mM

Mg-ATP, 0.5 mM Na2-GTP, 4 mM Na2-phosphocreatine, brought to pH 7.3-7.4 with KOH, with an osmolarity 284 mOsm to 288

mOsm), through the agar and 50 mm into the tissue with high pressure (> 500 mbar) applied to the micropipette. The micropipette

was visually targeted at the center of the craniotomy. Micropipette resistance wasmonitored in voltage clamp via observing the elec-

trode current while applying 15 mV square pulses at 20 Hz. Brain entry was detected by a step change in the current (Margrie et al.,

2002), and at this point the descent axis was zeroed. Once a depth of 50 mm from the surface was reached, pipette pressure was

lowered to 20 mbar and neuron hunting began. This consisted of advancing the electrode in 2 mm steps until a substantial and pro-

gressive increase in pipette resistance was observed for at least 3 consecutive steps. Pressure in the pipette was then rapidly low-

ered to 0mbar, and often a small negative pressure was applied to aid in forming a gigaohm seal. Once this was achieved, the pipette

was then carefully retracted by up to 4 mm, and break-in achieved using suction pulses. Electrophysiological properties were deter-

mined in the first 60 s of the recording using a series of current steps from�0.4 nA to 0.3 nA, and the evoking of action potentials was

used to confirm the neuronal nature of the cell. All recordings took place in current clampmode. Pipette capacitance and series resis-

tance were not compensated. Data were acquired and Bessel low-pass filtered below 4 kHz using a MultiClamp amplifier (Molecular

Devices, California USA) and digitized at 20 kHz via custom-written LabView software. Voltage values have not been corrected for the

junction potential between the internal solution and bath solution (�8.5 mV), owing to the difficulty of measuring junction potentials

accurately in vivo. Recordings were terminated if series resistance displayed a substantial increase, as monitored by 25 ms or 50 ms

current pulses between �0.1 nA and �0.25 nA applied at 1 Hz throughout the recording. Access resistance was estimated offline

from the voltage drop in the 1 ms after current step onset and ranged between 25 MU and 140 MU for included data (65 MU ± 27

MU, mean ± SD). For all data included the average membrane potential during stationary periods was more hyperpolarized than

�45 mV (on average �61 mV ± 7 mV, mean ± SD; 95% were more hyperpolarized than �55 mV), and spike amplitudes on average

were 47 mV ± 16 mV (mean ± SD).

Virtual reality
During all recordings, mice were head-fixed in a virtual reality system as described previously (Leinweber et al., 2014). Briefly, mice

were free to run on an air-supported polystyrene ball, the rotation of which was coupled to linear displacement in the virtual environ-

ment projected onto a toroidal screen surrounding the mouse. From the point of view of the mouse, the screen covered a visual field

of approximately 240 degrees horizontally and 100 degrees vertically. The virtual environment presented on the screen was a virtual

tunnel with walls consisting of continuous vertical sinusoidal gratings. Prior to the recording experiments, mice were trained in 1 h to

2 h sessions for 5 d to 7 d, until they displayed regular locomotion.

Visual stimuli
During the first segment of each recording, visual flow feedback was coupled to the mouse’s locomotion speed. At random intervals

averaging at 7 s, 1 s long halts in visual feedback were presented (referred to as ‘mismatch’ stimuli). After at least 3 minutes of this

protocol, the visual feedback was stopped (i.e., no visual flow coupled to locomotion speed), and instead 1 s full-field fixed-speed

visual flow stimuli were presented at random intervals (mean ± SD, 8.1 s ± 1.3 s), regardless of locomotion behavior. In a subset of

recordings (12 of 27), these stimuli all had one fixed visual flow speed, and in the remaining subset (15 of 27), four different visual flow

speeds were presented in a pseudorandom sequence.

QUANTIFICATION AND STATISTICAL ANALYSIS

All data analysis was performed using custom-written MATLAB (2019) (Mathworks) code.

