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SUPPLEMENTARY FIGURES 

 

 

 

Supplementary Figure S1: Bar plot of number of metabolic enzymes from different reaction 

classes present in the human skin microbiome (Related to Figure 1) 

  



 

 

Supplementary Figure S2: Matrix layout for the intersection of unique enzymatic reactions 

from 19 different skin sites. The blue horizontal bar depicts the absolute number of unique 

enzymatic reactions that can occur on the each skin site. The vertical bar plot represents the 

number of unique enzymatic reactions (top of bars) shared by the different skin sites. The 

sites that share a particular number are shown as the intersection of filled ellipsoids at x-

axis. The ellipsoids are placeholders for individual skin site. (Related to Figure 1)  

 



 

 

Supplementary Figure S3: Distribution of substrate molecules across different reactions 

classes (annotated as one-digit EC number). Here all inclusive approach has been used 

where if one molecule can undergo reactions from different reaction claseses the count is 

incremented in all of them. (Related to Figure 1) 

 



---------------------

 

Supplementary Figure S4: Distribution of 3,769 substrate molecules across different 

reactions classes (annotated as one-digit EC number) unique combinations. (Related to 

Figure 1) 

  



 

 

 

Supplementary Figure S5: The distribution of 20-nearest neighbours distances across the 

dataset of 3,769 substrate molecules based on the selected 2,322 variables. The knee point 

at 3.25 is the most suitable epsilon value for the density based clustering using DBSCAN. 

(Related to Figure 2) 

  



 

Supplementary Figure S6: Evaluating the diversity and complexity of a subset dataset where 
one substrate can undergo only one type of reaction (Related to Figure 2) 

[A] The cumulative scree plot and a normal scree plot from the PCA analysis of all the 
substrate molecules from the dataset of substrates that can undergo only one type of 
reaction class. All the selected 2,322 features were used for performing the PCA analysis. 
The x-axis is the principal component number, y-axis for the dot plot is the cumulative 
variance explained by the individual principal components, and the y-axis for the bar plot is 
the percentage of variance explained by the individual principal components. 

[B] The PCA plot of the substrate molecules that can undergo only one type of reaction class 
using the principal component PC-1 and PC-2 from the PCA analysis. Different reaction 
classes are coloured differently and the ellipsoids are drawn for each reaction class based on 
the distribution of substrate molecules in the plot.  

 

  



 

 

Supplementary Figure S7: The performance of different multiclass multilabel classification 

algorithms on the multilabel dataset with ECFP fingerprints, FCFP fingerprints, boruta 

selected descriptors, and boruta selected fingerprints. ACC – Multilabel accuracy, PPV – 

Multilabel precision or Multilabel positive predicted value, Hamloss – Hamming loss, F1 – 

Multilabel F1 score. Binary relevance – BR, Classifier chains – CC, Nested stacking – NS, 

Dependent binary relevance – DBR, Stacking – S. (Related to Figure 4) 

  



 

 

Supplementary Figure S8: The performance of different multiclass multilabel classification 

algorithms on the multilabel dataset with ECFP fingerprints, boruta selected descriptors, and 

boruta selected fingerprints. ACC – Multilabel accuracy, PPV – Multilabel precision or 

Multilabel positive predicted value, Hamloss – Hamming loss, F1 – Multilabel F1 score. 

Binary relevance – BR, Classifier chains – CC, Nested stacking – NS, Dependent binary 

relevance – DBR, Stacking – S. (Related to Figure 4) 

 

  



 

 

Supplementary Figure S9: The performance of different multiclass multilabel classification 

algorithms on the multilabel dataset with FCFP fingerprints, boruta selected descriptors, and 

boruta selected fingerprints. ACC – Multilabel accuracy, PPV – Multilabel precision or 

Multilabel positive predicted value, Hamloss – Hamming loss, F1 – Multilabel F1 score. 

Binary relevance – BR, Classifier chains – CC, Nested stacking – NS, Dependent binary 

relevance – DBR, Stacking – S. (Related to Figure 4) 

 

  



 

 

Supplementary Figure S10: Selecting the most optimum weight initializer for ANN models 

using grid search method using 5-fold cross validation. Different weight initializers are 

plotted against their respective fraction binary accuracies. The most optimum weight 

initializer was “lecun_uniform”.  (Related to Figure 5)  

  



 

 

 

Supplementary Figure S11: Selecting the most optimum value of learning rate for ANN 

models using grid search method using 5-fold cross validation. Different values of learning 

rates are plotted against their respective fraction binary accuracies. The most optimum 

value for the learning rate was “0.001”.  (Related to Figure 5) 

 

 

  



 

Supplementary Figure S12: Selecting the best performing optimizer for ANN models using 

grid search method using 5-fold cross validation. Different optimizers are plotted against 

their respective fraction binary accuracies. The best performing optimizer was “RMSprop”. 

(Related to Figure 5)  

  



 

Supplementary Figure S13: Selecting the most optimum value of batch size for ANN models 

using grid search method using 5-fold cross validation. Different values of batch size are 

plotted against their respective fraction binary accuracies. The most optimum value for the 

batch size was “150”.  (Related to Figure 5) 

  



 

Supplementary Figure S14: Selecting the most optimum value of dropout rate and weight 

constraint for ANN models for performing dropout regularization using grid search method 

using 5-fold cross validation. Different combinations of values of dropout rate and weight 

constraint are plotted against their respective fraction binary accuracies. The most optimum 

value for the dropout rate was “0.4” and most optimum value of weight constraint was “4”.  

(Related to Figure 5) 

 

 

  



SUPPLEMETARY TABLES 

 

Table S1: The binary performance of multiclass multilabel model for predicting the reaction 

class on 5-fold cross validation testing. (Related to Figure 4) 

Reaction Class AUC MMCE FNR FPR ACC MCC NPV PPV 
F1 

Score 
FDR GPR 

Oxidoreductases 0.855 0.207 0.111 0.345 0.793 0.568 0.806 0.786 0.834 0.214 0.836 

Transferases 0.841 0.235 0.225 0.244 0.765 0.531 0.774 0.757 0.766 0.243 0.766 

Hydrolases 0.824 0.210 0.538 0.089 0.790 0.422 0.821 0.656 0.543 0.344 0.551 

Lyases 0.844 0.164 0.620 0.047 0.836 0.420 0.857 0.673 0.486 0.327 0.506 

Isomerases 0.900 0.082 0.571 0.020 0.918 0.522 0.931 0.734 0.541 0.266 0.561 

Ligases 0.886 0.082 0.761 0.017 0.918 0.336 0.931 0.577 0.338 0.423 0.371 

AUC = Area under the curve, MMCE = Binary mean misclassification error, FNR = Binary false negative rate, FPR 

= Binary false positive rate, ACC = Binary accuracy, MCC = Matthews correlation coefficient, NPV = Binary 

negative predictive value, PPV = Binary positive predicted value, F1 = Binary F1 score, FDR = Binary false 

discovery rate, GPR = Geometric mean of binary precision and binary recall 

 

  



Table S2: The binary performance of multiclass multi-label model for predicting the reaction 

class on blind set testing. (Related to Figure 4) 

Reaction Class AUC MMCE FNR FPR ACC MCC NPV PPV 
F1 

Score 
FDR GPR 

Oxidoreductases 0.871 0.174 0.081 0.309 0.826 0.638 0.855 0.813 0.863 0.188 0.864 

Transferases 0.884 0.222 0.217 0.226 0.778 0.557 0.783 0.774 0.778 0.226 0.778 

Hydrolases 0.810 0.186 0.487 0.094 0.814 0.450 0.859 0.625 0.563 0.375 0.566 

Lyases 0.896 0.120 0.536 0.036 0.880 0.516 0.899 0.722 0.565 0.278 0.579 

Isomerases 0.943 0.060 0.417 0.032 0.940 0.551 0.968 0.583 0.583 0.417 0.583 

Ligases 0.878 0.030 0.429 0.013 0.970 0.602 0.981 0.667 0.615 0.333 0.617 

AUC = Area under the curve, MMCE = Binary mean misclassification error, FNR = Binary false negative rate, FPR 

