1 2 3

4

5

6

7

8

Genome-wide association study of sepsis-associated acute respiratory distress syndrome in individuals of European ancestry

Beatriz Guillen-Guio, Jose M. Lorenzo-Salazar, Shwu-Fan Ma, Pei-Chi Hou, Tamara Hernandez-Beeftink, Almudena Corrales, M. Isabel García-Laorden, Jonathan Jou, Elena Espinosa, Arturo Muriel, David Domínguez, Leonardo Lorente, María M. Martín, Carlos Rodríguez-Gallego, Jordi Solé-Violán, Alfonso Ambrós, Demetrio Carriedo, Jesús Blanco, José M. Añón, John P. Reilly, Tiffanie K. Jones, Caroline A.G. Ittner, Rui Feng, Franziska Schöneweck, Michael Kiehntopf, Imre Noth, Markus Scholz, Frank M. Brunkhorst, André Scherag, Nuala J. Meyer, Jesús Villar, and Carlos Flores.

- 9 10
- 11

12 Appendix

13

14 The GEN-SEP cohort

15 GEN-SEP is a national, multicenter, observational study conducted in a Spanish network of 11 intensive care units (ICUs) between 2,002 and 2,017. The list of Spanish hospitals involved in this study are: Hospital 16 17 Universitario de Canarias, Tenerife; Hospital Universitario NS de Candelaria, Tenerife; Hospital 18 Universitario Río Hortega, Valladolid; Hospital Universitario Dr. Negrin, Gran Canaria; Hospital General 19 de Ciudad Real, Ciudad Real; Complejo Hospitalario Universitario de León, León; Hospital Virgen de la 20 Luz, Cuenca; Complejo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela; 21 Fundació Althaia-Manresa, Barcelona; Hospital Clinic, Barcelona; and Hospital Clínico de Valladolid 22 Valladolid.

A total of 672 patients with sepsis¹ were included in this stage and diagnosed with ARDS based on Berlin
 definition criteria:² 1) acute onset with PaO2/FiO2 <300 mmHg, 2) bilateral pulmonary infiltrates on frontal
 chest radiograph, 3) use of invasive mechanical ventilation, and 4) no evidence of cardiac failure. Controls
 were those sepsis patients that did not develop ARDS during their ICU stay.

Four ml of peripheral blood were withdrawn at the time of inclusion into the study and stored at -20°C until
use. DNA was extracted using the Illustra[™] blood genomicPrep Mini Spin Kit (GE Healthcare), quantified
with a Qubit 3.0 fluorometer (Thermo Fisher Scientific), and stored at -20°C until use. Samples with a low
concentration of DNA (<10 ng/µl) were cleaned and concentrated using the RealClean & concentrator

31 microspin kit (Real Laboratory).

32

33 Genotyping and quality control in discovery and replication stages

34 For the discovery stage, a total of 587,352 SNPs were genotyped in the National Genotyping Centre 35 (CeGen) using the Axiom Genome-Wide Human CEU 1 Array (Affymetrix). Variant calling was performed in a single batch for all samples using AffyPipe³ following the authors' recommendations to fine 36 tune the filtering of low quality SNPs and samples. PLINK v1.90⁴ and R 3.3.2⁵ tools were used to conduct 37 38 quality controls. Samples with missing clinical information, genotype call rates < 95%, sex mismatches 39 between genotypes and the clinical data, samples with high degree of kinship (PIHAT>0.2), and 40 heterozygosity outliers were removed. Variants with low minor allele frequency (MAF<0.01), genotype 41 call rates (CR) < 95%, or deviated from Hardy Weinberg equilibrium expectations (HWE, $p < 1.0 \times 10^{-6}$) 42 were excluded. Additionally, a Principal Component (PC) analysis (PCA) was conducted to reduce the 43 effects of population stratification in the analysis. For this purpose, we removed SNPs located at known 44 regions that are in long-distance linkage disequilibrium (LD). We then pruned SNPs in high LD using the 45 function "indep-pairwise" of PLINK, setting a r² of 0.15 to keep approximately 100,000 independent 46 variants. After excluding eight ancestry outliers, the two first PCs for the discovery sample were plotted overlaid with the HapMap3 populations.⁶ The PCA evidenced the similarity between the GEN-SEP samples 47 48 included in the discovery stage and the European population from HapMap (Supplementary Figure 1).

In the MESSI study, SNPs were genotyped using the Affymetrix Axiom TxArray v.1 (Affymetrix). As described elsewhere,⁷ variants were filtered if they were located on sex chromosomes, had a MAF<5%, had a missing genotype rate of >10%, or if deviated from HWE (p<1·0x10⁻³). In the SepNet study, HumanOmniExpressExome arrays (Illumina, Inc.) were used for variant genotyping. As described elsewhere,⁸ individuals with sex mismatches, missing sex records, CR<98%, implausible heterozygosity

54 (<20% and >26%), and ancestry outliers based on the PCA were removed. Variants with CR \leq 95%, MAF<1%, or deviated from HWE (p<1.0x10⁻⁶) were also excluded.

56

57 Statistical analyses for discovery stage

For variant imputation, phasing was conducted with SHAPEIT v2.r7909 and the Haplotype Reference 58 59 Consortium (HRC) version r.1.1 data were used as the reference panel¹⁰ on the Michigan Imputation 60 Server¹¹. Logistic regression models assuming an additive inheritance were carried out using EPACTS v3.2.6¹² based on the Wald test. We included sex, age, and the Acute Physiology and Chronic Health 61 Evaluation II (APACHE II) score as covariates. For the variants in the X chromosome, variant imputation 62 and association tests were conducted separately in males and females, and results were subsequently meta-63 analysed with METASOFT v2.0.1¹³. Fixed-effects or Han and Eskin's Random Effects models were used 64 65 depending on the significance of the Cochran's O statistic. Variants with low allele frequency (MAF<1%) 66 or with a low imputation quality (Rsq<0.3) were excluded from the analysis. The genomic inflation factor (λ) of the results was calculated with the GenABEL package v1.8-0.¹⁴ 67

68 GCTA-COJO 1.26.0¹⁵ was used for conditional regression analyses to identify independent loci taking into 69 account the underlying LD structure in the study sample. Independent variants showing a $p < 5.0 \times 10^{-5}$ were 70 followed up in the replication stage. Regional association plots were generated using LocusZoom¹⁶ based 71 on LD information of European populations from the 1000 Genomes Project (1KGP)¹⁷ and gene 72 information from the UCSC browser data.

73

74 Statistical analyses for replication stage

Pre-phasing and variant imputation in MESSI were conducted with MACH v1.0,18 using the European 75 76 population from 1KGP Phase 1 v2 as the reference panel. Logistic regression models were performed assuming additive inheritance using R 3.3.2 stats package (glm function, binomial distribution),⁵ 77 78 considering the first two PCs, age, and sex as covariates. All the investigated variants in MESSI had a MAF 79 >1% and Rsq >0.3. As described elsewhere,⁸ for the SepNet study SHAPEIT v2.r790⁹ was utilized for pre-80 phasing, and IMPUTE2 v2.3.1¹⁹ was used for variant imputation considering the 1KGP Phase 1 v3 data as the reference panel. Logistic regressions were performed with SNPTEST v2.5,¹⁹ which included the first 81 82 three PCs, sex, age, and APACHE II as covariates. All the assessed variants in SepNet had MAF >1%, no 83 evidence for deviations from HWE ($p>1.0x10^{-10}$) and an INFO Score >0.8. To combine the results from MESSI and SepNet, a meta-analysis was assessed using METASOFT v2.0.1.13 84

85

86 Meta-analysis of discovery and replication stages

A meta-analysis across discovery and replication stages was performed with METASOFT v2.0.1¹³ to estimate the overall effect size of the SNPs reaching nominal significance in replication stage. Fixed-effects or Han and Eskin's Random-effects models were used based on the Cochran's Q test significance. Genome-wide significance was declared with a meta-analysed significance of p<9.26x10⁻⁸ according to the most recent empirical estimations in European populations.²⁰ The same approximation was used for the sensitivity analysis of the association of the sentinel variant.

93

94 Statistical power

95 Statistical power was estimated using the Genetic Association Study (GAS) Power Calculator.²¹ We 96 assumed a multiplicative model, a GWAS with a sample size of 630 cases and 1,302 controls, a relative 97 risk of 1.5 and a prevalence of 0.1, the study had 80.4% statistical power for detecting associated variants 98 with MAF of 0.30 or greater at significance level of $p < 9.26 \times 10^{-8}$.