Statistics
For each comparison, first a Lilliefors test was used to test for normality of the distribution. In the case of comparisons involving

normal distributions across more than one group (e.g., hMM, dMM and unclassified L2/3 neurons), first a one-way ANOVA was per-

formed. If the distribution was not normal, a one-way ANOVA on ranks was used instead. In the case of a significant result (p < 0.05),

either t tests or rank sum tests were used to determine which comparisons were significant (the latter test being used in cases of non-

normally distributed data or data comparisons where variance was unequal as determined by a Bartlett test). To test for significant

differences in variance in non-normally distributed samples, a Brown-Forsythe test was performed. Box and whisker plots are all
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drawn such that the box represents the inter-quartile range andmedian, and the whiskers represent the 10th and 90th percentiles. For

all correlations, a method of fitting robust to outliers was used (MATLAB function Fitlm) based on bisquare weighting of residuals.

Cell numbers:
In total, we recorded from 54 neurons from 32mice. Only one craniotomy was performed per mouse. Typically, only one (13mice), or

two neurons (13 mice) would be recorded per mouse, but in rarer cases three neurons (5 mice) would be recorded. Between record-

ings, mice would be re-exposed to fully coupled visuomotor experience for at least 10 minutes. Of the 54 neurons recorded, 6 neu-

rons were excluded as putative interneurons as they had an input resistance higher than 100MU. A subset of interneuron types (e.g.,

somatostatin-expressing neurons) have been described to have high input resistances (Gentet et al., 2012; Pala and Petersen, 2015).

Two neurons were excluded due to spike half-widths below 0.6 ms (putative parvalbumin-expressing neurons). Consistent with the

excluded neurons being interneurons, other electrophysiological features differed between these excluded neurons and the remain-

ing putative excitatory neurons, including higher baseline spike rates andmore depolarized resting membrane potentials (Figure S2).

32 of the remaining 46 putative excitatory neurons were recorded at a vertical depth of less than 400 mm below the cortical surface.

We refer to these as putative L2/3 neurons. Of these, 27 underwent both the visuomotor coupled and open-loop parts of the protocol,

and the remaining 5 underwent only the former part. Of the 27 neurons with both parts of the protocol, 15 were presented with visual

stimuli of four different speeds, while the remaining 12 were presented with only one visual flow speed. The neurons for which we do

not have data in the open-loop condition are represented as uniform gray on response heatmaps of visual flow and locomotion onset

response. 14 neurons were recorded at vertical depths greater than 480 mm,with amaximum depth of 723 mm (2/14 were recorded at

L6 depths of > 600 mm, so the dataset is likely dominated by L5 neurons). We refer to these as putative L5/6 neurons. Of these, 13

underwent both the visuomotor coupled and open-loop parts of the protocol, and the remaining 1 underwent only the former part. Of

the 13 neurons with both parts of the protocol, 12 were presented with four different visual flow stimuli of different speeds, and the

remaining 1 neuron was presented visual flow stimuli of one speed only. Note that neurons are included in each analysis depending

on availability of the relevant data.

Spike half-widths and subtraction
Spikes were detected from peaks exceeding �30 mV membrane potential. Spike half-width was measured as the duration of the

average spike waveform that exceeded half of the spike amplitude. For all average membrane potential response plots, spikes

were removed from membrane potential traces by replacing them with a linear interpolation from the membrane potential recorded

2 ms prior to spike peak, and that recorded 3 ms after spike peak. Voltage responses to the 25 ms or 50 ms duration current pulses

used to track access resistance were removed similarly, by replacing them with a linear interpolation from the time just before the

current pulse turned on to that 70 ms later.

Mismatch responses
Presentation of visual flow halts (mismatches) occurred independent of locomotion speed. As only halts during non-zero visual flow

speed would result in a change of the visual stimulus, mismatch events were defined as visual flow halts that occurred during an

average locomotion speed exceeding 4 cm/s in the 2 s prior to and after onset of mismatch stimulus. The average number of

mismatch presentations per neuron was 15 ± 9 (mean ± standard deviation). To calculate average Vm responses, spikes and current

pulses were removed as described above and the Vm was baseline-subtracted by the average membrane potential in a window 1 s

prior to mismatch for each trial. The mean of all resulting Vm traces was then taken to generate the average response. The average

response for each neuron was taken as themean Vm response during the entire 1 s of mismatch presentation. The significance of this