= Binary false positive rate, ACC = Binary accuracy, MCC = Matthews correlation coefficient, NPV = Binary 

negative predictive value, PPV = Binary positive predicted value, F1 = Binary F1 score, FDR = Binary false 

discovery rate, GPR = Geometric mean of binary precision and binary recall 

 

 

  



Table S3: The binary performance of multiclass multilabel model for predicting the 

subclasses of “Oxidoreductases” class on 5-fold cross validation testing. (Related to Table 1 

and 2) 

Reaction subclass AUC MMCE FNR FPR ACC MCC NPV PPV F1 FDR GPR 

Acting on the CH-OH 
group of donors 

0.944 0.115 0.237 0.056 0.885 0.733 0.892 0.868 0.812 0.132 0.814 

Acting on the aldehyde or 
oxo group of donors 

0.921 0.079 0.611 0.013 0.921 0.520 0.929 0.791 0.521 0.209 0.555 

Acting on the CH-CH group 
of donors 

0.914 0.099 0.503 0.022 0.901 0.586 0.911 0.812 0.617 0.188 0.635 

Acting on the CH-NH2 
group of donors 

0.945 0.046 0.686 0.008 0.954 0.449 0.961 0.698 0.433 0.302 0.468 

Acting on the CH-NH 
group of donors 

0.936 0.036 0.723 0.004 0.964 0.440 0.967 0.743 0.403 0.257 0.453 

Acting on NADH or NADPH 0.899 0.007 0.714 0.000 0.993 0.533 0.993 1.000 0.444 0.000 0.535 
Acting on other 

nitrogenous compounds 
as donors 

0.952 0.017 0.800 0.000 0.983 0.420 0.983 0.900 0.327 0.100 0.424 

Acting on a sulfur group of 
donors 

0.920 0.026 0.742 0.002 0.974 0.437 0.977 0.773 0.386 0.227 0.446 

Acting on a heme group of 
donors 

0.744 0.001 1.000 0.000 0.999 0.000 0.999 0.000 0.000 NA NA 

Acting on diphenols and 
related substances as 

donors 
0.881 0.014 1.000 0.000 0.986 0.000 0.986 0.000 0.000 NA NA 

Acting on a peroxide as 
acceptor 

0.927 0.018 0.739 0.002 0.982 0.436 0.984 0.750 0.387 0.250 0.442 

Acting on hydrogen as 
donor 

0.877 0.004 0.692 0.000 0.996 0.554 0.996 1.000 0.471 0.000 0.555 

Acting on single donors 
with incorporation of 

molecular oxygen 
(oxygenases) 

0.890 0.071 0.659 0.008 0.929 0.503 0.933 0.824 0.483 0.176 0.530 

Acting on paired donors, 
with incorporation or 

reduction of molecular 
oxygen 

0.894 0.197 0.223 0.175 0.803 0.602 0.819 0.784 0.780 0.216 0.780 

Oxidizing metal ions 0.949 0.002 0.357 0.000 0.998 0.801 0.998 1.000 0.783 0.000 0.802 
Acting on CH or CH2 

groups 
0.930 0.026 0.653 0.002 0.974 0.530 0.976 0.839 0.491 0.161 0.539 

Acting on iron-sulfur 
proteins as donors 

0.997 0.003 0.700 0.000 0.997 0.547 0.997 1.000 0.462 0.000 0.548 

Acting on reduced 
flavodoxin as donor 

0.993 0.002 1.000 0.000 0.998 0.000 0.998 0.000 0.000 NA NA 

Acting on phosphorus or 
arsenic in donors 

0.880 0.003 1.000 0.000 0.997 0.000 0.997 0.000 0.000 NA NA 

Catalysing the reaction X-
H + Y-H = X-Y 

0.916 0.017 0.814 0.001 0.983 0.381 0.983 0.800 0.302 0.200 0.386 

Reducing C-O-C group as 
acceptor 

0.813 0.004 1.000 0.000 0.996 0.000 0.996 0.000 0.000 NA NA 

Other oxidoreductases 0.798 0.007 0.737 0.000 0.993 0.466 0.993 0.833 0.400 0.167 0.468 

AUC = Area under the curve, MMCE = Binary mean misclassification error, FNR = Binary false negative rate, FPR 

= Binary false positive rate, ACC = Binary accuracy, MCC = Matthews correlation coefficient, NPV = Binary 



negative predictive value, PPV = Binary positive predicted value, F1 = Binary F1 score, FDR = Binary false 

discovery rate, GPR = Geometric mean of binary precision and binary recall 

NA - Although, stratified random sampling was used to split the six datasets into the training and testing 

datasets, yet, some of the reaction subclasses had no representation in the respective test datasets, thus few 

of the binary matrices could not be calculated for these reaction subclasses. These are represented as NA 

values 

 

Table S4: The binary performance of the multiclass multi-label model for predicting the 

subclasses of “Transferases” class on 5-fold cross validation testing. (Related to Table 1 and 

2) 

Reaction subclass AUC MMCE FNR FPR ACC MCC NPV PPV F1 FDR GPR 

Transferring one-carbon 
groups 

0.896 0.150 0.360 0.069 0.850 0.610 0.870 0.781 0.704 0.219 0.707 

Transferring aldehyde or 
ketonic groups 

0.939 0.017 1.000 0.001 0.983 
-

0.004 
0.984 0.000 0.000 1.000 0.000 

Acyltransferases 0.853 0.169 0.502 0.057 0.831 0.512 0.848 0.747 0.597 0.253 0.610 
Glycosyltransferases 0.890 0.144 0.384 0.059 0.856 0.608 0.873 0.790 0.692 0.210 0.698 

Transferring alkyl or aryl 
groups, other than methyl 

groups 
0.855 0.090 0.754 0.012 0.910 0.383 0.918 0.708 0.365 0.292 0.417 

Transferring nitrogenous 
groups 

0.956 0.062 0.465 0.011 0.938 0.650 0.944 0.863 0.660 0.137 0.679 

Transferring phosphorus-
containing groups 

0.943 0.106 0.278 0.053 0.894 0.697 0.917 0.809 0.763 0.191 0.764 

Transferring sulfur-
containing groups 

0.891 0.073 0.745 0.014 0.927 0.366 0.937 0.617 0.361 0.383 0.397 

Transferring selenium-
containing groups 

0.412 0.001 1.000 0.000 0.999 0.000 0.999 0.000 0.000 NA NA 

AUC = Area under the curve, MMCE = Binary mean misclassification error, FNR = Binary false negative rate, FPR 

= Binary false positive rate, ACC = Binary accuracy, MCC = Matthews correlation coefficient, NPV = Binary 

negative predictive value, PPV = Binary positive predicted value, F1 = Binary F1 score, FDR = Binary false 

discovery rate, GPR = Geometric mean of binary precision and binary recall 

NA - Although, stratified random sampling was used to split the six datasets into the training and testing 

datasets, yet, some of the reaction subclasses had no representation in the respective test datasets, thus few 

of the binary matrices could not be calculated for these reaction subclasses. These are represented as NA 

values 

 

  



Table S5: The binary performance of the multiclass multi-label model for predicting the 

subclasses of “Hydrolases” class on 5-fold cross validation testing. (Related to Table 1 and 2) 