- 99
- 100
- 101
- 102

103 FLT1 and VEGFA gene expression and functional annotation of genetic variants

104 Total RNAs from nine lung biopsies of healthy individuals obtained from the Gift of Hope Network 105 Regional Organ Bank of II (GOH/ROBI) were isolated and subjected to RNA-sequencing. Expression 106 levels of FLT1 and VEGFA were expressed in counts per million (Shwu-Fan Ma and Imre Noth, personal communication). Additionally, the ExAtlas tool²² was used to explore public gene expression data available 107 108 (GSE32707) from a peripheral blood transcriptomics analysis in 88 critically-ill adult patients that were 109 evaluated for sepsis and ARDS.²³ For this analysis we used ANOVA followed by pairwise Student's t-tests 110 to assess the differences in average intensities of the array probe targeting FLT1 (ILMN 1752307, which 111 targets exon 30, that is found in the canonical isoform FLT1-201) and VEGFA (ILMN 2375879, 112 ILMN_1693060, and ILMN_1803882) between ICU controls (n=34), systemic inflammatory response 113 syndrome (SIRS, n=21), sepsis (n=30), and sepsis-associated ARDS patients (n=18) at study inclusion. We 114 report uncorrected two-sided p-values.

Next, we used a combination of tools and datasets to evaluate the regulatory potential of the associated variants in gene expression (through epigenetic mechanisms, long-distance physical interactions, and tissue-specific cis-eQTLs), and the likelihood of deleteriousness. These included Capture Hi-C Plotter (CHiCP),²⁴ DeepSea,²⁵ DSNetwork,²⁶ GTEx Analysis Release V7,²⁷ HaploReg v4.1,²⁸ Open Targets Genetics,²⁹ RegulomeDB,³⁰ SNPdelScore,³¹ TIVAN,³² and Variant Effect Predictor (VEP).³³

120 CHiCP allows for the determination of empirically-observed physical interactions between distal DNA 121 regulatory elements and gene promoters in multiple tissues. DeepSea predicts the epigenetics state of a 122 sequence and prioritize regulatory variants by calculating functional significance scores, while DSNetwork 123 allows for the selection of the most probable functional SNP from a list of variants according to nearly sixty 124 prediction approaches. The GTEx Portal allows for the study of Single-Tissue expression quantitative trait 125 loci (eQTL) and tissue-specific gene expression and regulation. HaploReg, Open Targets Genetics, and 126 RegulomeDB explore annotations of coding and non-coding variants integrating data from chromatin 127 states, regulatory motifs, eQTLs, pQTLs, DNase I hypersensitive sites, enhancer-transcription start sites, 128 and promoter capture Hi-C experiments from different cell lines. Open Targets Genetics puts functional 129 information in the context of the UK Biobank association evidence, allowing one to link each variant to its 130 proximal and distal target gene(s), using a single evidence score. SNPdelScore combines different methods 131 to address deleterious effects of noncoding variants, including the CellulAr dePendent dEactivating (CAPE) 132 mutations predictor. Finally, TIVAN allows for the prediction of tissue-specific cis-eQTL single nucleotide 133 variants, and VEP determines the effect of the variants analysed on genes, transcripts, protein sequence, 134 and regulatory regions.

135

136 Constructs, transient transfections, and dual-luciferase reporter assays

137 A Dual-Luciferase Reporter Assay System® (Promega, Madison, WI) was used to evaluate the potential 138 regulatory effect of the ARDS-associated variant on promoter activity. The reporter construct was generated 139 by synthesizing (GenScript Inc, Piscataway, NJ) a fragment of 1,032 bp of the FLT1 promoter (Ensembl 140 ID: ENSR00000060438) plus 284 bp of the 5' UTR of exon one and 784 bp of the upstream sequence 141 (chr13: 29,068,982-29,070,013; GRCh37/hg19 coordinates), and inserting it into a promoterless pGL4.10 [luc2] luciferase reporter vector (Promega). This FLT1 promoter region was chosen for having the highest 142 activity in vitro in a previous characterization of the gene promoter.³⁴ In addition, two regulatory constructs 143 144 were generated by synthesizing (GenScript Inc, Piscataway, NJ) a 1.9 kb intron 10 fragment containing 145 either the reference or alternative alleles of the most significantly associated variant within FLT1 and its 146 perfect LD proxies (i.e. rs9508032, rs9508034, rs722503, rs8002446, rs9513111, r²=1.0) in Europeans 147 (chr13: 28,995,800-28,997,700; GRCh37/hg19 coordinates) and inserting them into the reporter construct.

148 The constructed plasmids (50 ng DNA each) and the control plasmid pGL4.74 [hRluc/TK] (10 ng DNA) 149 were transiently co-transfected into human lung epithelial (A549) or peripheral blood monocyte (THP-1) 150 cell lines using the TransIT®-LT1 Transfection Reagent (Mirus Bio LLC, Madison, WI) following 151 manufacturer's protocol. A549 and THP-1 cells were separately grown in 10% DMEM or 10% RPM 1640 152 media, respectively, and were plated into white 96-well plates until confluency. Twenty-four hours after 153 transfection, cells were collected and luminescence was measured by Dual-Luciferase Reporter Assay 154 System according to manufacturer's instructions using a Cytation5 plate reader (BioTek, Winooski, VT). 155 Luminescence experiments were performed four to eight times, with each transfection in triplicate. 156 Following manufacturer's instructions,³⁵ to reduce variability, simplify comparisons and improve significance, promoter activities were expressed as the relative response ratio of *Firefly* luciferase/Renilla 157 158 luciferase luminescence according to the formula:

- 159
- 160
- $Relative \ response \ ratio = \frac{(experimental \ sample \ ratio) (negative \ control \ ratio)}{(positive \ control \ ratio) (negative \ control \ ratio)}$
- 161

We considered the construct including only the *FLT1* promoter as the positive control and the promoterless construct as the negative control (see figure 4A). Mean differences among the independent experimental groups were assessed by non-parametric Wilcoxon signed-rank test. Again, we report uncorrected twosided *p*-values.

166

167 Literature mining of previously reported ARDS-associated genes

168 In order to evaluate genes that were previously associated with ARDS, we conducted a bibliographic search 169 on PubMed for all studies reporting genes which were significantly associated with ARDS from December 170 2015 to November 2018. This updated result was merged with a list of all published studies we collected up to December 2015 available elsewhere.^{36–38} For that search, we used combinations of the terms "acute 171 172 respiratory distress syndrome", "ARDS" OR "acute lung injury" with "polymorphism" OR "genetic 173 variant" and retrieved seven publications reporting five additional candidate ARDS genes in adults. 174 Association results in the discovery stage were extracted and an effective number of independent signals 175 per gene was measured using the Genetic Type I Error Calculator³⁹ in order to adjust for multiple testing. Significant association was declared if any of the individual variants surpassed one of two Bonferroni-176 177 corrected significant levels. We considered a study-wise adjustment accounting for all the independent tests 178 across all genes, and a gene-wise adjustment just accounting - i.e. adjusting for the independent variants 179 mapping at individual genes.

180

181 Evaluation of *FLT1* variants in a trauma-associated ARDS cohort

182 We evaluated if the *FLT1* sentinel variant and perfect proxies also associated with non-sepsis ARDS. For 183 that, we accessed the table S2 of the only GWAS of trauma-associated ARDS published to date,⁴⁰ 184 containing publicly available (but incomplete) summary data. We found that none of the *FLT1* variants that 185 achieved genome-wide significance in sepsis-associated ARDS were present in that study because of the 186 reference panel used for variant imputation. Despite this, it was reassuring to find that out of 13 *FLT1* SNPs 187 listed (all within a region of 31 kb and showing nominally significant associations with ARDS after trauma), 188 six were also located in intron 10 (*p*-values in the range of $9 \cdot 15 \times 10^{-4}$ to $2 \cdot 44 \times 10^{-3}$). However, their LD with

- 189 the sentinel variant of our study was weak in Europeans ($r^2=0.13$).
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203