response was determined by performing a paired t test between the average Vm 1 s before mismatch and that in the 1 s during

mismatch. Mismatch responses were cross-validated in neurons with at least 10 mismatch trials by calculating mismatch responses

in odd and even trials separately (Figure S3A). Spiking responses were generated by taking the mean spike count in 250ms time bins

aligned to mismatch onset. To assess the signal to noise ratio of subthreshold mismatch responses, standard deviation of the base-

line membrane potential was calculated for each neuron from a distribution of sham-triggered changes in Vm (average Vm in 0-1 s

baseline subtracted for the average Vm in the 1 s prior to the sham-trigger) during locomotion(Figures S3C and S3D).

Correlation between mismatch responses and locomotion speed
To test the relationship between mismatch responses and locomotion speed, we averaged the locomotion speed 1 s prior to

mismatch onset and computed the correlation coefficient of this value with average mismatch response (averaged across the 1 s

of mismatch) across trials for each neuron. Only neurons with at least 7 valid mismatch trials, and a range of at least 10 cm/s in loco-

motion speed were included. To generate correlation coefficients less sensitive to outliers, a method of fitting robust to outliers was

used (MATLAB function Fitlm) based on bisquare weighting of residuals.

Electrophysiological properties and multiple linear regression analysis:
A series of current steps from�0.4 nA to 0.3 nA were applied to the neuron at least 3 times at the beginning of the recording to deter-

mine input resistance. In all cases, mice were stationary at the time of these current steps. The total resistance was calculated by

averaging the voltage response for each current step value and measuring the slope between the average response 25 ms to
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125 ms after current step onset against the injected current. This was done separately for negative and positive current injection, as

the former consistently showed a lower resistance than the latter (in part due to voltage sag during negative current injection). The

access resistance was estimated by taking the slope between the current injected and the voltage response in the first 1 ms. Input

resistance was calculated as the difference between total resistance and access resistance. Resting membrane potential was

defined as the intersection between zero current and the voltage axis. Note that resting membrane potential would often depolarize

by a few mV before stabilizing during the first 3 to 5 minutes of the recording, presumably as the intracellular solution diffuses

throughout the neuron. As such, membrane voltages read out at later time points (e.g., in Figure S5) are different to the initial resting

membrane potentials assessed just after break-in. The membrane time constant was estimated by finding the time at which the

voltage change fell below 1/e of the difference between 1 ms after current step (�0.1 nA) onset and steady state (estimated as

the voltage in the window 45 ms - 50 ms after the onset). Since many cells were silent during zero current injection, spike thresholds

were calculated for spikes evoked during the I-V curve (after offline removal of the voltage drop across the series resistance), all of

whichwere overshooting. For each spike, the spike threshold was determined as the voltage at the peak rate of change of the slope of

the spike waveform. The median of these spike thresholds was then taken as the measure of spike threshold for the neuron. Spike

thresholds measured in this way were similar to those measured in previous in vivo studies of L2/3 in primary visual cortex (�40mV ±

5 mV, mean ± SD) (Bennett et al., 2013; Polack et al., 2013).

In order to determine whether mismatch responses could be predicted from electrophysiological properties, we used a multiple

linear regression analysis including six physiological properties: spike threshold, initial resting membrane potential, input resistance,

spike rate prior to mismatch stimuli, variance in membrane potential during stationary epochs, and membrane time constant. For

each regression, we included 1 to 6 of these properties, in all possible combinations, and determined the variance in mismatch

response explained by each model. Since not all properties were measured for each neuron, including more properties in the regres-

sion leads to a reduction in sample size which could account for some of the increase in variance explained as more properties are

included. To assess this, we performed controls in which mismatch responses were randomly permuted with respect to the sets of

electrophysiological properties (10000 permutations per regression). The contribution of each variable to model performance was

assessed for all neurons where all data were available. The R2 of model subsets including a given electrophysiological property

were compared to the R2 of the same subsets missing the property. The average change in R2 was then averaged for all model sub-

sets, for each individual property. To assess the performance of the models on data not included in model generation, we used all

model subsets including 5 or 6 properties, and systematically generated the model excluding one of the 32 L2/3 neurons. We then

used the resulting model to predict the response of the left-out neuron and determined the correlation between predicted and actual

mismatch responses for the full dataset. This was then compared to 10000 models in which mismatch response was randomly

permuted with respect to electrophysiological properties.