Reaction subclass AUC MMCE FNR FPR ACC MCC NPV PPV F1 FDR GPR 

Acting on ester bonds 0.878 0.204 0.237 0.177 0.796 0.586 0.814 0.774 0.768 0.226 0.768 
Acting on sulfur-nitrogen 

bonds 
0.336 0.002 1.000 0.000 0.998 0.000 0.998 0.000 0.000 NA NA 

Acting on carbon-
phosphorus bonds 

0.844 0.005 1.000 0.000 0.995 0.000 0.995 0.000 0.000 NA NA 

Acting on sulfur-sulfur 
bonds 

0.426 0.001 1.000 0.000 0.999 0.000 0.999 0.000 0.000 NA NA 

Acting on carbon-sulfur 
bonds 

0.766 0.009 1.000 0.000 0.991 0.000 0.991 0.000 0.000 NA NA 

Glycosylases 0.890 0.092 0.452 0.023 0.908 0.622 0.919 0.817 0.656 0.183 0.669 
Acting on ether bonds 0.944 0.032 0.475 0.002 0.968 0.690 0.969 0.941 0.674 0.059 0.703 

Acting on peptide bonds 
(peptidases) 

0.906 0.032 1.000 0.000 0.968 0.000 0.968 1.000 0.000 NA NA 

Acting on carbon-nitrogen 
bonds, other than peptide 

bonds 
0.903 0.156 0.283 0.094 0.844 0.638 0.870 0.784 0.749 0.216 0.750 

Acting on acid anhydrides 0.952 0.058 0.383 0.023 0.942 0.646 0.960 0.744 0.674 0.256 0.677 
Acting on carbon-carbon 

bonds 
0.928 0.060 0.907 0.010 0.940 0.159 0.949 0.357 0.147 0.643 0.182 

Acting on halide bonds 0.990 0.021 0.606 0.000 0.979 0.621 0.979 1.000 0.565 0.000 0.628 
Acting on phosphorus-

nitrogen bonds 
0.355 0.003 1.000 0.000 0.997 0.000 0.997 0.000 0.000 NA NA 

AUC = Area under the curve, MMCE = Binary mean misclassification error, FNR = Binary false negative rate, FPR 

= Binary false positive rate, ACC = Binary accuracy, MCC = Matthews correlation coefficient, NPV = Binary 

negative predictive value, PPV = Binary positive predicted value, F1 = Binary F1 score, FDR = Binary false 

discovery rate, GPR = Geometric mean of binary precision and binary recall 

NA - Although, stratified random sampling was used to split the six datasets into the training and testing 

datasets, yet, some of the reaction subclasses had no representation in the respective test datasets, thus few 

of the binary matrices could not be calculated for these reaction subclasses. These are represented as NA 

values 

 

  



Table S6: The binary performance of the multiclass multi-label model for predicting the 

subclasses of “Lyases” class on 5-fold cross validation testing. (Related to Table 1 and 2) 

Reaction subclass AUC MMCE FNR FPR ACC MCC NPV PPV F1 FDR GPR 

Carbon-carbon lyases 0.851 0.224 0.259 0.201 0.776 0.537 0.823 0.710 0.725 0.290 0.726 
Carbon-oxygen lyases 0.839 0.223 0.231 0.214 0.777 0.554 0.742 0.810 0.789 0.190 0.789 

Carbon-nitrogen lyases 0.781 0.109 0.961 0.011 0.891 0.076 0.899 0.300 0.070 0.700 0.109 
Carbon-sulfur lyases 0.922 0.053 0.691 0.001 0.947 0.524 0.947 0.944 0.466 0.056 0.540 
Carbon-halide lyases 0.834 0.011 0.583 0.001 0.989 0.585 0.990 0.833 0.556 0.167 0.589 

Phosphorus-oxygen lyases 0.968 0.023 0.941 0.001 0.977 0.166 0.978 0.500 0.105 0.500 0.171 
carbon-phosphorus lyases 0.760 0.004 1.000 0.000 0.996 0.000 0.996 0.000 0.000 NA NA 

Other lyases 0.953 0.026 0.833 0.006 0.974 0.256 0.979 0.429 0.240 0.571 0.267 

AUC = Area under the curve, MMCE = Binary mean misclassification error, FNR = Binary false negative rate, FPR 

= Binary false positive rate, ACC = Binary accuracy, MCC = Matthews correlation coefficient, NPV = Binary 

negative predictive value, PPV = Binary positive predicted value, F1 = Binary F1 score, FDR = Binary false 

discovery rate, GPR = Geometric mean of binary precision and binary recall 

NA - Although, stratified random sampling was used to split the six datasets into the training and testing 

datasets, yet, some of the reaction subclasses had no representation in the respective test datasets, thus few 

of the binary matrices could not be calculated for these reaction subclasses. These are represented as NA 

values 

 

  



Table S7: The binary performance of the multiclass multi-label model for predicting the 

subclasses of “Isomerases” class on 5-fold cross validation testing. (Related to Table 1 and 2) 

Reaction subclass AUC MMCE FNR FPR ACC MCC NPV PPV F1 FDR GPR 

Racemases and 
epimerases 

0.946 0.108 0.133 0.095 0.892 0.765 0.926 0.832 0.849 0.168 0.849 

cis-trans-Isomerases 0.822 0.027 0.529 0.005 0.973 0.601 0.977 0.800 0.593 0.200 0.614 
Intramolecular 

oxidoreductases 
0.924 0.167 0.356 0.077 0.833 0.605 0.843 0.802 0.714 0.198 0.719 

Intramolecular 
transferases 

0.827 0.165 0.646 0.049 0.835 0.389 0.859 0.636 0.455 0.364 0.475 

Intramolecular lyases 0.932 0.059 0.292 0.015 0.941 0.767 0.946 0.902 0.793 0.098 0.799 
Other isomerases 0.277 0.005 1.000 0.000 0.995 0.000 0.995 0.000 0.000 NA NA 

AUC = Area under the curve, MMCE = Binary mean misclassification error, FNR = Binary false negative rate, FPR 

= Binary false positive rate, ACC = Binary accuracy, MCC = Matthews correlation coefficient, NPV = Binary 

negative predictive value, PPV = Binary positive predicted value, F1 = Binary F1 score, FDR = Binary false 

discovery rate, GPR = Geometric mean of binary precision and binary recall 

NA - Although, stratified random sampling was used to split the six datasets into the training and testing 

datasets, yet, some of the reaction subclasses had no representation in the respective test datasets, thus few 

of the binary matrices could not be calculated for these reaction subclasses. These are represented as NA 

values 

 

  



Table S8: The binary performance of the multiclass multi-label model for predicting the 

subclasses of “Ligases” class on 5-fold cross validation testing. (Related to Table 1 and 2) 

Reaction subclass AUC MMCE FNR FPR ACC MCC NPV PPV F1 FDR GPR 

Forming carbon-oxygen 
bonds 

0.902 0.086 0.463 0.029 0.914 0.581 0.933 0.733 0.620 0.267 0.627 

Forming carbon-sulfur 
bonds 

0.939 0.134 0.167 0.112 0.866 0.722 0.888 0.833 0.833 0.167 0.833 

Forming carbon-nitrogen 
bonds 

0.933 0.124 0.099 0.151 0.876 0.752 0.890 0.864 0.882 0.136 0.882 

Forming carbon-carbon 
bonds 

0.892 0.067 0.864 0.007 0.933 0.264 0.939 0.600 0.222 0.400 0.286 

Forming phosphoric-ester 
bonds 

0.981 0.019 0.500 0.007 0.981 0.568 0.987 0.667 0.571 0.333 0.577 

Forming nitrogen-D-metal 
bonds 

0.969 0.019 1.000 0.000 0.981 0.000 0.981 0.000 0.000 NA NA 

AUC = Area under the curve, MMCE = Binary mean misclassification error, FNR = Binary false negative rate, FPR 