204	Refer	ences
205		
206 207	1	Singer M, Deutschman CS, Seymour CW, <i>et al.</i> The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). <i>JAMA</i> 2016; 315 : 801–10.
208 209	2	ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, <i>et al.</i> Acute respiratory distress syndrome: the Berlin Definition. <i>JAMA</i> 2012; 307 : 2526–33.
210 211	3	Nicolazzi EL, Iamartino D, Williams JL. AffyPipe: an open-source pipeline for Affymetrix Axiom genotyping workflow. <i>Bioinformatics</i> 2014; 30 : 3118–9.
212 213	4	Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. <i>Gigascience</i> 2015; 4 : 7.
214 215	5	R Core Team. R: A language and environment for statistical computing. <i>R Found Stat Comput Vienna, Austria</i> 2013. http://www.r-project.org/. Accessed September 2017.
216 217	6	International HapMap 3 Consortium, Altshuler DM, Gibbs RA, <i>et al.</i> Integrating common and rare genetic variation in diverse human populations. <i>Nature</i> 2010; 467 : 52–8.
218 219 220	7	Reilly JP, Wang F, Jones TK, <i>et al.</i> Plasma angiopoietin-2 as a potential causal marker in sepsis- associated ARDS development: evidence from Mendelian randomization and mediation analysis. <i>Intensive Care Med</i> 2018; 44 : 1849–58.
221 222	8	Scherag A, Schöneweck F, Kesselmeier M, <i>et al.</i> Genetic Factors of the Disease Course after Sepsis: A Genome-Wide Study for 28Day Mortality. <i>EBioMedicine</i> 2016; 12 : 239–46.
223 224	9	Delaneau O, Howie B, Cox AJ, Zagury J-F, Marchini J. Haplotype estimation using sequencing reads. <i>Am J Hum Genet</i> 2013; 93 : 687–96.
225 226	10	McCarthy S, Das S, Kretzschmar W, <i>et al.</i> A reference panel of 64,976 haplotypes for genotype imputation. <i>Nat Genet</i> 2016; 48 : 1279–83.
227 228	11	Das S, Forer L, Schönherr S, <i>et al.</i> Next-generation genotype imputation service and methods. <i>Nat Genet</i> 2016; 48 : 1284–7.
229 230	12	Kang H. Efficient and parallelisable association container toolbox (EPACTS). http://genome.sph.umich.edu/wiki/EPACTS 2014. Accessed October 2017.
231 232	13	Han B, Eskin E. Random-Effects Model Aimed at Discovering Associations in Meta-Analysis of Genome-wide Association Studies. <i>Am J Hum Genet</i> 2011; 88 : 586–98.
233 234	14	Aulchenko YS, Ripke S, Isaacs A, van Duijn CM. GenABEL: an R library for genome-wide association analysis. <i>Bioinformatics</i> 2007; 23 : 1294–6.
235 236	15	Zhu Z, Zheng Z, Zhang F, <i>et al.</i> Causal associations between risk factors and common diseases inferred from GWAS summary data. <i>Nat Commun</i> 2018; 9 : 224.
237 238	16	Pruim RJ, Welch RP, Sanna S, <i>et al.</i> LocusZoom: regional visualization of genome-wide association scan results. <i>Bioinformatics</i> 2010; 26 : 2336–7.
239 240	17	1000 Genomes Project Consortium RA, Auton A, Brooks LD, <i>et al.</i> A global reference for human genetic variation. <i>Nature</i> 2015; 526 : 68–74.
241 242	18	Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. <i>Genet Epidemiol</i> 2010; 34 : 816–34.
243 244	19	Marchini J, Howie B, Myers S, McVean G, Donnelly P. A new multipoint method for genome- wide association studies by imputation of genotypes. <i>Nat Genet</i> 2007; 39 : 906–13.
245 246	20	Kanai M, Tanaka T, Okada Y. Empirical estimation of genome-wide significance thresholds based on the 1000 Genomes Project data set. <i>J Hum Genet</i> 2016; 61 : 861–6.
247	21	Johnson JL, Abecasis GR. GAS Power Calculator: web-based power calculator for genetic

- association studies. *bioRxiv* 2017. Doi: https://doi.org/10.1101/164343.
- 249 22 Sharov AA, Schlessinger D, Ko MSH. ExAtlas: An interactive online tool for meta-analysis of gene expression data. *J Bioinform Comput Biol* 2015; 13: 1550019.
- 251 23 Dolinay T, Kim YS, Howrylak J, *et al.* Inflammasome-regulated cytokines are critical mediators of acute lung injury. *Am J Respir Crit Care Med* 2012; **185**: 1225–34.
- 253 24 Schofield EC, Carver T, Achuthan P, *et al.* CHiCP: a web-based tool for the integrative and interactive visualization of promoter capture Hi-C datasets. *Bioinformatics* 2016; **32**: 2511–3.
- 25 25 Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with deep learning-based
 256 sequence model. *Nat Methods* 2015; **12**: 931–4.
- 26 Lemaçon A, Scott-Boyer M-P, Soucy P, Ongaro-Carcy R, Simard J, Droit A. DSNetwork: An integrative approach to visualize predictions of variants' deleteriousness. *bioRxiv* 526335 2019.
 259 Doi:https://doi.org/10.1101/526335.
- 260 27 GTEx Consortium J, Thomas J, Salvatore M, *et al.* The Genotype-Tissue Expression (GTEx)
 261 project. *Nat Genet* 2013; 45: 580–5.
- 262 28 Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. *Nucleic Acids Res* 2012; 40: D930-4.
- 265 29 Carvalho-Silva D, Pierleoni A, Pignatelli M, *et al.* Open Targets Platform: new developments and updates two years on. *Nucleic Acids Res* 2019; 47: D1056–65.
- 30 Boyle AP, Hong EL, Hariharan M, *et al.* Annotation of functional variation in personal genomes
 using RegulomeDB. *Genome Res* 2012; 22: 1790–7.
- Vera Alvarez R, Li S, Landsman D, Ovcharenko I. SNPDelScore: combining multiple methods to
 score deleterious effects of noncoding mutations in the human genome. *Bioinformatics* 2017; 34:
 289–91.
- 272 32 Chen L, Wang Y, Yao B, Mitra A, Wang X, Qin X. TIVAN: Tissue-specific cis-eQTL single
 273 nucleotide variant annotation and prediction. *Bioinformatics* 2018; published online Oct 10.
 274 Doi:10.1093/bioinformatics/bty872.
- 275 33 McLaren W, Gil L, Hunt SE, *et al.* The Ensembl Variant Effect Predictor. *Genome Biol* 2016; 17: 122.
- 34 Morishita K, Johnson DE, Williams LT. A novel promoter for vascular endothelial growth factor
 receptor (flt-1) that confers endothelial-specific gene expression. *J Biol Chem* 1995; 270: 27948–
 53.
- 280 35 Eggers C, Hook B, Lewis S, Strayer C, Landreman A. Designing a Bioluminescent Reporter Assay:
 281 Normalization. *Promega Corp. Web site.* http://www.promega.es/resources/pubhub/designing-a 282 bioluminescent-reporter-assay-normalization/ 2016. Accessed April 23, 2019.
- 36 Flores C, Pino-Yanes M del M, Villar J. A quality assessment of genetic association studies
 supporting susceptibility and outcome in acute lung injury. *Crit Care* 2008; 12: R130.
- Acosta-Herrera M, Pino-Yanes M, Perez-Mendez L, Villar J, Flores C. Assessing the quality of studies supporting genetic susceptibility and outcomes of ARDS. *Front Genet* 2014; 5: 20.
- 287 38 Guillén-Guío B, Acosta-Herrera M, Villar J, Flores C. Genetics of Acute Respiratory Distress
 288 Syndrome. *eLS. John Wiley Sons* 2016. DOI: 10.4046/trd.2001.51.1.5
- 289 39 Li M-X, Yeung JMY, Cherny SS, Sham PC. Evaluating the effective numbers of independent tests
 290 and significant p-value thresholds in commercial genotyping arrays and public imputation reference
 291 datasets. *Hum Genet* 2012; 131: 747–56.
- 292 40 Christie JD, Wurfel MM, Feng R, et al. Genome wide association identifies PPFIA1 as a candidate
 293 gene for acute lung injury risk following major trauma. PLoS One 2012; 7: e28268.

294 Supplementary Figures

Supplementary Figure 1. Principal component analysis. Plot of the first two principal components (PC)
 of individuals analyzed in the discovery stage were projected on the HapMap3 reference dataset.

Supplementary Figure 2. Quantile-Quantile (Q-Q) plot. Observed versus expected -log10 p-values for

326 the GWAS results of the discovery stage.

Supplementary Figure 3. *FLT1* and *VEGFA* gene expression in critical care patients. Probe intensities of expression arrays obtained from peripheral blood samples from ICU controls (n=34), systemic inflammatory response syndrome (SIRS, n=21), sepsis (n=30) and sepsis-associated ARDS patients (n=18) at study inclusion. Note that the probe ILMN_1752307 targets *FLT1* exon 30, which is found in the canonical isoform (FLT1-201), one of the most highly expressed isoforms of the gene. Differences in average intensities were assessed using ANOVA followed by t-tests. GEO accession: GSE32707.²³

GSE32707: VEGFA (ILMN_1693060)

GSE32707: VEGFA (ILMN 2375879)

383 **Supplementary Tables**

Supplementary Table 1. Top 53 independent SNPs associated with ARDS in the discovery stage $(p < 5 \cdot 0x10^{-5})$.