Changes in membrane potential dynamics during locomotion
To measure membrane potential average and variance, as well as spiking activity during locomotion and stationary periods (Fig-

ure S5), only the data from the open-loop condition were used. The data were binned into 500ms time bins, and spike count, median

membrane potential and locomotion speed were calculated for each time bin. The locomotion speed trace was smoothed in a 1 s

time window prior to this calculation. For quantification of Vm during stationary periods, all Vm values corresponding to times

when the locomotion speed was below a threshold of 4 cm/s were pooled, and the mean and standard deviation of these values

were calculated for each neuron. The same was then done for locomotion periods where the locomotion speed exceeded the

4 cm/s threshold.

To determine the time of locomotion onsets, we detected points where the smoothed locomotion velocity crossed a threshold of

0.8 cm/s and exceeded 4 cm/s in the following 1 s. Average locomotion onset responses were then calculated for each neuron where

there were at least 2 locomotion onsets. These were baseline-subtracted by the average membrane potential in the 2.5 s prior to

locomotion onset for each trial before averaging all traces. Locomotion onset responses were taken for each neuron as the average

response 0 s to 6 s after locomotion onset.

Calculation of cross-correlations (Figures 5E, 5F, and S7):
Cross-correlations were calculated betweenmembrane potential and locomotion for the open-loop condition only. For this, the loco-

motion trace and visual flow trace recorded at 1 kHz were smoothed using a 500ms time window. Membrane potential was binned in

1 ms time windows. Times during which the mouse was stationary (locomotion < 4 cm/s), and times during which visual flow stimuli

were presented, as well as 1 s after the presentation, were excluded. We then computed the cross-correlation between locomotion

trace andmembrane potential in awindowof�2000ms to +2000ms. A similar procedurewas used for the cross-correlation between

membrane potential and visual flow, again excluding periods when themousewas stationary. For each neuron, the overall correlation

coefficient for the locomotion-Vm correlation was taken as the average cross-correlation for time delays between�500 and +500ms,

as this is where the cross-correlation averaged across the L2/3 and L5/6 samples combined peaked (Figure S7B). For each neuron,

the overall correlation coefficient for the visual flow-Vm correlation was taken as the average cross-correlation for time delays be-

tween �1000 and 0 ms, as this is where the cross-correlation averaged across the L2/3 and L5/6 samples combined peaked (Fig-

ure S7B). Only neurons with at least 25 s of locomotion in absence of visual flow were included in these analyses (n = 22 L2/3, n = 12

L5/6).
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To compare correlations for L5/6 and L2/3 datasets (Figure 7), we calculated an interaction angle for each neuron as the arcus

tangent of the ratio of the locomotion-Vm correlation and visual flow-Vm correlation. Polar histograms were then made for the L2/3

and L5/6 datasets separately (Figure 7B). The neuron counts for each angular bin were then correlated between L5/6 and L2/3 data-

sets, generating an R value of �0.1. To test if the resulting anticorrelation was significant, L5/6 and L2/3 interaction angles were

pooled, random subsets corresponding to the sample sizes of the L5/6 and L2/3 datasets were drawn, and the correlation coeffi-

cients between the shuffled sample distributions were obtained. An R value was then calculated for the correlation between the re-

sulting two polar histograms. This was repeated 10000 times to generate a distribution of correlation coefficients.

To determine how well the correlations for visual flow speed and locomotion speed predicted a neuron’s mismatch response (Fig-

ure 7C), we computed the correlation coefficient between the difference of the two correlation coefficients (R valuelocomotion - R val-

uevisual) and the mismatch responses, for L2/3 and L5/6 neurons separately. As a shuffle control, we then randomly permuted the

visual flow correlation and locomotion correlation values across neurons 100000 times to create a shuffle distribution.