= Binary false positive rate, ACC = Binary accuracy, MCC = Matthews correlation coefficient, NPV = Binary 

negative predictive value, PPV = Binary positive predicted value, F1 = Binary F1 score, FDR = Binary false 

discovery rate, GPR = Geometric mean of binary precision and binary recall 

NA - Although, stratified random sampling was used to split the six datasets into the training and testing 

datasets, yet, some of the reaction subclasses had no representation in the respective test datasets, thus few 

of the binary matrices could not be calculated for these reaction subclasses. These are represented as NA 

values 

 

  



Table S9: The binary performance of the multiclass multi-label model for predicting the 

subclasses of “Oxidoreductases” class on stratified random sampling split testing. (Related 

to Table 1 and 2) 

Reaction subclass AUC MMCE FNR FPR ACC MCC NPV PPV F1 FDR GPR 

Acting on the CH-OH 
group of donors 

0.973 0.099 0.158 0.070 0.901 0.776 0.922 0.857 0.850 0.143 0.850 

Acting on the aldehyde or 
oxo group of donors 

0.975 0.047 0.462 0.013 0.953 0.624 0.963 0.778 0.636 0.222 0.647 

Acting on the CH-CH group 
of donors 

0.932 0.058 0.320 0.014 0.942 0.749 0.948 0.895 0.773 0.105 0.780 

Acting on the CH-NH2 
group of donors 

0.964 0.012 0.500 0.000 0.988 0.703 0.988 1.000 0.667 0.000 0.707 

Acting on the CH-NH 
group of donors 

0.996 0.012 0.333 0.006 0.988 0.661 0.994 0.667 0.667 0.333 0.667 

Acting on NADH or NADPH NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA 
Acting on other 

nitrogenous compounds 
as donors 

1.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 

Acting on a sulfur group of 
donors 

1.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 

Acting on a heme group of 
donors 

NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA 

Acting on diphenols and 
related substances as 

donors 
0.994 0.006 1.000 0.000 0.994 0.000 0.994 0.000 0.000 NA NA 

Acting on a peroxide as 
acceptor 

0.994 0.006 1.000 0.000 0.994 0.000 0.994 0.000 0.000 NA NA 

Acting on hydrogen as 
donor 

NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA 

Acting on single donors 
with incorporation of 

molecular oxygen 
(oxygenases) 

0.854 0.052 0.583 0.013 0.948 0.521 0.958 0.714 0.526 0.286 0.546 

Acting on paired donors, 
with incorporation or 

reduction of molecular 
oxygen 

0.941 0.122 0.125 0.120 0.878 0.755 0.890 0.864 0.870 0.136 0.870 

Oxidizing metal ions NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA 
Acting on CH or CH2 

groups 
0.994 0.006 0.500 0.000 0.994 0.705 0.994 1.000 0.667 0.000 0.707 

Acting on iron-sulfur 
proteins as donors 

NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA 

Acting on reduced 
flavodoxin as donor 

NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA 

Acting on phosphorus or 
arsenic in donors 

NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA 

Catalysing the reaction X-
H + Y-H = X-Y 

1.000 0.006 1.000 0.000 0.994 0.000 0.994 1.000 0.000 NA NA 

Reducing C-O-C group as 
acceptor 

NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA 

Other oxidoreductases NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA 

AUC = Area under the curve, MMCE = Binary mean misclassification error, FNR = Binary false negative rate, FPR 

= Binary false positive rate, ACC = Binary accuracy, MCC = Matthews correlation coefficient, NPV = Binary 



negative predictive value, PPV = Binary positive predicted value, F1 = Binary F1 score, FDR = Binary false 

discovery rate, GPR = Geometric mean of binary precision and binary recall 

NA - Although, stratified random sampling was used to split the six datasets into the training and testing 

datasets, yet, some of the reaction subclasses had no representation in the respective test datasets, thus few 

of the binary matrices could not be calculated for these reaction subclasses. These are represented as NA 

values 

 

Table S10: The binary performance of the multiclass multi-label model for predicting the 

subclasses of “Transferases” class on stratified random sampling split testing. (Related to 

Table 1 and 2) 

Reaction subclass AUC MMCE FNR FPR ACC MCC NPV PPV F1 FDR GPR 

Transferring one-carbon 
groups 

0.924 0.133 0.302 0.070 0.867 0.654 0.892 0.789 0.741 0.211 0.742 

Transferring aldehyde or 
ketonic groups 

NA 0.006 NA 0.006 0.994 0.000 1.000 0.000 0.000 1.000 NA 

Acyltransferases 0.862 0.165 0.541 0.050 0.835 0.492 0.852 0.739 0.567 0.261 0.583 
Glycosyltransferases 0.961 0.089 0.220 0.043 0.911 0.764 0.926 0.865 0.821 0.135 0.822 

Transferring alkyl or aryl 
groups, other than methyl 

groups 
0.945 0.057 0.538 0.014 0.943 0.561 0.953 0.750 0.571 0.250 0.588 

Transferring nitrogenous 
groups 

0.968 0.051 0.500 0.007 0.949 0.639 0.953 0.875 0.636 0.125 0.661 

Transferring phosphorus-
containing groups 

0.937 0.089 0.286 0.033 0.911 0.731 0.922 0.862 0.781 0.138 0.785 

Transferring sulfur-
containing groups 

0.967 0.063 0.667 0.027 0.937 0.345 0.960 0.429 0.375 0.571 0.378 

Transferring selenium-
containing groups 

NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA 

AUC = Area under the curve, MMCE = Binary mean misclassification error, FNR = Binary false negative rate, FPR 

= Binary false positive rate, ACC = Binary accuracy, MCC = Matthews correlation coefficient, NPV = Binary 

negative predictive value, PPV = Binary positive predicted value, F1 = Binary F1 score, FDR = Binary false 

discovery rate, GPR = Geometric mean of binary precision and binary recall 

NA - Although, stratified random sampling was used to split the six datasets into the training and testing 

datasets, yet, some of the reaction subclasses had no representation in the respective test datasets, thus few 

of the binary matrices could not be calculated for these reaction subclasses. These are represented as NA 

values 

 

  



Table S11: The binary performance of the multiclass multi-label model for predicting the 

subclasses of “Hydrolases” class on stratified random sampling split testing. (Related to 

Table 1 and 2) 

Reaction subclass AUC MMCE FNR FPR ACC MCC NPV PPV F1 FDR GPR 

Acting on ester bonds 0.895 0.202 0.216 0.191 0.798 0.591 0.826 0.763 0.773 0.237 0.773 
Acting on sulfur-nitrogen 

bonds 
NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA 

Acting on carbon-
phosphorus bonds 

NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA 

Acting on sulfur-sulfur 
bonds 

NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA 

Acting on carbon-sulfur 
bonds 

NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA 

Glycosylases 0.968 0.083 0.250 0.056 0.917 0.672 0.958 0.692 0.720 0.308 0.721 
Acting on ether bonds 0.997 0.024 0.400 0.000 0.976 0.765 0.975 1.000 0.750 0.000 0.775 

Acting on peptide bonds 
(peptidases) 

0.964 0.012 1.000 0.000 0.988 0.000 0.988 0.000 0.000 NA NA 

Acting on carbon-nitrogen 
bonds, other than peptide 

bonds 
0.931 0.119 0.200 0.085 0.881 0.715 0.915 0.800 0.800 0.200 0.800 

Acting on acid anhydrides 0.963 0.048 0.143 0.039 0.952 0.731 0.987 0.667 0.750 0.333 0.756 
Acting on carbon-carbon 

bonds 
0.959 0.036 1.000 0.000 0.964 0.000 0.964 0.000 0.000 NA NA 

Acting on halide bonds 1.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 
Acting on phosphorus-

nitrogen bonds 
NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA 

AUC = Area under the curve, MMCE = Binary mean misclassification error, FNR = Binary false negative rate, FPR 