Variant	Chr	Position (hg19)	Gene	A1/A2	MAF	OR [95% CI]	<i>p</i> -value
rs598782	1	202572596	SYT2	T/C	0.173	0.49 [0.35, 0.69]	3·16x10 ⁻⁵
rs10917581	1	162624504	DDR2	G/A	0.262	0.56 [0.42, 0.74]	4-37x10-5
rs56865040	2	30907832	LCLAT1-CAPN13	G/A	0.066	3.35 [1.95, 5.77]	$1 \cdot 24 \times 10^{-5}$
rs58982889	3	85080936	CADM2	C/G	0.483	0.57 [0.44, 0.73]	1.37×10^{-5}
rs12494792	3	54631523	CACNA2D3	A/G	0.251	1.82 [1.38, 2.40]	2.52×10^{-5}
rs71331755	3	134040335	RYK-AMOTL2	C/G	0.237	1.83 [1.37, 2.43]	3-20x10-5
rs76763432	4	20933002	KCNIP4	T/C	0.114	2.36 [1.60, 3.48]	1.38×10^{-5}
rs12513121	4	126763999	FAT4-INTU	A/C	0.302	0.55 [0.43, 0.72]	1-48x10 ⁻⁵
rs11097547	4	77763070	SHROOM3-SOWAHB	G/A	0.200	1.95 [1.44, 2.64]	1.51×10^{-5}
rs78119818	4	78068598	CCNI-CCNG2	A/T	0.048	3.79 [2.03, 7.06]	$2 \cdot 81 \times 10^{-5}$
rs10518480	4	126898260	FAT4-INTU	G/A	0.202	1.93 [1.41, 2.64]	3-46x10-5
rs66691935	4	184540486	ING2-RWDD4	T/C	0.175	1.97 [1.43, 2.71]	3.67x10 ⁻⁵
rs62300402	4	66422737	EPHA5	G/A	0.276	0.56 [0.42, 0.74]	4-46x10-5
rs66486976	5	177602232	NHP2-GMCL2	T/C	0.313	0.55 [0.42, 0.71]	$1 \cdot 00 \times 10^{-5}$
rs58681704	5	133268913	FSTL4-C5orf15	A/G	0.202	0.51 [0.37, 0.70]	3·18x10 ⁻⁵
rs62390494	5	177493565	FAM153C-N4BP3	T/C	0.199	1.90 [1.40, 2.60]	4.53x10 ⁻⁵
rs9453845	6	67330152	EYS-ADGRB3	T/G	0.107	0.41 [0.27, 0.62]	2.81x10 ⁻⁵
rs3003179	6	74677167	CD109-COL12A1	A/G	0.279	1.76 [1.35, 2.30]	3·20x10 ⁻⁵
rs58277258	6	129194762	LAMA2	C/T	0.084	2.69 [1.68, 4.30]	3.88x10 ⁻⁵
rs12197618	6	85969855	TBX18-NT5E	A/G	0.053	3.58 [1.95, 6.57]	4.01x10 ⁻⁵
rs9367172	6	43709993	MRPS18A-VEGFA	A/G	0.237	0.55 [0.41, 0.73]	4.69x10 ⁻⁵
rs72611587	7	146905995	CNTNAP2	T/C	0.140	2.16 [1.51, 3.09]	2·78x10 ⁻⁵
rs7777943	7	150483237	GIMAP5-TMEM176B	G/A	0.277	0.57 [0.44, 0.74]	3·18x10 ⁻⁵
rs12678166	8	8520530	PRAG1-CLDN23	T/C	0.152	2.05 [1.46, 2.89]	3.80x10 ⁻⁵
rs796455145	9	5487547	PLGRKT	C/T	0.411	1.74 [1.37, 2.22]	7·49x10 ⁻⁶
rs4740791	9	4611901	SPATA6L	T/C	0.087	2.62 [1.66, 4.12]	3·14x10⁻⁵
rs2734600	9	33753355	PRSS3	T/C	0.152	0.48 [0.33, 0.68]	3.76x10 ⁻⁵
rs1751276	10	4477665	KLF6-AKR1E2	A/G	0.123	2.53 [1.70, 3.77]	4·85x10 ⁻⁶
rs1867966	10	71187839	TACR2-TSPAN15	G/A	0.430	0.58 [0.45, 0.74]	1.32×10^{-5}
rs11195238	10	112388857	SMC3-RBM20	T/C	0.151	0.47 [0.33, 0.67]	2.97x10 ⁻⁵
rs10795549	10	7582855	SFMBT2-ITIH5	C/A	0.478	0.60 [0.47, 0.76]	3.02×10^{-5}
rs10736526	11	122589092	UBASH3B	C/T	0.207	0.50 [0.37, 0.67]	3.73x10 ⁻⁶
rs61710829	11	126566557	KIRREL3	G/C	0.378	1.71 [1.33, 2.20]	3.07x10⁻⁵
rs602124	11	69388853	MYEOV-CCND1	C/G	0.297	1.77 [1.35, 2.31]	3·15x10⁻⁵
rs76921243	12	26606699	ITPR2	A/G	0.056	0.25 [0.13, 0.47]	1.81x10 ⁻⁵
rs1861180	12	12958559	DDX47	T/C	0.088	0.40 [0.25, 0.62]	4.07x10 ⁻⁵
rs1904566	12	68125847	DYRK2-IFNG	C/A	0.420	1.69 [1.31, 2.17]	4·49x10 ⁻⁵
rs9508032	13	28995940	FLT1	T/C	0.288	0.49 [0.38, 0.65]	2.62x10 ⁻⁷
rs8001184	13	90603540	SLITRK5-GPC5	A/C	0.483	1.65 [1.30, 2.10]	4.48x10 ⁻⁵
rs946626	14	49140883	MDGA2-RPS29	A/G	0.428	1.73 [1.36, 2.20]	8.59x10 ⁻⁶
rs7161717	14	26389695	STXBP6-NOVA1	C/T	0.132	0.44 [0.30, 0.64]	2.54x10-5
rs4887263	15	86626153	AGBL1	A/C	0.096	2.73 [1.74, 4.28]	1.19x10 ⁻⁵
rs12902176	15	65518664	CILP-PARP16	G/A	0.268	1.78 [1.35, 2.35]	4·04x10 ⁻⁵
rs11647343	16	84454267	ATP2C2	C/A	0.384	1.75 [1.36, 2.24]	1.05x10 ⁻⁵
rs244783	16	84360055	WFDC1	T/G	0.212	1.97 [1.45, 2.69]	1·77x10 ⁻⁵
rs4791367	17	9724374	GLP2R	G/A	0.092	0.35 [0.22, 0.56]	1.25×10^{-5}
rs9675656	18	2947220	LPIN2	C/G	0.109	2.44 [1.63, 3.66]	1.65x10 ⁻⁵
rs397195	19	6619504	CD70-TNFSF14	G/C	0.354	1.71 [1.32, 2.20]	3·44x10 ⁻⁵

rs285251	19	16415993	AP1M1-KLF2	C/T	0.286	0.56 [0.42, 0.74]	4.00x10 ⁻⁵
rs6040856	20	11702045	JAG1-BTBD3	G/C	0.354	1.68 [1.32, 2.15]	3·16x10 ⁻⁵
rs2831537	21	29516376	ADAMTS5-N6AMT1	T/C	0.462	0.57 [0.45, 0.73]	7.65x10 ⁻⁶
rs4817154	21	28477085	ADAMTS5-N6AMT1	A/G	0.082	2.59 [1.64, 4.10]	4.57x10 ⁻⁵
rs1155955	Х	67297091	OPHN1	G/A	0.120	3.12 [1.83, 5.31]	2.87x10-5

A1, Effect allele; A2, Non-effect allele; CI, Confidence Interval; MAF, Minor Allele Frequency; OR, Odd Ratio.