Visual flow responses
Visual onsets were defined as the time the visual flow speed crossed a threshold of 0.8 cm/s. The membrane potential for each pre-

sentation was baseline subtracted by the average Vm in the 1 s prior to visual flow onset. The response was then averaged in the 1 s

window of visual flow across all trials, regardless of locomotion behavior. The significance of this response was determined for each

neuron by performing a paired t test between the average Vm 1 s before visual flow onset, and that in the 1 s during visual flow for all

included trials. For the subset of neurons which were shown four different visual flow speeds, responses were averaged regardless of

visual flow speed. To determine the effect of locomotion on visual flow responses (Figures S4A–S4D), visual flow presentations were

separated according to locomotion speed: locomotion trials were defined as trials in which the average locomotion speed in the 1 s

prior to and 1 s during visual flowboth exceeded 4 cm/s. Stationary trials were defined as trials in which the locomotion speed in these

two epochs both were less than 4 cm/s. For correlations between visual flow speed and visual response (Figures 4F and 4G), only

trials in which the mouse was locomoting above 4 cm/s were included, and the correlation coefficient between the visual flow speed

and membrane potential response across trials was generated for each neuron.

Correlation between visual flow response and mismatch response
For the correlation between mismatch response and visual response across neurons (Figure 4E), we first calculated the correlation

between the mismatch response (as averaged across the 1 s of mismatch) versus the visual response (as averaged across the 1 s of

visual response). To account for any response to visual flow offset, we computed the visual offset response as the averagemembrane

potential response in the 1 s after visual flow offset, baseline subtracted using the averagemembrane potential in the 1 s prior to visual

flow onset. This visual flow offset response was then subtracted from the mismatch response, and the correlation was calculated

between the resulting values and the visual flow response.

Pupil movements
Mismatch induced eye movements were quantified in 20 mice not used in the whole cell recordings experiments (Figure S1). Eye

position and pupil dimeter were recorded in response to visuomotor mismatches. Wemeasured pupil diameter for all mismatch trials

and z scored the data for each trial. For each mouse, these z scored data were then averaged to quantify the average mismatch

induced pupil diameter response. This was repeated for sham trials using random triggers. We quantified mismatch induced eye

movements by comparing the x and y pupil positions in the 1 s before to that in the 1 s during mismatch.
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Cell group Inclusion criteria Sample sizes 

L2/3 putative  
excitatory 
neurons 

Spike half-width > 0.6 ms, Rinput < 100 MΩ,  
vertical depth < 400 µm 

total: 32 
(dMM: 17, hMM: 6, 

unclassified: 9) 

L5/6 putative  
excitatory 
neurons 

Spike half-width > 0.6 ms, Rinput < 100 MΩ,  
vertical depth > 480 µm 

total: 14 

Figure panels   

2B, 2D, 6E, 6F, 
S6A, S6B, S3C, 

S3D, S5D 
3A (middle and 

bottom plot) 

No inclusion criteria applied L2/3: 32 (dMM: 17, hMM: 6, 
unclassified: 9) 

L5/6: 14 

2G, S3H, S6D # Mismatch trials ≥ 7, range of pre-mismatch 
locomotion speed > 10 cm/s 

L2/3: 27 (dMM: 15, hMM: 5, 
unclassified: 7)  

L5/6: 10 

3A (top boxplot), 
S3B 

Voltage offset recorded from amplifier  
(this was accidentally omitted in some cases due 

to human error) 

L2/3: 25 (dMM: 13, hMM: 5, 
unclassified: 8) 

4D, 4E, 6H, 6I, 
S6E, S4H 

Open-loop protocol presented during recording L2/3: 27 (dMM: 14, hMM: 5, 
unclassified: 8) 

L5/6: 13 

4G Open-loop protocol presented during recording 
with 4 different visual flow speeds 

L2/3: 15 (dMM: 6, hMM: 4, 
unclassified: 5) 

5D, 6K, 6L, S6F At least two locomotion onsets in open-loop 
condition 

L2/3: 22 (dMM: 10, hMM: 4, 
unclassified: 8) 

L5/6: 13 

5E, 5F, 7A, 7B, 7C At least 25 s of locomotion datapoints in open-
loop condition 

L2/3: 22 (dMM: 12, hMM: 5, 
unclassified: 5) 

L5/6: 12 

S3A At least 10 mismatch trials L2/3: 22 

S4B, S4C, S4D At least 5 visual stimuli presented during both 
locomotion and stationary epochs 

L2/3: 14 (dMM: 6, hMM: 4, 
unclassified: 4) 

L5/6: 11 

S4F, S4G Open-loop protocol presented, and voltage offset 
recorded from amplifier 

L2/3: 25 

 

Table S1. Inclusion criteria and sample sizes for various cell groups and analyses. Related to STAR 
Methods. 