= Binary false positive rate, ACC = Binary accuracy, MCC = Matthews correlation coefficient, NPV = Binary 

negative predictive value, PPV = Binary positive predicted value, F1 = Binary F1 score, FDR = Binary false 

discovery rate, GPR = Geometric mean of binary precision and binary recall 

NA - Although, stratified random sampling was used to split the six datasets into the training and testing 

datasets, yet, some of the reaction subclasses had no representation in the respective test datasets, thus few 

of the binary matrices could not be calculated for these reaction subclasses. These are represented as NA 

values 

 

  



Table S12: The binary performance of the multiclass multi-label model for predicting the 

subclasses of “Lyases” class on stratified random sampling split testing. (Related to Table 1 

and 2) 

Reaction subclass AUC MMCE FNR FPR ACC MCC NPV PPV F1 FDR GPR 

Carbon-carbon lyases 0.895 0.169 0.192 0.154 0.831 0.650 0.868 0.778 0.792 0.222 0.793 
Carbon-oxygen lyases 0.907 0.169 0.194 0.138 0.831 0.664 0.781 0.879 0.841 0.121 0.841 

Carbon-nitrogen lyases 0.850 0.077 1.000 0.000 0.923 0.000 0.923 1.000 0.000 NA NA 
Carbon-sulfur lyases 0.968 0.031 0.333 0.016 0.969 0.651 0.984 0.667 0.667 0.333 0.667 
Carbon-halide lyases NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA 

Phosphorus-oxygen lyases 1.000 0.015 1.000 0.000 0.985 0.000 0.985 1.000 0.000 NA NA 
carbon-phosphorus lyases NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA 

Other lyases 1.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 

AUC = Area under the curve, MMCE = Binary mean misclassification error, FNR = Binary false negative rate, FPR 

= Binary false positive rate, ACC = Binary accuracy, MCC = Matthews correlation coefficient, NPV = Binary 

negative predictive value, PPV = Binary positive predicted value, F1 = Binary F1 score, FDR = Binary false 

discovery rate, GPR = Geometric mean of binary precision and binary recall 

NA - Although, stratified random sampling was used to split the six datasets into the training and testing 

datasets, yet, some of the reaction subclasses had no representation in the respective test datasets, thus few 

of the binary matrices could not be calculated for these reaction subclasses. These are represented as NA 

values 

 

  



Table S13: The binary performance of the multiclass multi-label model for predicting the 

subclasses of “Isomerases” class on stratified random sampling split testing. (Related to 

Table 1 and 2) 

Reaction subclass AUC MMCE FNR FPR ACC MCC NPV PPV F1 FDR GPR 

Racemases and 
epimerases 

0.973 0.083 0.077 0.087 0.917 0.824 0.955 0.857 0.889 0.143 0.889 

cis-trans-Isomerases 1.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 
Intramolecular 

oxidoreductases 
0.931 0.083 0.273 0.000 0.917 0.806 0.893 1.000 0.842 0.000 0.853 

Intramolecular 
transferases 

0.842 0.139 0.714 0.000 0.861 0.494 0.853 1.000 0.444 0.000 0.535 

Intramolecular lyases 0.961 0.056 0.200 0.032 0.944 0.768 0.968 0.800 0.800 0.200 0.800 
Other isomerases NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA 

AUC = Area under the curve, MMCE = Binary mean misclassification error, FNR = Binary false negative rate, FPR 

= Binary false positive rate, ACC = Binary accuracy, MCC = Matthews correlation coefficient, NPV = Binary 

negative predictive value, PPV = Binary positive predicted value, F1 = Binary F1 score, FDR = Binary false 

discovery rate, GPR = Geometric mean of binary precision and binary recall 

NA - Although, stratified random sampling was used to split the six datasets into the training and testing 

datasets, yet, some of the reaction subclasses had no representation in the respective test datasets, thus few 

of the binary matrices could not be calculated for these reaction subclasses. These are represented as NA 

values 

  



Table S14: The binary performance of the multiclass multi-label model for predicting the 

subclasses of “Ligases” class on stratified random sampling split testing. (Related to Table 1 

and 2) 

Reaction subclass AUC MMCE FNR FPR ACC MCC NPV PPV F1 FDR GPR 

Forming carbon-oxygen 
bonds 

0.957 0.040 0.500 0.000 0.960 0.692 0.958 1.000 0.667 0.000 0.707 

Forming carbon-sulfur 
bonds 

0.887 0.200 0.200 0.200 0.800 0.592 0.857 0.727 0.762 0.273 0.763 

Forming carbon-nitrogen 
bonds 

0.910 0.240 0.231 0.250 0.760 0.519 0.750 0.769 0.769 0.231 0.769 

Forming carbon-carbon 
bonds 

0.958 0.080 1.000 0.042 0.920 -0.042 0.958 0.000 0.000 1.000 0.000 

Forming phosphoric-ester 
bonds 

NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA 

Forming nitrogen-D-metal 
bonds 

NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA 

AUC = Area under the curve, MMCE = Binary mean misclassification error, FNR = Binary false negative rate, FPR 

= Binary false positive rate, ACC = Binary accuracy, MCC = Matthews correlation coefficient, NPV = Binary 

negative predictive value, PPV = Binary positive predicted value, F1 = Binary F1 score, FDR = Binary false 

discovery rate, GPR = Geometric mean of binary precision and binary recall 

NA - Although, stratified random sampling was used to split the six datasets into the training and testing 

datasets, yet, some of the reaction subclasses had no representation in the respective test datasets, thus few 

of the binary matrices could not be calculated for these reaction subclasses. These are represented as NA 

values 

 

  



TRANSPARENT METHODS 

Construction of microbial species database 

The data and text mining of the available literature was performed to construct a manually 

curated database of bacterial species present at different skin sites. The protein sequences 

of genomes of the bacterial species from the constructed database were retrieved from 

NCBI Reference Sequence Database (RefSeq) (O'Leary et al., 2015). Only complete genome 

assemblies were used from the RefSeq database. The genomes of all the available strains of 

a species were used to construct the pangenome of that species which helped to compile 

the metabolic potential of all the strains for a particular species.  The pangenome of a 

species includes all the genes from all the different strains of that species. The pangenomes 

were constructed for all the bacterial species that are experimentally known to be a part of 

skin microbiome, and for which the complete genomes were available on the NCBI RefSeq 

database. The information on different bacterial species for which the pangenomes were 

constructed, and the skin sites harbouring these species is provided in Supplementary Data 

Sheet 1. The information on 19 different sites primarily including the sebaceous, moist, and 

dry skin niches was retrieved from literature, manually curated, and was used for further 

analysis. For the construction of pangenome, the protein sequences of all genomes of a 

species were merged and clustered at 100% identity using CD-HIT v4.6 (Li and Godzik, 2006). 

Construction of skin microbiome specific metabolic information database 

The ExPASy enzyme database was used to find the Uniprot/SwissProt IDs of all the 

annotated enzymes that belong a particular metabolic reaction annotated as four-digit EC 

number (Gasteiger et al., 2003). The protein sequences for these enzymes were 

downloaded from the Uniprot database (Consortium, 2014). The homology search of these 

enzyme sequences was performed against each pangenome to identify all the metabolic 

enzymes present in that pangenome using the NCBI BLASTP program (Altschul et al., 1990). 

The hits were filtered using the cut-off criteria of identity >50%, bit-score >100, query 

coverage >50%, subject coverage >50%, E-value <10-10, mismatch percentage <50%, and gap 

percentage <50%. Finally, a database of complete reactions annotated as four-digit EC 

number and corresponding metabolic enzymes from all the pangenomes was constructed. 

Each of the metabolic enzymes was tagged with the bacterial species pangenome containing 

the enzyme. Further, the metabolic enzymes were also tagged with the skin sites that 

harbour the bacterial species with those enzymes.  