386	
387	
388	
389	
390	
391	
392	
393	
394	
395	
396	
397	
398	
399	
400	
401	
402	
403	
404	
405	
406	
407	
408	
409	

	GEN-SEP			MESSI			SepNet			Comparison between studies	
	Controls (n=316)	Cases (n=274)	p-value*	Controls (n=337)	Cases (n=268)	p-value*	Controls (n=649)	Cases (n=91)	<i>p</i> -value*	<i>Controls p</i> -value [*]	Cases p-value*
Sex (n males/N)	197/316 (62·3%)	194/274 (70·8%)	0.04	200/337 (59·3%)	163/268 (60·8%)	0.74	379/649 (58·4%)	59/91 (64·8%)	0.50	0.50	0.05
Mean age (years)	63.0 ± 15.0	62.5 ± 14.1	0.47	61·5 ± 13·8	$58 \cdot 8 \pm 14 \cdot 1$	0.02	65·4 ± 14.1	62·1 ± 13·6	0.02	0.04	0.88
Pneumonia (n/N)	83/267 (31·1%)	128/252 (50·8%)	7.50x10 ⁻⁶	134/337 (39.8%)	166/268 (61·9%)	$1 \cdot 2 x 10^{-7}$	249/646 (38·5%)	49/91 (53·8%)	5-0x10 ⁻³	0.05	0.03
APACHE (median) $(P_{25}-P_{75})^{\dagger}$	20 (15-24)	22 (18-27)	$2 \cdot 22 \times 10^{-5}$	71 (57-88)	85 (67-104)	$1 \cdot 4 x 10^{-7}$	20 (16-24)	19 (16-23)	0.47	0.42	$1 \cdot 6 x 10^{-3}$
Mortality $(n/N)^{\ddagger}$	79/310 (25.5%)	115/268 (42.9%)	1.5x10 ⁻⁵	127/337 (37·7%)	182/268 (67·9%)	$2 \cdot 2 \times 10^{-13}$	137/649 (21·1%)	12/91 (13·2%)	0.08	-	-

Supplementary Table 2. Main demographic and clinical features of individuals included in the study.

n=number of individuals with data available, N=group size. All individuals have age and APACHE data, except for MESSI cohort, where only 229 cases and 269 controls have APACHE data. *Categorical data compared by chi square test, continuous data compared by Wilcoxon test (two-sample comparison) or Kruskal-Wallis test (three-sample comparison); [†]APACHE III was measured for the MESSI Cohort and APACHE II for GENSEP and SepNet Cohorts. Therefore, only APACHE II scores were considered in the comparison between studies; [‡]Patient mortality was not compared between studies since ICU mortality was considered for the GENSEP cohort, 30-day mortality was considered for the MESSI Cohort, and 28-day mortality for the SepNet cohort. APACHE, Acute Physiology and Chronic Health Evaluation; P25, percentile 25; P75, percentile 75.

	OR [95% CI]	<i>p</i> -value
Unadjusted*	0.62 [0.43, 0.90]	1.07×10^{-7}
Sex	0.62 [0.43, 0.90]	$1 \cdot 11 \times 10^{-7}$
Age	0.62 [0.43, 0.90]	1.30×10^{-7}
$APACHE^{\dagger}$	0.61 [0.40, 0.93]	1.81x10 ⁻⁸
Smokers [‡]	0.58 [0.42, 0.80]	$9.72 \mathrm{x} 10^{-4 \dagger \dagger}$
Previous surgery [§]	0.64 [0.50, 0.83]	$7 \cdot 35 \times 10^{-4}$
Ischemic cardiac disease [§]	0.56 [0.45, 0.70]	3.05x10 ^{-7‡‡}
Pulmonary sepsis	0.61 [0.41, 0.91]	9.12×10^{-811}
Mortality [¶]	0.62 [0.41, 0.94]	2.51x10 ⁻⁷
Pathogen [‡]	0.48 [0.34, 0.68]	$2 \cdot 34 x 10^{-5 \dagger \dagger}$
Multi organ dysfunction	0.61 [0.41, 0.91]	1.03×10^{-7}
Comorbidities**	0.62 [0.40, 0.94]	1.56×10^{-722}

Supplementary Table 3. Sensitivity analysis for the rs9508032 in the three cohorts together.

^{*}Unadjusted data for GEN-SEP, adjustment for 2 PC for MESSI, and adjustment for 3 PC for SepNet; [†]APACHE III was measured for the MESSI Cohort and APACHE II for GEN-SEP and SepNet Cohorts; [‡]There was only information available for GEN-SEP study; [§]There was not information available for MESSI study; [¶]ICU mortality was considered for the GENSEP cohort, 30-day mortality was considered for the MESSI Cohort, and 28-day mortality for the SepNet cohort; [¶]Two or more affected organs; ^{**}For the GEN-SEP and SepNet studies, comorbidities considered are autoimmune diseases, cancer, chronic diseases, diabetes, hepatopathies, immunosuppression, kidney diseases, morbid obesity, pregnancy, severe infections, severe brain damage, and valvulopathies. For MESSI, comorbidities are defined as immunocompromise (cancer receiving treatment, hematologic malignancy, AIDS, metastatic cancer, or receiving immunosuppressive medication), cirrhosis, congestive heart failure, or chronic renal insufficiency including dialysis; ^{††}Missing data for more than 35% of individuals from the GEN-SEP study; ^{‡‡}Missing data for the 15-20% of individuals from the GEN-SEP study; OR, Odd Ratio; CI, Confidence Interval.

							Discovery (27-	4:316)*	Replication (35	59:986) [*]	Meta-analysis (6	33:1302)*
rs ID	Chr	Position	$\mathbf{Location}^{\dagger}$	A1/A2	MAF	\mathbf{r}^2	OR [95% CI]	<i>p</i> -value	OR [95% CI]	<i>p</i> -value	OR [95% CI]	<i>p</i> -value
rs9508032	13	28995940	Intron 10	T/C	0.290	1.00	0.49 [0.38, 0.65]	2.62x10 ⁻⁷	0.74 [0.60, 0.92]	5-98x10 ⁻³	0.61 [0.41, 0.91]	5·18x10 ⁻⁸
rs8002446	13	28997400	Intron 10	A/G	0.288	$1 \cdot 00$	0.50 [0.38, 0.65]	2.71x10 ⁻⁷	0.75 [0.61, 0.92]	6-82x10 ⁻³	0.61 [0.41, 0.92]	6-03x10 ⁻⁸
rs9513111	13	28997563	Intron 10	T/C	0.288	$1 \cdot 00$	0.50 [0.38, 0.65]	2·71x10 ⁻⁷	0.75 [0.61, 0.92]	6-82x10-3	0.61 [0.41, 0.92]	6-03x10 ⁻⁸
rs722503	13	28997052	Intron 10	T/C	0.288	$1 \cdot 00$	0.50 [0.38, 0.65]	2·71x10 ⁻⁷	0.75 [0.61, 0.92]	6·94x10 ⁻³	0.61 [0.41, 0.92]	6·11x10 ⁻⁸
rs9508034	13	28996604	Intron 10	C/A	0.290	$1 \cdot 00$	0.49 [0.38, 0.65]	$2 \cdot 62 \times 10^{-7}$	0.75 [0.61, 0.93]	7·58x10 ⁻³	0.61 [0.41, 0.92]	6·47x10 ⁻⁸
rs9508033	13	28996568	Intron 10	C/T	0.290	0.99	0.49 [0.38, 0.65]	2.62x10 ⁻⁷	0.75 [0.61, 0.92]	7·19x10 ⁻³	0.61 [0.41, 0.92]	6·18x10 ⁻⁸
rs6491284	13	28995390	Intron 10	T/C	0.288	0.98	0.50 [0.38, 0.65]	3·26x10 ⁻⁷	0.76 [0.61, 0.94]	9.91x10 ⁻³	0.62 [0.41, 0.93]	1.05x10 ⁻⁷
rs2281827	13	29001721	Intron 9	T/C	0.265	0.86	1.97 [1.49, 2.60]	$1 \cdot 60 \times 10^{-6}$	1.37 [1.10, 1.70]	4.20x10-3	1.63 [1.14, 2.32]	1.69x10 ⁻⁷
rs7324510	13	29007035	Intron 6	A/C	0.242	0.72	0.54 [0.40, 0.72]	3·17x10 ⁻⁵	0.69 [0.55, 0.86]	1.01×10^{-3}	0.63 [0.53, 0.75]	2.81x10 ⁻⁷
rs9513115	13	29011570	Intron 4	A/C	0.246	0.72	0.55 [0.41, 0.73]	4·17x10⁻⁵	0.69 [0.55, 0.86]	$1 \cdot 12 x 10^{-3}$	0.63 [0.53, 0.75]	3.69x10⁻7
rs9513114	13	29009059	Intron 4	T/C	0.245	0.71	0.52 [0.39, 0.70]	1·15x10 ⁻⁵	0.70 [0.56, 0.88]	1.76x10 ⁻³	0.63 [0.53, 0.75]	2.62x10-7
rs8001784	13	29009213	Intron 4	G/A	0.242	0.71	0.54 [0.40, 0.72]	3·17x10⁻⁵	0.69 [0.56, 0.87]	1.28×10^{-3}	0.63 [0.53, 0.75]	3.68x10 ⁻⁷
rs4771249	13	29013414	Intron 3	C/G	0.241	0.71	0.54 [0.41, 0.73]	3.84x10 ⁻⁵	0.70 [0.56, 0.87]	1·36x10 ⁻³	0.63 [0.53, 0.76]	4.53x10 ⁻⁷
rs9508035	13	29009099	Intron 4	A/C	0.242	0.71	0.54 [0.40, 0.72]	3·17x10 ⁻⁵	0.70 [0.56, 0.88]	1.76x10 ⁻³	0.64 [0.53, 0.76]	5·37x10 ⁻⁷
rs3794405	13	29006847	Intron 6	T/C	0.243	0.71	0.54 [0.41, 0.73]	4.16x10-5	0.70 [0.56, 0.87]	1.29×10^{-3}	0.64 [0.53, 0.76]	4.56x10-7
rs9505994	13	29024346	Intron 3	G/A	0.239	0.71	0.53 [0.40, 0.71]	2·41x10 ⁻⁵	0.69 [0.55, 0.86]	$1 \cdot 10 \times 10^{-3}$	0.63 [0.53, 0.75]	2.53x10-7
rs34961350	13	28991902	Intron 10	G/C	0.220	0.57	1.89 [1.41, 2.54]	2·38x10 ⁻⁵	1.27 [1.00, 1.60]	5.02×10^{-2}	1.53 [1.03, 2.27]	2.55x10-5