 

  



 

Figure S1. Mismatch evokes pupil dilation but not eye movements. Related to Figure 1. 

(A) Average pupil diameter changes during mismatch (orange) across 20 mice (separate from mice used 
for electrophysiology). Gray dashed plot shows the same for sham triggers. Shading shows SEM.  

(B) Histogram of magnitudes of changes in eye position during mismatch (orange) and sham triggers (gray) 
averaged across 20 mice. Shading shows SD. Inset shows example pupil x position trace, with orange 
shading indicating 1 s mismatch stimuli. 

(C) Two-dimensional histogram of changes in eye position during mismatch trials (top) and sham triggers 
(bottom) across 1000 trials and 4500 trials, respectively, across 20 mice. 

(D) Histogram of eye position changes in the temporonasal axis (top) and dorsoventral axis (bottom) 
across 1000 mismatch trials (orange) and 4500 sham trigger trials (dashed gray) from 20 mice. 



 

Figure S2. Exclusion of putative interneurons and correlations between mismatch responses and 
locomotion speed. Related to Figure 1.  

(A) Distribution of input resistance (top) and spike half-width (bottom) of the entire dataset, regardless of 
recording depth. Marked in red are neurons we excluded as potential interneurons, either based on input 
resistance > 100 MΩ or a spike half-width < 0.6 ms. Neurons excluded using each criterion did not overlap. 
Excluded neurons showed other electrophysiological properties that differed from the remaining dataset 
and were consistent with interneuron properties (see B and C). 

(B) Comparison of baseline firing rate (during stationary periods) for putative excitatory neurons (pPyr) 
versus the excluded putative interneurons (pIN). Baseline firing rates for putative interneurons were 
significantly more variable (p < 10-3, Brown-Forsythe test), and significantly higher than in putative 
excitatory neurons (p < 0.03, Wilcoxon rank-sum test). 

(C) As in B, but for initial resting membrane potentials recorded just after entry into whole cell mode. 
Membrane potentials in putative interneurons were significantly less variable (p < 0.05, Bartlett test), and 
significantly more depolarized than for putative excitatory neurons (p < 10-3, Wilcoxon rank-sum test). 



  

 

Figure S3. Additional data for mismatch responses in L2/3 neurons. Related to Figure 2. 

(A) Cross-validation plots for mismatch responses. Left: Heatmaps show average mismatch response for 
each neuron calculated from non-overlapping subsets of mismatch trials. Neurons are sorted in both 
heatmaps according to average response to mismatch in the left heatmap. Right: scatter plot between 
average mismatch response in one trial subset versus average mismatch response in the remaining 
trials. Only neurons with at least 10 mismatch trials were included in this analysis. 

(B) Average pre-stimulus membrane potential for the three mismatch response categories (dMM, hMM 
and unclassified). The pre-stimulus membrane potential is not different for the three groups of neurons 
and cannot account for the differences in mismatch responses. One-way ANOVA, p = 0.60. 



(C) Absolute mean mismatch response (averaged over all trials and the entire 1 s window of mismatch 
presentation) plotted against the standard deviation (SD) of the baseline membrane potential (calculated 
from sham-triggered 1 s average Vm changes during locomotion – see STAR methods). Points are colored 
by the mismatch response of the neuron (scale bar as in G).  

(D) Percent of trials showing an average absolute mismatch response exceeding 2 standard deviations of 
the baseline membrane potential (calculated from sham-triggered 1 s average Vm changes during 
locomotion – see STAR methods), plotted against absolute mismatch response. Points are colored by the 
mismatch response of the neuron according to the scale bar in C. 

(E) Example average mismatch responses from pairs of neurons recorded from the same mouse. In grey 
bold italics indicates mean pre-stimulus voltage (unavailable for mouse 3 as amplifier offset was not 
recorded). Note: U.C. stands for unclassified. 