Construction of reaction, RDM pattern, and substrate database 

All the enzymatic reactions and their corresponding reactions IDs were retrieved from KEGG 

database (Kanehisa and Goto, 2000). For each reaction ID, the corresponding reactions pairs 

and respective RDM patterns were also retrieved from the KEGG database (Kanehisa and 



Goto, 2000). From this data the databases of reactions, reaction pairs, and RDM patterns 

were constructed. From the reactions, the primary substrates were identified and a 

database of primary substrates and their respective reactions annotated as four-digit EC 

number was constructed.  

Calculation of molecular features of substrates 

The structural and chemical features were calculated for each of the substrate molecule in 

the substrate database. Thus, the molecular information of substrates was translated into 

machine-readable features that include chemical properties parameters, linear structural 

fingerprints, and circular molecular connectivity information. The chemical features were 

calculated using the PaDEL software (Yap, 2011). These chemical features included different 

types of chemical descriptions such as acidic atom count, aromatic atom count, aromatic 

bonds count, carbon types, molecular distance edge etc. encoded into 240 different values. 

Two types of structural fingerprints were calculated: linear and circular. The linear 

fingerprints were calculated using the PaDEL software (Yap, 2011). A total of 12 different 

types of linear fingerprints (Fingerprinter, Pubchem, MACCS, Atom pairs 2D, KlekotaRoth 

etc.) were calculated that were represented as 10,208 bits (values either 0 or 1). The two 

types of circular/topological fingerprints, Morgan FCFP - 512 bits and Morgan ECFP - 512 

bits, were calculated using RDkit software (Landrum, 2016).  

Feature selection 

The Boruta algorithm implemented in R as the “Boruta” package was used to extract the 

important features among all the above calculated molecular features (Kursa and Rudnicki, 

2010). Boruta is a wrapper algorithm for feature selection that uses “Random Forest” 

algorithm, and scores each feature and marks them as important, unimportant or tentative. 

The tentative features were then finalized as important or unimportant using 

“TentativeRoughFix” function of Boruta package in R. The variable importance was 

calculated for each EC reaction (EC1 to EC6) class separately. Finally, the important features 

for each EC were merged and unique sorted to obtain the final set of important features. 

Principal component and cluster analysis 

Principal component analysis was performed using the “prcomp” function from “stats” 

package in R v3.4.4. This function performs the principal component analysis (PCA) by 

performing the singular value decomposition of the input data (Mankin, 2003). This method 

is the preferred method for better numeric accuracy. The PCA and scree plots were 

generated using the “factoextra” and “ggfortify” package in R v3.4.4 (Kassambara and 

Mundt, 2017). The density-based clustering was performed using the “fpc” and “dbscan” 

package in R v3.4.4. The kNN distance plot was generated using the “kNNdistplot” function 



from “dbscan” package in R v3.4.4 (Tran et al., 2013). The density cluster plot was generated 

using the “factoextra” package in R v3.4.4 (Kassambara and Mundt, 2017). 

Hierarchical clustering 

The hierarchical clustering was performed using the ‘hclust’ function of ‘stats’ package in R 

v3.4.4. The approximate unbiased p-values (AUp) and the bootstrap probability (BP) values 

for each branch/cluster were calculated using multiscale bootstrap resampling and using 

normal bootstrap resampling, respectively. The optimum number of clusters was identified 

to be two based on the average silhouette method . 

Construction of machine learning models  

Dataset construction 

The dataset of 3,769 substrate molecules was randomly split into a working and blind 

dataset with a ratio of 95:5. Thus, the working dataset had 3,602 molecules and the blind 

dataset had 167 molecules. The working dataset was utilized for the training and statistical 

evaluation of the machine learning model, and the blind dataset was used for the 

independent evaluation of the model. The dataset was highly skewed with a higher number 

of substrate molecules for “Oxidoreductases” and “Transferases” in comparison to other 

reaction classes. Also the abundances of substrate molecules belonging to different 

combinations of reaction classes were also highly variable. Thus, a modified strategy of 

stratified random sampling approach was used to divide the working dataset into the 

training and testing dataset for modeling. The details of the dataset construction are 

mentioned in Supplementary Text S1. 

Training and evaluation 

The prediction of reaction class is a multiclass multilabel problem because one substrate 

molecule can undergo more than one type of reaction among the six types of reactions 

classes. In machine learning, there exists two methods to model the multiclass multi-label 

problem, one is problem transformation method where the multiclass multi-label problem 

is divided into several multiclass or binary problems, and another is algorithm adaptation 

method where the algorithms are adapted to perform the multiclass multi-label predictions. 

For the problem transformation method all the algorithms used for binary or multiclass 

classification can be used, whereas for algorithm adaptation method the algorithms need to 

be changed before using them for the multiclass multi-label classification. In the problem 

transformation method, a learner known as “wrapped multilabel learner” is employed on 

the “core learner”. The function of wrapped learner is to manage and combine several core 

learners so that they can work in synchronization to achieve the multilabel classification. 

The core learner is any traditional algorithm for binary or multiclass classification. We used 

five different wrapper methods: (1) binary relevance (BR) method, (2) classifier chains (CC) 



method, (3) Nested stacking (NS) method, (4) Dependent binary relevance (DBR) method, 

and (5) Stacking method. We used the seven core learners for each of the above mentioned 

wrapper methods, these are: k-Nearest Neighbors (kNN), Recursive Partitioning (RPART), 

Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost),Perceptive Neural 

Network (NNET), Naive Bayes, Random Forests (RF). In the algorithm adaptation method, 

we used two methods, randomForestSRC (RFSRC) and random ferns (RFerns).  

The performance of the models was evaluated using two types of matrices, multilabel - to 

assess the capability of the model to perform the multilabel classification, and binary - to 

assess the capability of the model to perform the binary classification for each label. Five 

matrices were used in the multilabel case namely: Multilabel Accuracy, Multilabel Sensitivity 

or Recall or True Positive Rate, Multilabel Precision or Positive Prediction Value (PPV), 

Multilabel F1 measure (F1), and Hamming loss (Charte and Charte, 2015).  The formulas for 

these matrices for multiclass multilabel classification are mentioned below (Charte and 

Charte, 2015): 

                    
 

    
 

         

         

     

   

                        
 

   
 

         

    

     

   

 

                                   
 

   
 

         

    

     

   

  

                        
                

                
                

 

   
 

         

   

     

   

 

Where, D is the total number of instances in the multiclass multilabel dataset, C is the 

complete set of labels present in the multiclass multilabel dataset, Pi is the predicted labels 

for the ith instance, and Ti is the true labels for the ith instance. The set operations used 

were:   meaning intersection,   meaning union, and   meaning symmetric difference.  

We used eight matrices to evaluate the binary performance: Binary Accuracy, Mean 

Misclassification Error (MMCE), Matthews Correlation Coefficient (MCC), Binary Precision or 

Positive Predicted Value (PPV), Area under the curve (AUC), Binary False Negative Rate 

(FNR), Binary False Positive Rate (FPR), Binary Sensitivity or Recall or True Positive Rate 

(TPR), Binary Specificity or True Negative Rate (TNR), Binary Negative predictive value (NPV), 

Binary False discovery rate (FDR), and Binary Geometric Mean of binary precision and binary 

recall (GPR). The formulas for these binary performance matrices are mentioned in 

Supplementary Text S2. The final model for reaction class and subclass prediction was 

constructed with the method that showed the best multilabel and binary performance.  