Supplementary Table 4. Association results for all SNPs within *FLT1* that have data available in all studies.

*Cases:Controls; [†]According to the principal *FLT1* transcript (ENST00000282397.8); A1, Effect allele; A2, Non-effect allele; CI, Confidence Interval; MAF, Minor Allele Frequency (GEN-SEP cohort); OR, Odd Ratio; r^2 , squared coefficient of correlation (with respect to rs9508032). Alleles referred to the positive strand of hg19. The top hit is indicated in bold.

Supplementary	y Table 5.	Prediction	of ICU	survival	for the	sentinel	variant a	t <i>FLT1</i> ir	n GEN-SEP
---------------	------------	------------	--------	----------	---------	----------	-----------	------------------	-----------

	OR [95% CI]	<i>p</i> -value	
Sepsis	1.00 [0.81, 1.24]	0.974	
ARDS	1.16 [0.87, 1.54]	0.307	

Data were obtained using Cox regression models adjusted for age, sex, and APACHE II scores. APACHE II, Acute Physiology and Chronic Health Evaluation II; ICU, intensive care unit; OR, Odd Ratio; CI, Confidence Interval.

Name	Average	SD		
FLT1-201	5,928	2,803		
FLT1-202	5	5		
FLT1-203	6	4		
FLT1-204	20	12		
FLT1-205	6	7		
FLT1-206	12	12		
FLT1-207	3,998	2,492		
FLT1-208	2	2		
VEGFA-203	0	0		
VEGFA-226	11	28		
VEGFA-209	0	0		
VEGFA-207	12	14		
VEGFA-205	3,804	3,543		
VEGFA-213	0	0		
VEGFA-228	5	12		
VEGFA-229	2,748	2,824		
VEGFA-208	0	0		
VEGFA-204	0	0		
VEGFA-227	1,804	3,203		
VEGFA-220	5	7		
VEGFA-202	0	0		
VEGFA-224	0	0		
VEGFA-222	1,536	1,704		
VEGFA-218	94	81		
VEGFA-225	9	27		
VEGFA-219	0	1		
VEGFA-223	1	4		
VEGFA-201	69	75		
VEGFA-206	1,232	1,325		
VEGFA-210	1	4		
VEGFA-221	1	1		
VEGFA-212	3,393	2,676		
VEGFA-215	4,193	3,631		
VEGFA-211	52	41		
VEGFA-214	83	105		
VEGFA-217	8	15		
VEGFA-216	161	158		

Supplementary Table 6. Expression of *FLT1* and *VEGFA* isoforms in lung tissue.

No data was available for the isoforms FLT1-209, VEGFA-230, VEGFA-231, or VEGFA-232. SD, standard deviation. Values are given in counts per million.

	rs9508032	rs722503	rs8002446
Functional significance score predicted with DeepSEA	0.13	<0.05	0.10
regulomedB Score	(5) TF binding or Dnase peak	(3a) TF binding + any motif + Dnase peak	(4) TF binding + Dnase peak
Enhancer histone marks	H3K4me1 [*] , H3K27ac [†]	H3K4me1 [‡] , H3K27ac [§]	H3K4me1 [¶] , H3K27ac [∥]
Promoter histone marks	H3K4me3 ^{**} , H3K9ac ^{††}	H3K4me3 ^{‡‡} , H3K9ac ^{§§}	H3K4me3 [¶] , H3K9ac ^{§§}
DNAse	HSC & B-cell, Monocytes- CD14+ RO01746 Primary Cells	HSC & B-cell, ES-deriv	 IMR90, iPSC, Blood & T-cell, HSC & B-cell, Epithelial, Thymus, Muscle, Fetal Kidney, Fetal Lung, Ovary, Placenta, GM12878 Lymphoblastoid Cells, Monocytes- CD14+ RO01746 Primary Cells
Altered regulatory motifs	Cdc5, Gfi-1, HNF1, Mef2	CCNT2, MAZR, NF-kappaB, Spz1	None
Proteins bound	None	POL2, NFKB	BCL11A, EBF1, EBF1, ELF1, PAX5C20, PAX5N19, PU1, SP1, PU1, POL2, CMYC, MAX
CHICP	<u>CD34</u> : <i>POMP</i> (11·36); <u>GM12</u>	878: POMP (9·71), FLT1 (10·97), SLC46 SLC46A3/CYP51A1P2 (8·63)	A3/RNU6-53P (9·91), PAN3 (9·13),
Open Targets Genetics	None	None	FLT3 (top ranked), POMP, PAN3
eQTLs	None	None	None
Score CAPE dsQTL >0.5	HUVEC, A549 EtOH 0.02pct Lung Carcinoma Cell Line	None	None
Score CAPE eQTL >0.5	None	HUVEC, NHLF Lung Fibroflast Primary Cells, NHDF-Adult Dermal Fibroflast Primary Cells, Monocytes- CD14+ RO01746 Primary Cells, A549 EtOH 0.02pct Lung Carcinoma Cell Line, Foreskin Fibroblast Primary Cells skin01, IMR90 fetal lung fibroblasts Cell Line	A549 EtOH 0·02pct Lung Carcinoma Cell Line

Supplementary Table 7. Functional annotation of the *FLT1* top hit (rs9508032) and the most promising two proxies.