(F) Left: Heatmap showing average mismatch response for all pairs of L2/3 neurons recorded in the same 
mouse. Asterisks indicate where type of response to mismatch (dMM, hMM, or unclassified) is matching 
between the two pairs. Left: as for the right heatmap, but for a random subset of pseudopairs recorded 
in two different mice. 

(G) Histogram of the fraction of matching mismatch response types for 10,000 random subsets of 12 
neurons recorded in different mice. Red dashed line indicates the fraction of matches for neuronal pairs 
recorded from the same craniotomy. 18% of pseudopairs recorded from different mice had fractions of 
matches equal to or more than that for the pairs recorded from the same mouse. 

(H) Scatter plot between the correlation coefficient for the relationship between mismatch response and 
locomotion speed (as in Figure 2G), and average mismatch response. Points are colored according to 
mismatch response category (dMM: orange, hMM: turquoise, unclassified: gray). 

  



 

 

Figure S4. Additional data for visual flow responses in L2/3 neurons. Related to Figure 4. 

(A) Heatmaps of subthreshold visual flow responses of L2/3 neurons sorted by mismatch response (as in 
Figure 2A), during locomotion (left), or during stationary periods (right). Gray marks neurons for which 
we did not have at least five visual flow presentations in that condition. Orange shading indicates dMM 
neurons and turquoise shading indicates hMM neurons. 

(B) Average visual flow response of 14 L2/3 neurons (top) and 11 L5/6 neurons (bottom) during 
locomotion (purple) and stationary periods (black). Shading shows SEM. Only neurons with at least five 
trials in each category were included. Average pre-visual stimulus voltages: L2/3, stationary: -63 ± 5 mV; 
L2/3, locomoting: -62 ± 8 mV; L5/6, stationary: -65 ± 8 mV; L5.6, locomoting: -60 ± 8 mV;  



(C) Scatter plot of visual flow responses during stationary periods and visual flow responses during 
locomotion periods for all neurons with at least five trials in each category. Note: In legend, UC = 
unclassified. 

(D) Change in visual flow response between locomotion and stationary periods for L2/3 neurons and 
L5/6 neurons. L2/3 neurons showed significantly more positive responses during locomotion compared 
to stationary periods (p < 0.02, paired Student’s t-test). L5/6 neurons did not show this effect (p = 0.45, 
paired Student’s t-test). Changes were higher for L2/3 neurons versus L5/6 neurons (p < 0.02, Student’s 
t-test). 

(E) Top: Heatmap of firing rates of neurons during visual flow stimuli, sorted by mismatch response (as in 
Figure 2A). Gray marks neurons for which we did not have at least five visual flow presentations. Orange 
shading indicates dMM neurons and turquoise shading indicates hMM neurons. Bottom: Average 
response across 14 dMM neurons (orange), 5 hMM neurons (turquoise), and the remaining 8 neurons 
(gray). 

(F) Heatmap of visual flow responses, sorted according to average visual flow response (most 
depolarizing at the top), across 27 L2/3 neurons. Responses are not normalized according to baseline 
membrane potential. 

(G) Box plot to compare average pre-stimulus membrane potential for neurons which depolarized (> 1 
mV visual flow response, red), hyperpolarized (< -1 mV visual flow response, blue), and remaining 
neurons (gray). One-way ANOVA, p = 0.12. 

(H) Percent of trials showing an average absolute visual flow response exceeding 2 standard deviations 
of the baseline membrane potential (calculated from sham-triggered 1 s changes in Vm during both 
locomotion and stationary periods), plotted against absolute visual flow response. Points are colored by 
the visual flow response of the neuron.  



 

Figure S5. Membrane potential dynamics and firing rate changes between stationary periods and 
locomotion in open-loop condition. Related to Figure 5. 

(A) Mean membrane potential (Vm) during stationary periods versus that during locomotion. All neurons 
showed depolarization of membrane potential during locomotion. Note: In legend, UC = unclassified. 
Locomotion induces significant depolarization: mean ± SD, ΔVm= 4.5 ± 2.5 mV, p < 10-10, 39 neurons, paired 
Student’s t-test. 