Construction of artificial neural network (ANN) models 



Dataset construction 

The aim of constructing the ANN model was to improve upon the learning about the class-

specific patterns, thus, only the substrates where the molecule could undergo the reactions 

of only one type of reaction class were extracted from the working dataset (as mentioned 

above) and were used for the construction of ANN models. This dataset had a total of 1,758 

substrate molecules with the distribution of molecules across different reactions classes: 

“Oxidoreductases” - 832, “Transferases” - 573, “Hydrolases” - 195, “Lyases” - 79, 

“Isomerases” – 41, and “Ligases”- 36. It is evident from the distribution that the dataset is 

very biased and imbalanced, thus, the stratified random sampling was performed to split 

this dataset into training and testing dataset. For stratified random sampling, this dataset 

was first divided into six parts, one for each reaction class, and then each reaction class 

dataset was splitted separately into training and testing dataset using random sampling with 

the split ration of approximately 90:10. Now all the six training sets were merged to create 

the final training dataset and all the six testing datasets were merged to create the final 

testing dataset.  

Training and evaluation 

The ANN network was constructed in Python using libraries tensorflow v1.4.1 and keras 

v2.2.4. Based on the nature of the problem, the best suited multilayer perceptron model 

that is based on the backpropagation method for training is used. In the backpropagation 

method, the error rate is provided as feedback to the whole neural network that is known 

as back propagating the error, which is then used by an optimizer algorithm to optimize the 

parameters of artificial neural network.  

Three different matrices were used to evaluate the performance of the ANN model: 

categorical accuracy, binary accuracy, and log loss/binary cross entropy. Since it is a 

multiclass classification problem the target variable here is one hot encoded. The 

categorical accuracy checks if the maxima in the true values and the maxima in the 

predicted values have the same index, if yes, it is considered a true prediction, else it is 

considered a wrong prediction. This is performed on all test dataset instances, and the 

fraction of correct predictions out of total predictions on test dataset gives the categorical 

accuracy. In contrast, for calculating the binary accuracy, at first all the probabilities are 

converted into values with the threshold of 0.5 (if <0.5 means 0, and if >0.5 means 1), then 

all the true values of each instance are compared with the predicted values. If the true value 

is equal to the predicted value then it is considered as correct prediction, else it is 

considered a wrong prediction. This was also performed on all the values of each of the test 

dataset instance, and the fraction of correct predictions out of the total predictions gives 

the binary accuracy. The formula to calculate the log loss/binary cross entropy is: 



                    

 

   

 

Where, N is the number of different classes present in the dataset, log is the natural 

logarithm, Y(i,c) is the indicator if the classification is correct (1 if yes and 0 if no) for ith 

observation for c class, and P(i,c) is the probability predicted by the ANN model for ith 

observation for c class 

The hypermeters of the ANN models were also optimized based on the three evaluation 

matrices mentioned above to obtain the best performance from the ANN model. To 

calculate the optimum number of neurons in the hidden layer, the values close to the 

average of the size of input and output layers were tried and the best value was selected 

while keeping the number of hidden layer as one. Different number of hidden layers were 

tried to select the best performing ANN model with the most optimum number of hidden 

layers. A range of epoch values from 1 to 4000 were tried and based on the plateau in the 

performance an optimum value was selected. The other parameters of the ANN models 

were optimized using the grid search method with 5-fold cross validation the details are 

mentioned in Supplementary Text S3. The parameters optimized were: Weight initializer, 

Learning rate, Optimizer, Batch size, Dropout rate, and Weight constraint. 

Statistical evaluation of the machine learning and ANN models 

We used three methods to statistically evaluate the performance of the machine learning 

and ANN models. These three methods are split testing, cross validation, and blind set 

testing. The details of these methods are mentioned in Supplementary Text S4. 

Molecular similarity search 

The open source chemoinformatics tool Open Babel v2.3.2 was used for performing the 

molecular similarity search using the inbuilt default fingerprint FP2 which is a path-based 

fingerprint. The complete substrate molecule database was divided into several reaction 

subclass specific databases, depending on the type of reaction subclass a particular 

substrate can undergo. Once the reaction class and subclass are predicted by the machine 

learning and ANN models, the molecular similarity search against the predicted reactions 

subclass specific database is performed and Tanimoto Coefficient or Jaccard Index was 

calculated. The formula for calculating the Tanimoto Coefficient or Jaccard Index is: 

                                               
  

         
 

Where, T(a,b) is the tanimoto coefficient for molecule a and b, Na is number of bits that are 

1 in the fingerprints of molecule a, Nb is number of bits that are 1 in the fingerprints of 



molecule b, and Nc is the number of bits that are 1 in the intersection of fingerprints of 

molecule a and b. 

K-nearest neighbour (KNN) model construction or lazy learning 

KNN is a preferred method for the identification of structurally and chemically similar 

molecules to the input molecule in the search against a heterogeneous database (Soucy and 

Mineau, 2001). The KNN algorithm was implemented using the R package “FNN” 

(Beygelzimer et al., 2015). The k-nearest neighbours for any given molecule were extracted 

using the function “get.knnx” from the “FNN” package that uses “Euclidean distance” as the 

measure of similarity between molecules.  

Identification of reaction center  

The reaction centers were identified by using the RDM pattern information that is 

associated with each of the substrate-product pair of an enzyme catalyzed reaction in KEGG 

database (Kanehisa, 2002). In the RDM pattern database constructed in this study, all the 

complete metabolic reactions are associated with the respective Reaction Class (RC) pairs, 

and all the RC pairs were tagged with corresponding RDM patterns. For a given biochemical 

reaction available in KEGG, the KEGG-defined RDM (Reaction center, Difference region, 

Matching region) patterns contain the information on the KEGG atom type changes at the 

reaction center, matched region of the molecule, and the difference region of the molecule 

(Kotera et al., 2013). Here a reaction center is the atom where the reaction occurs, a 

matched region is the region common between substrate and product that remained 

unchanged after the reaction, and a difference region is the part of molecule that changed 

after the reaction. The RDM patterns are derived from the structural alignments of the 

substrates and products which identifies the reaction center, matched and difference 

regions (Yamanishi et al., 2009). To identify the reaction center in a molecule for each of the 

predicted metabolic reaction, all the RC pairs and corresponding RDM patterns were 

extracted. Using these RDM patterns, the reaction centers were identified by in-house 

python scripts. Thus, this computational approach is similar to the biochemical approach in 

which the primary substrate and product are compared to identify the reaction center 

where the biochemical reaction has occurred in the enzyme active site.  

  



SUPPLEMENTARY TEXT 

Supplementary Text S1: (Related to Figure 4 and 5) 

The dataset of 3,769 substrate molecules was randomly split into a working and blind 

dataset with a ratio of 95:5, the working dataset had 3602 molecules and the blind dataset 

had 167 molecules. The working dataset was utilized further for the training and statistical 

evaluation of the machine learning model and the blind dataset was used for the 

independent evaluation of the model. Since the dataset was much skewed with a very 

higher number of substrate molecules for “Oxidoreductases” and “Transferases” in 

comparison to other reaction classes and also abundance of substrate molecules with 

different combinations of reaction classes was very variable, thus, a modified strategy of 

stratified random sampling approach was used to divide the working dataset into the 

training and testing dataset for modeling.  

In this approach, to account for the differences in substrates belonging to different 

combinations of reaction classes the working dataset was divided into pure (contains 

substrates that can undergo only one type of reaction among different reaction classes) and 

mixed datasets (contains substrates that can undergo multiple reactions among different 

reaction classes). The pure dataset which had 1756 substrate was statistically down-

sampled to randomly select the same number (lowest in the sample = 36) of substrates for 

each reaction class. Thus, the down-sampled pure had a total of 216 substrates (36 of each 

reaction class). The mixed dataset had 1,846 substrate molecules which was split into two 

datasets large and small with the ratio of 95:5, the large part had 1,774 substrates, whereas 

the small part had 72 substrate molecules. The training dataset was constructed by merging 

the down-sampled pure dataset (216 substrates) and the large part of mixed dataset (1,774 

substrates), and had a total of 1,990 substrate molecules. The testing dataset was 

constructed by merging the remaining of pure dataset after down-sampling (1,540 

substrates) and the small part of the mixed dataset (72 substrates), and has a total of 1,612 

substrate molecules. These final training and testing datasets corresponded to an 

approximate ratio of 55:45 of the working dataset of 3602 substrate molecules. 