CAPE, Cellular dependent deactivating mutations; CD34, human hematopoietic progenitor cell line; GM12878, lymphoblastoid cell line; HUVEC, Human umbilical vein endothelial cell; IMR90, Human foetal lung cells; NHDF, Normal Human Dermal Fibroblasts; NHLF, Normal human lung fibroblasts. *IMR90, ESC, iPSC, ES-deriv, Blood & T-cell, HSC & B-cell, Epithelial, Brain, Adipose, Muscle, Heart, Fetal Lung, Fetal Adrenal Gland, Liver, Spleen, GM12878 Lymphoblastoid Cells, HUVEC Umbilical Vein Endothelial Primary Cells, Monocytes-CD14+ RO01746 Primary Cells. [†]iPSC, ES-deriv, HSC & B-cell, Epithelial, Adipose, Spleen, GM12878 Lymphoblastoid Cells, HUVEC Umbilical Vein Endothelial Primary Cells. [‡]IMR90, ESC, iPSC, ES-deriv, Blood & T-cell, HSC & B-cell, Epithelial, Thymus, Brain, Adipose, Muscle, Heart, Digestive, Fetal Lung, Fetal Adrenal Gland, Placenta, Liver, Lung, Spleen, Dnd41 TCell Leukemia Cell Line, GM12878 Lymphoblastoid Cells, HUVEC Umbilical Vein Endothelial Primary Cells, K562 Leukemia Cells, Monocytes-CD14+ RO01746 Primary Cells. [§]iPSC, HSC & Bcell, Brain, Adipose, Heart, Digestive, Liver, Dnd41 TCell Leukemia Cell Line, GM12878 Lymphoblastoid Cells, HUVEC Umbilical Vein Endothelial Primary Cells, Monocytes-CD14+ RO01746 Primary Cells. ¹ESC, iPSC, ESderiv, Blood & T-cell, HSC & B-cell, Epithelial, Thymus, Brain, Adipose, Muscle, Heart, Digestive, Fetal Lung, Fetal Adrenal Gland, Placenta, Liver, Lung, Spleen, Dnd41 TCell Leukemia Cell Line, GM12878 Lymphoblastoid Cells, HUVEC Umbilical Vein Endothelial Primary Cells, Monocytes-CD14+ RO01746 Primary Cells, ^{II}iPSC, HSC & B-cell, Epithelial, Brain, Adipose, Heart, Digestive, Ovary, Liver, Dnd41 TCell Leukemia Cell Line, GM12878 Lymphoblastoid Cells, HUVEC Umbilical Vein Endothelial Primary Cells, Monocytes-CD14+ RO01746 Primary Cells. **HSC & B-cell, Monocytes-CD14+ RO01746 Primary Cells. ††iPSC, Adipose, Digestive. ‡‡Blood & T-cell, HSC & B-cell, Brain, Adipose, Heart, Digestive, Liver, Dnd41 TCell Leukemia Cell Line, GM12878 Lymphoblastoid Cells, Monocytes-CD14+ RO01746 Primary Cells. §Blood & T-cell, Adipose, Sm. Muscle, Dnd41 TCell Leukemia Cell Line, GM12878 Lymphoblastoid Cells, Monocytes-CD14+ RO01746 Primary Cells. ¹¹Blood & T-cell, HSC & B-cell, Brain, Dnd41 TCell Leukemia Cell Line, GM12878 Lymphoblastoid Cells, Monocytes-CD14+ RO01746 Primary Cells

Gene	Independent signals	Gene-wise Bonferroni <i>p-</i> value threshold	SNP min <i>p-</i> value	A1/A2	OR [95% CI]	<i>p</i> -value
ABCC1	275.18	1.82x10 ⁻⁴	rs246233	G/T	1.98 [1.21, 3.25]	6.79x10 ⁻³
ACE	72.94	6-85x10 ⁻⁴	rs9857615	T/C	0.70 [0.49, 0.98]	3.89x10 ⁻²
ADA	137.74	3.63x10 ⁻⁴	rs17687734	G/A	2.60 [1.31, 5.16]	6.31x10 ⁻³
ADGRV1	640.97	7.80x10 ⁻⁵	rs6094023	A/G	0.48 [0.29, 0.79]	3.65×10^{-3}
ADIPOO	288.87	1.73×10^{-4}	rs114210898	A/G	1.34 [1.05, 1.72]	2.06×10^{-2}
ADRBK2	318.26	1.57×10^{-4}	rs1467387	C/T	0.67 [0.50 0.89]	5.96x10 ⁻³
ACEP*	262 22	1.37×10^{-4}	ro61746206	C/1 T/C	0.32 [0.13, 0.83]	1.92×10 ⁻²
AGER	303.17	1.65×10^{-4}	rs1078/99	G/A	0.52[0.13, 0.83]	1.63x10 8.68x10 ⁻³
AGTR1	281.4	1.78×10^{-4}	rs275643	A/G	1.86 [1.24, 2.80]	2.70×10^{-3}
AHR	201.39	2.48×10^{-4}	rs140084506	T/C	4.69 [1.26, 17.4]	2.10×10^{-2}
ANGPT2	456.67	1.09x10 ⁻⁴	rs2442570	A/G	$(0.43 \ [0.24 \ 0.76])$	3.76×10^{-3}
APOA1	236.49	2.11×10^{-4}	rs2513094	C/T	1.36 [1.03 1.79]	2.99×10^{-2}
ARSD	159.08	2.1/x10	rs1698814	C/T	1.45 [1.08, 1.96]	1.46×10^{-2}
BCL114	262.4	1.91x10 ⁻⁴	rs76064527	C/1 ∆/C	1.90 [1.08, 3.37]	2.69×10^{-2}
CRS	160.35	1.91×10^{-4}	rs2401154	T/C	1.49 [1.06, 2.08]	2.03×10^{-2}
CELE2	660.82	7.46×10^{-5}	rs76200150	T/C	2.65 [1.33, 5.26]	5.50×10^{-3}
CHIT1	260.23	1.86x10 ⁻⁴	rs1845466	T/G	2.03 [1.33, 5.20] 0.64 [0.49, 0.83]	8.63×10 ⁻⁴
CLASPP	113.15	4.42×10^{-4}	rs10405850	1/U	0.71 [0.56 0.91]	6.50×10^{-3}
CYCL2	96.08	4.42×10^{-4}	rs28574621	C/G	0.30 [0.09 0.94]	3.85×10^{-2}
CXCL2	90.08	5.08x10 ⁻⁴	rs12080315		0.30[0.09, 0.94] 2.26[1.26, 4.07]	5.05×10^{-3}
CVP1A1	90·44 82.88	5.03×10^{-4}	rs17861120	G/A	2.20 [1.20, 4.07] 0.51 [0.32, 0.83]	6.20×10^{-3}
	202.06	2.46×10^{-4}	1517601120	U/A T/C	0.31 [0.32, 0.83]	0.20×10^{-3}
DARC	158.36	2.40x10	rs17176215	G/A	0.31 [0.14, 0.08] 0.24 [0.07, 0.87]	2.06×10^{-2}
EGE	240.96	2.08×10^{-4}	rs1/61/1236	C/T	0.24 [0.07, 0.87] 0.22 [0.09, 0.55]	1.25×10^{-3}
EGF FCLN1*	240.90	2.08×10^{-4}	rs140141230	C/1 T/C	0.22 [0.09, 0.33] 4.56 [1.44, 14.39]	0.75×10^{-3}
EGLNI	144.10	3.47×10^{-4}	18141921556		4.30 [1.44, 14.39]	9.73×10^{-3}
EI ASI F5	269.74	1.85x10 ⁻⁴	rs144628673	U/C	5.37 [1.51 10.05]	2.03×10^{-3}
г.5 Елли	197 12	1.63×10^{-4}	18144028073	A/G	0.17[0.04, 0.78]	9.37×10^{-2}
FAS	230.16	2.09×10^{-4}	rs61852572	G/A	0.60[0.41, 0.78]	1.11×10^{-2}
FFD*	644.44	2.09×10^{-5}	rs10515395	C/T	1.82[1.22, 2.71]	3.28×10^{-3}
FTI	1/3.23	7.70x10	rs140747916		1.70 [1.08, 2.66]	2.12×10^{-2}
FZD2	125.26	3.99x10 ⁻⁴	rs9900767	T/C	0.50 [0.28 0.90]	2.09×10^{-2}
GADD/54	184.53	2.71×10^{-4}	rs3//923	G/A	$1.33 [1.05 \ 1.70]$	1.92×10^{-2}
GADD4JA GHR	322.68	2.71×10^{-4}	rs/1271073	A/G	$0.34 [0.15 \ 0.74]$	6.48×10^{-3}
GP5	210.56	2.37×10^{-4}	rs7611390	T/C	0.57 [0.41 0.81]	1.63×10^{-3}
GRM3	285.81	1.75×10^{-4}	rs6974073	A/C	1.59[1.02, 2.47]	4.01×10^{-2}
HAS1	205-01	2.22×10^{-4}	rs113174648	G/C	1.59 [1.02, 2.47] 1.51 [1.12, 2.03]	7.03×10^{-3}
HECTD2	174.41	2.87×10^{-4}	rs11186608	U/C T/G	0.71 [0.56 0.89]	3.23×10^{-3}
HMOXI	174 41	2.86x10 ⁻⁴	rs4645773	T/C	0.35[0.16, 0.75]	6.49×10^{-3}
HMOX2	119.94	4.17x10 ⁻⁴	rs190300249	T/C	$0.34 [0.12 \ 0.93]$	3.51×10^{-2}
HSPG2	351.59	1.42×10^{-4}	rs72662414	C/A	3.05 [1.03, 9.07]	4.50×10^{-2}
HTR2A	286.1	1.75×10^{-4}	rs1923886	T/C	1.54 [1.21, 1.96]	5.36x10 ⁻⁴
II 10	185.14	2.70×10^{-4}	rs79474100	A/T	$0.27 [0.10 \ 0.73]$	9.99x10 ⁻³
II 13	86.87	5.76x10 ⁻⁴	rs60153262	T/C	$2.94 [1.50 \ 5.77]$	1.74×10^{-3}
IL 13 II 18	143.25	3.49x10 ⁻⁴	rs360723	Τ/Δ	0.69 [0.49 0.96]	2.87×10^{-2}
II 1 RN	281.1	1.78×10^{-4}	rs6746416	G/A	$1.37 [1.07 \ 1.76]$	1.28×10^{-2}
II 32	70.73	7.07x10 ⁻⁴	rs12598558	G/T	0.58 [0.38 0.80]	1.18×10^{-2}
11.52	91.11	5.49x10 ⁻⁴	rs60153262	С, Г Т/С	2.94 [1.50 5.77]	1.74×10^{-3}
116	236.93	$2 \cdot 11 \times 10^{-4}$	rs75897827	A/G	2.70 [1.18, 6.21]	1.91×10^{-2}

Supplementary Table 8. Signals of replication at gene level in the GEN-SEP dataset within 100 kb of previously reported candidate genes.