(B) As in A, but for the standard deviation (SD) in membrane potential. Locomotion induces significant 
reduction in standard deviation: mean ± SD, ΔVm SD = -1.8 ± 1.5 mV, p < 10-8, paired Student’s t-test. 

(C) As in A, but for firing rates (FR). Right plot shows an expanded version of the left. Change in firing rates 
during locomotion: mean ± SD, ΔFR = 0.11 ± 0.62 Hz, p = 0.28, paired Student’s t-test. 



(D) Scatter plot of mismatch response versus Vm change during locomotion in closed-loop relative to 
stationary periods for 32 L2/3 neurons. Points are colored according to mismatch response category 
(dMM: orange, hMM: turquoise, unclassified: gray). Boxplots above compared data for dMM, hMM and 
unclassified neurons. One-way ANOVA: p = 0.51, F-statistic = 0.7. 

(E) Scatter plot of mismatch response versus the difference between locomotion-induced Vm change 
(relative to stationary periods) in closed-loop vs open-loop epochs. Positive values indicate more 
depolarization during locomotion in closed-loop (where visual flow is coupled to locomotion) compared 
to open-loop. Points are colored according to mismatch response category (dMM: orange, hMM: 
turquoise, unclassified: gray). Boxplots above compared data for dMM, hMM and unclassified neurons. 
One-way ANOVA: p < 0.02; F-statistic = 5.4; dMM vs hMM: p < 0.02, dMM vs unclassified: p < 0.02, hMM 
vs unclassified: p = 0.72, Student’s t-test.  

  



 

  

Figure S6. Comparison of properties between putative L5/6 and L2/3 excitatory neurons. Related to 
Figure 6.  

(A) Input resistance was significantly higher in L5/6 neurons than in L2/3 neurons (p < 0.001, Student’s t-
test).  

(B) Baseline firing rate was significantly higher in L5/6 neurons than in L2/3 neurons (p < 0.02, Wilcoxon 
rank-sum test). 

(C) Heatmap of average spike counts aligned to mismatch events for L5/6 neurons. Heatmap is sorted 
according to subthreshold mismatch responses, as in Figure 6. Orange shading indicates dMM neurons, 
and turquoise shading indicates hMM neurons. 

(D) Histogram of Pearson’s correlation coefficients between locomotion speed and mismatch response 
for L5/6 neurons. In dark gray are counts of neurons with a significant correlation (p < 0.05). 

(E) Scatter plot between average visual response and average mismatch response (gray triangles) for 13 
L5/6 neurons. For red data points, visual flow offset responses were subtracted from the mismatch 
responses. Dashed gray and red lines are linear fits to the respective data.  

(F) Scatter plot between average locomotion onset response (0 s to 6 s after locomotion onset) and 
mismatch response for 13 L5/6 neurons  

  



 

Figure S7. Additional data for cross-correlations between visual flow, locomotion and membrane 
potential. Related to Figure 7. 

(A) Top: Average autocorrelation for locomotion speed (left) and visual flow speed (right). Shading 
indicates SEM over neurons. Bottom: Heatmaps show cross-correlations for each L2/3 neuron between 
locomotion speed sand membrane potential (left), and visual flow speed and membrane potential (right). 
Heatmaps are sorted by mismatch response as in Figure 2A. All analyses excluded stationary periods. 
Note: for all panels, negative time values indicate a lag of Vm relative to locomotion/visual flow speed.  

(B) Average R2 for all cross-correlations (L5/6 and L2/3 pooled, n = 34) for locomotion speed and Vm (top), 
and visual flow speed and Vm (bottom). Red dashed lines indicate 1 s window used to calculate the average 
correlation for each neuron (as plotted in Figure 7) – approximately centered around the peak R2 for 
locomotion and visual flow separately. 

(C) As in A, but for L5/6 neurons. 

(D) Average cross-correlations between locomotion speed (black) or visual flow speed (gray) and 
membrane potential for the 7 L5/6 neurons which hyperpolarize during mismatch (hMM), and the 
remaining 5 neurons (‘other’, including 2 depolarizing neurons).  
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