Similarly, for the training of machine learning models for reaction subclass prediction the 

working dataset was divided into six parts, one for each reaction class. The same substrate 

could belong to multiple parts if it can undergo reactions from multiple reaction classes. The 

numbers of reaction sub-classes in each reaction class were: “Oxidoreductases” - 22, 

“Transferases” - 9, “Hydrolases” -13, “Lyases” -8, “Isomerases” – 6, and “Ligases”- 6. For 

each dataset the stratified random sampling was performed to split the input dataset into 

training and testing dataset with the split ration of 90:10. 

 



Supplementary Text S2: (Related to Figure 4) 

To evaluate the binary performance we used eight matrices, Binary Accuracy, Mean 

Misclassification Error (MMCE), Matthews Correlation Coefficient (MCC), Binary Precision or 

Positive Predicted Value (PPV), Area under the curve (AUC), Binary False Negative Rate 

(FNR), Binary False Positive Rate (FPR), Binary Sensitivity or Recall or True Positive Rate 

(TPR), Binary Specificity or True Negative Rate (TNR), Binary Negative predictive value (NPV), 

Binary False discovery rate (FDR), and Binary Geometric Mean of binary precision and binary 

recall (GPR). The formulas for these binary performance matrices are mentioned below: 

                 
     

   
 

      
     

   
       

           

                             
 

                  
  

     
              

  

     
              

  

     
 

                              
  

     
                       

  

     
 

            
  

     
              

  

     
            

                    

Where, TP is true positives, FP is false positives, TN is true negatives, FN is false negatives, P 

is the total number of positives, and N is the total number of negatives in the input dataset. 

 

Supplementary Text S3: (Related to Figure 5) 

The other parameters of the ANN models were optimized using the grid search method with 

5-fold cross validation, the parameters along with the values tested are: (1) Weight 

initializer – Zero, Normal, Uniform, Glorot normal, Glorot uniform, He normal, He uniform, 

and Lecun uniform (2)  Learning rate – 0.0, 0.02, 0.1, 0.2, and 0.3 (3)  Optimizer – Adadelta, 

Adagrad, Adam, Adamax, Nadam, RMSprop, and SGD (4) Batch size – 0, 50, 100, 150, 200, 

250, 300, 400, and 500 (5) Dropout rate and Weight constraint – [0.0, 1], [0.0, 2], [0.0, 3], 

[0.0, 4], [0.0, 5], [0.1, 1], [0.1, 2], [0.1, 3], [0.1, 4], [0.1, 5], [0.2, 1], [0.2, 2], [0.2, 3], [0.2, 4], 

[0.2, 5], [0.3, 1], [0.3, 2], [0.3, 3], [0.3, 4], [0.3, 5], [0.4, 1], [0.4, 2], [0.4, 3], [0.4, 4], [0.4, 5],  

[0.5, 1], [0.5, 2], [0.5, 3], [0.5, 4], [0.5, 5], [0.6, 1], [0.6, 2], [0.6, 3], [0.6, 4], [0.6, 5],  [0.7, 1], 

[0.7, 2], [0.7, 3], [0.7, 4], [0.7, 5],  [0.8, 1], [0.8, 2], [0.8, 3], [0.8, 4], [0.8, 5],  [0.9, 1], [0.9, 2], 

[0.9, 3], [0.9, 4], and [0.9, 5]. The final model was constructed using the most optimum 

parameters selected based on the gird search method.  



 

Supplementary Text S4: (Related to Figure 4 and 5)  

a) Split testing: As mentioned in the dataset construction part the complete working 

dataset was divided into training and testing dataset using a specific splitting approach. 

The models were trained on the training dataset and evaluated in the test dataset. 

b) Cross validation: In this study, we used 5-fold cross validation for machine learning 

models and ANN models. In this method, during the process of training the dataset was 

randomly divided into five equal parts and five iterations of training and testing are 

performed. In each of the iteration four parts are used for training and the rest one part 

is used for the testing. This way in five iterations each of the training instances is used for 

testing the model and thus, avoiding any bias in the evaluation of the performance 

matrices. Finally, the mean/median and standard deviation value of performance 

matrices across five iterations is used to evaluate any bias in the model such as over-

fitting or under-fitting.   

c) Blind set testing: Approximately 5% of the randomly selected instances are kept aside 

before starting the training and testing process of model and, the model never sees these 

instances at any stage of its training and testing, hence called a blind dataset to model. 

Therefore, the performance of the model on this blind dataset is considered to be a real 

or unbiased performance of the model.  

 

Supplementary Text S5: (Related to Figure 1) 

To further evaluate the variability in skin sites in terms of enzymatic reactions it is critical to 

know the reactions that are common to the different sites. To identify the number of 

reactions that are common to different sites the matrix layout analysis performed using the 

‘UpSetR’ package in R (Conway et al., 2017; Lex and Gehlenborg, 2014). It generates a 

matrix layout diagram for visualizing the set intersections.   

 

Supplementary Text S6: (Related to Figure 1) 

A skin microbiome specific metabolic enzyme database of four-digit EC number and 

corresponding metabolic enzymes from all the pangenomes was constructed. Each 

metabolic enzyme in this database is tagged with the bacterial species if their pangenome 

harbors this enzyme. Also the metabolic enzymes were tagged with the skin sites based on 

the presence and absence of the bacterial species harboring the enzyme on that particular 

skin site. All the well-annotated enzymatic reactions were extracted from KEGG database 



and corresponding reaction, primary substrates, RC pair and RDM pattern databases were 

constructed. A total of 10,629 reactions, 3,769 primary substrates, and 2,592 RC pairs and 

RDM patterns were extracted from the KEGG database. Also each of the primary substrate 

in the database was tagged with the reaction class (EC-one digit), reaction subclass (EC-two 

digit), and complete reaction category (EC-four digit). The four types of molecular features 

were calculated for each of the primary substrate: chemical descriptors, linear fingerprints, 

Morgan ECFP fingerprints, and Morgan FCFP fingerprints. All this data was used for the 

training of the prediction models and for making the final metabolism predictions. 

 

Supplementary Text S7: (Related to Figure 4 and 5) 

Feature selection was performed using the Boruta package on chemical descriptor and 

linear fingerprints (Kursa and Rudnicki, 2010). Boruta selected 194 features out of 240 

chemical descriptors and 1,104 features out of 10,208 linear fingerprints across different 

reaction classes. All features of Morgan FCFP and Morgan ECFP were included and were not 

subjected to feature selection as these features are elementary and all the bits are needed 

to adequately describe a substrate molecule. The total number of features used for further 

analysis was 2,322: 194 from chemical descriptors, 1104 linear fingerprints, 512 Morgan 

ECFP fingerprints, and 512 Morgan FCFP fingerprints.  

 

Supplementary Text S8: (Related to Figure 6) 

A previous study have reported that the adjustment in the threshold of multiclass multilabel 

classification model could significantly improve on their performance (Al-Otaibi et al., 2014; 

Fan and Lin, 2007). Thus, although we evaluated the performance of our models using the 

threshold value of 0.5 for all the machine learning and ANN models so that we do not 

overestimate the sensitivity of our models, the prediction threshold of the models deployed 

in the web server was lowered for the reaction subclass prediction models of 

“Oxidoreductases”, “Transferases”, “Hydrolases”, and “Lyases” classes from 0.5 to 0.2 

because they had a range of 8 to 22 different subclasses and a high threshold could lead to 

miss out on some possible reaction subclasses.  
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