IL8	154.71	3·23x10 ⁻⁴	rs7686667	G/A	2.43 [1.06, 5.61]	3.69×10^{-2}
IRAK3	186.89	2.68x10 ⁻⁴	rs569436368	A/G	0.26 [0.09, 0.81]	2.05×10^{-2}
ISG15	8.12	6·16x10 ⁻³	rs12093451	A/C	0.50 [0.29, 0.88]	$1.55 \text{x} 10^{-2}$
KLK2	201.25	2·48x10 ⁻⁴	rs1701934	T/C	5.03 [1.65, 15.4]	4.61x10 ⁻³
LRRC16A	781.8	6-40x10 ⁻⁵	rs2690123	G/A	1.41 [1.11, 1.8]	5.64x10 ⁻³
LTA	459.6	$1.09 \text{x} 10^{-4}$	rs45552734	T/C	0.58 [0.41, 0.82]	2-40x10-3
MAP3K1*	262.39	1.91×10^{-4}	rs1910019	T/C	1.77 [1.25, 2.50]	1.30x10-3
MAP3K6	86.03	5.81x10 ⁻⁴	rs12742921	C/T	0.72 [0.52, 0.99]	4.53x10 ⁻²
MBL2	250.05	2.00x10-4	rs34546527	C/A	0.44 [0.28, 0.68]	$2 \cdot 50 \times 10^{-4}$
MIF	141.4	3.54x10 ⁻⁴	rs75761219	T/C	0.22 [0.06, 0.76]	1.72×10^{-2}
MUC5B*	71.73	6-97x10 ⁻⁴	rs2071175	T/C	2.10 [1.18, 3.74]	$1 \cdot 16 \times 10^{-2}$
MYLK	307.19	1.63x10 ⁻⁴	rs16834826	G/A	1.48 [1.15, 1.91]	2·45x10 ⁻³
NAMPT	238.31	2·10x10 ⁻⁴	rs56844330	G/A	0.64 [0.47, 0.87]	5.02x10 ⁻³
NFE2L2	196.18	2.55x10 ⁻⁴	rs2588866	T/C	0.51 [0.30, 0.87]	$1 \cdot 25 \times 10^{-2}$
NFKB1	210.58	$2 \cdot 37 \times 10^{-4}$	rs76615823	G/A	3.21 [1.13, 9.14]	$2 \cdot 88 \times 10^{-2}$
NFKBIA	254.35	$1.97 \text{x} 10^{-4}$	rs75208350	T/C	2.44 [1.15, 5.19]	$2 \cdot 01 \times 10^{-2}$
NOS3	195.41	2.56x10 ⁻⁴	rs41307316	A/G	0.22 [0.10, 0.51]	4.03x10 ⁻⁴
NQO1	143.23	3-49x10 ⁻⁴	rs116423606	A/G	0.30 [0.09, 0.95]	3.98×10^{-2}
PDE4B	530.28	9·43x10⁻⁵	rs6664875	C/A	0.64 [0.48, 0.85]	1.96x10 ⁻³
PI3	142.59	3.51x10 ⁻⁴	rs877608	A/T	1.98 [1.08, 3.63]	2.71×10^{-2}
PLAU	116.57	$4 \cdot 29 \times 10^{-4}$	rs72816344	A/G	3.50 [1.08, 11.36]	3.73×10^{-2}
POPDC3	181.91	2.75x10 ⁻⁴	rs1051484	T/C	0.62 [0.46, 0.82]	$1 \cdot 12 \times 10^{-3}$
PPARGC1A	978.39	5·11x10 ⁻⁵	rs6847465	T/C	3.92 [1.51, 10.15]	4-96x10-3
PPFIA1-SHANK2	881.08	5.67x10 ⁻⁵	rs11602848	C/T	1.71 [1.20, 2.43]	3-01x10 ⁻³
PRKAG2	648.11	7·71x10 ⁻⁵	rs10231047	C/T	0.71 [0.56, 0.89]	2·91x10 ⁻³
S1PR3	243.08	2.06x10-4	rs150901384	G/T	4.57 [1.44, 14.5]	9.79x10⁻³
SELPLG	176.88	2.83x10 ⁻⁴	rs8179106	A/G	1.77 [1.17, 2.66]	6-44x10-3
SERPINE1	207.41	$2 \cdot 41 \times 10^{-4}$	rs73168394	A/G	0.33 [0.17, 0.67]	$2 \cdot 22 \times 10^{-3}$
SFTPA1	143.17	3·49x10 ⁻⁴	rs17886197	G/T	1.60 [1.14, 2.26]	7·27x10 ⁻³
SFTPA2	166-37	3.01x10 ⁻⁴	rs17886197	G/T	1.60 [1.14, 2.26]	7·27x10 ⁻³
SFTPB	165.98	3-01x10 ⁻⁴	rs75830997	T/G	3.64 [1.51, 8.73]	3-86x10-3
SFTPD	222.05	$2 \cdot 25 \times 10^{-4}$	rs7082484	C/A	2.27 [1.22, 4.24]	9.55x10⁻³
SOD3	175.95	$2 \cdot 84 \times 10^{-4}$	rs2361079	C/T	0.59 [0.40, 0.85]	4.55x10 ⁻³
STAT1	161.06	3·10x10 ⁻⁴	rs4853453	A/G	1.58 [1.12, 2.24]	9·30x10⁻³
TGFB2	244.72	$2.04 \text{x} 10^{-4}$	rs75854892	C/T	5.78 [1.60, 20.9]	7·43x10 ⁻³
TIA 1	104.96	4·76x10 ⁻⁴	rs11694045	G/T	1.42 [1.11, 1.82]	5-48x10 ⁻³
TIRAP	187.4	2.67x10 ⁻⁴	rs12283024	A/G	0.34 [0.15, 0.78]	1.08×10^{-2}
TLR1	227.88	2·19x10 ⁻⁴	rs193202734	C/T	5.63 [1.86, 17.01]	$2 \cdot 20 \times 10^{-3}$
TNF	448.83	$1 \cdot 11 x 10^{-4}$	rs45552734	T/C	0.58 [0.41, 0.82]	2·40x10 ⁻³
TNFRSF11A	246.87	2·03x10 ⁻⁴	rs7235828	A/G	0.65 [0.47, 0.89]	7·73x10 ⁻³
TRAF6	185.4	2·70x10 ⁻⁴	rs2458928	A/G	0.68 [0.52, 0.89]	5-39x10 ⁻³
UGT2B7	186.83	2.68x10 ⁻⁴	rs139914109	C/T	7.69 [1.65, 35.87]	9·42x10⁻³
VEGFA	262.98	1·90x10 ⁻⁴	rs9367172	A/G	0.55 [0.41, 0.73]	4.69x10 ⁻⁵
VLDLR	375.76	1.33×10^{-4}	rs10491716	C/A	1.55 [1.19, 2.02]	$1 \cdot 20 \times 10^{-3}$
VWF	403.43	$1 \cdot 24 x 10^{-4}$	rs2239160	G/A	0.42 [0.26, 0.68]	3.28×10^{-4}
XKR3	97.09	5·15x10 ⁻⁴	rs5994042	A/T	3.23 [1.20, 8.71]	2.03x10 ⁻²
ZNF335	141.92	3.52x10 ⁻⁴	rs1736493	G/A	0.53[0.31, 0.89]	1.72×10^{-2}

A1, Effect allele; A2, Non-effect allele; CI, Confidence Interval; OR, Odds ratio for the effect alleles. In bold, genes harboring variants reaching the bonferroni threshold. *Genes identified for this study (December 2015 to November 2018) based on the search of terms "acute respiratory distress syndrome", "ARDS" OR "acute lung injury" with "polymorphism" OR "genetic variant".