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SUPPLEMENTARY FIGURES
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Reaction Class

Supplementary Figure S1: Bar plot of number of metabolic enzymes from different reaction

classes present in the human skin microbiome (Related to Figure 1)
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Supplementary Figure S2: Matrix layout for the intersection of unique enzymatic reactions
from 19 different skin sites. The blue horizontal bar depicts the absolute number of unique
enzymatic reactions that can occur on the each skin site. The vertical bar plot represents the
number of unique enzymatic reactions (top of bars) shared by the different skin sites. The
sites that share a particular number are shown as the intersection of filled ellipsoids at x-
axis. The ellipsoids are placeholders for individual skin site. (Related to Figure 1)
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Reaction class

Supplementary Figure S3: Distribution of substrate molecules across different reactions
classes (annotated as one-digit EC number). Here all inclusive approach has been used
where if one molecule can undergo reactions from different reaction claseses the count is
incremented in all of them. (Related to Figure 1)
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Distribution of 3,769 substrate molecules across different

reactions classes (annotated as one-digit EC number) unique combinations. (Related to

Supplementary Figure S4

Figure 1)
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Supplementary Figure S5: The distribution of 20-nearest neighbours distances across the
dataset of 3,769 substrate molecules based on the selected 2,322 variables. The knee point
at 3.25 is the most suitable epsilon value for the density based clustering using DBSCAN.
(Related to Figure 2)
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Supplementary Figure S6: Evaluating the diversity and complexity of a subset dataset where
one substrate can undergo only one type of reaction (Related to Figure 2)

[A] The cumulative scree plot and a normal scree plot from the PCA analysis of all the
substrate molecules from the dataset of substrates that can undergo only one type of
reaction class. All the selected 2,322 features were used for performing the PCA analysis.
The x-axis is the principal component number, y-axis for the dot plot is the cumulative
variance explained by the individual principal components, and the y-axis for the bar plot is
the percentage of variance explained by the individual principal components.

[B] The PCA plot of the substrate molecules that can undergo only one type of reaction class
using the principal component PC-1 and PC-2 from the PCA analysis. Different reaction
classes are coloured differently and the ellipsoids are drawn for each reaction class based on
the distribution of substrate molecules in the plot.
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Supplementary Figure S7: The performance of different multiclass multilabel classification
algorithms on the multilabel dataset with ECFP fingerprints, FCFP fingerprints, boruta
selected descriptors, and boruta selected fingerprints. ACC — Multilabel accuracy, PPV —
Multilabel precision or Multilabel positive predicted value, Hamloss — Hamming loss, F1 —
Multilabel F1 score. Binary relevance — BR, Classifier chains — CC, Nested stacking — NS,
Dependent binary relevance — DBR, Stacking — S. (Related to Figure 4)
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Supplementary Figure S8: The performance of different multiclass multilabel classification
algorithms on the multilabel dataset with ECFP fingerprints, boruta selected descriptors, and
boruta selected fingerprints. ACC — Multilabel accuracy, PPV — Multilabel precision or
Multilabel positive predicted value, Hamloss — Hamming loss, F1 — Multilabel F1 score.
Binary relevance — BR, Classifier chains — CC, Nested stacking — NS, Dependent binary
relevance — DBR, Stacking — S. (Related to Figure 4)
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Supplementary Figure S9: The performance of different multiclass multilabel classification
algorithms on the multilabel dataset with FCFP fingerprints, boruta selected descriptors, and
boruta selected fingerprints. ACC — Multilabel accuracy, PPV — Multilabel precision or
Multilabel positive predicted value, Hamloss — Hamming loss, F1 — Multilabel F1 score.
Binary relevance — BR, Classifier chains — CC, Nested stacking — NS, Dependent binary
relevance — DBR, Stacking — S. (Related to Figure 4)
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Weight initializer

Supplementary Figure S10: Selecting the most optimum weight initializer for ANN models
using grid search method using 5-fold cross validation. Different weight initializers are
plotted against their respective fraction binary accuracies. The most optimum weight
initializer was “lecun_uniform”. (Related to Figure 5)
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Supplementary Figure S11: Selecting the most optimum value of learning rate for ANN
models using grid search method using 5-fold cross validation. Different values of learning
rates are plotted against their respective fraction binary accuracies. The most optimum
value for the learning rate was “0.001”. (Related to Figure 5)
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Supplementary Figure S12: Selecting the best performing optimizer for ANN models using
grid search method using 5-fold cross validation. Different optimizers are plotted against
their respective fraction binary accuracies. The best performing optimizer was “RMSprop”.
(Related to Figure 5)
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Supplementary Figure S$13: Selecting the most optimum value of batch size for ANN models
using grid search method using 5-fold cross validation. Different values of batch size are
plotted against their respective fraction binary accuracies. The most optimum value for the
batch size was “150”. (Related to Figure 5)



Fraction binary accuracy

0.84

0.6

0.4

0.24

—r—r—r—rT
%GB N G S

v T T v T T v T T T v v T v T T v S
QLNT NE N NN > oY a2 ol a? '5\ ';L '5'5 Sb '50) b\ br'b b{b bb h% ")\ %q, ‘0’5 hh ‘9v> b\ b’b Q;’ bb b‘o ’\\ /\'L ’\"> \b A2 %\ %(L %’5 %b %‘o Q\
Q7 O O O O © Q’L Qq/ Q’L Q’L qu TN SN A S i A L i A S S S S i S S N S\ O O S R T S S i L

Dropout rate and Weight constraint

Supplementary Figure S14: Selecting the most optimum value of dropout rate and weight
constraint for ANN models for performing dropout regularization using grid search method
using 5-fold cross validation. Different combinations of values of dropout rate and weight
constraint are plotted against their respective fraction binary accuracies. The most optimum
value for the dropout rate was “0.4” and most optimum value of weight constraint was “4”.
(Related to Figure 5)



SUPPLEMETARY TABLES

Table S1: The binary performance of multiclass multilabel model for predicting the reaction
class on 5-fold cross validation testing. (Related to Figure 4)

Reaction Class AUC MMCE FNR FPR ACC MCC NPV PPV ScF:re FDR GPR
Oxidoreductases 0.855 0.207 0.111 0.345 0.793 0.568 0.806 0.786 0.834 0.214 0.836
Transferases 0.841 0.235 0.225 0.244 0.765 0.531 0.774 0.757 0.766 0.243  0.766
Hydrolases 0.824 0.210 0.538 0.089 0.790 0.422 0.821 0.656 0.543 0.344 0.551
Lyases 0.844 0.164 0.620 0.047 0.836 0.420 0.857 0.673 0.486 0.327 0.506
Isomerases 0.900 0.082 0.571 0.020 0.918 0.522 0.931 0.734 0.541 0.266 0.561
Ligases 0.886 0.082 0.761 0.017 0.918 0.336 0.931 0.577 0.338 0.423 0.371

AUC = Area under the curve, MMCE = Binary mean misclassification error, FNR = Binary false negative rate, FPR
= Binary false positive rate, ACC = Binary accuracy, MCC = Matthews correlation coefficient, NPV = Binary
negative predictive value, PPV = Binary positive predicted value, F1 = Binary F1 score, FDR = Binary false
discovery rate, GPR = Geometric mean of binary precision and binary recall



Table S2: The binary performance of multiclass multi-label model for predicting the reaction
class on blind set testing. (Related to Figure 4)

Reaction Class AUC MMCE FNR FPR ACC MCC NPV PPV ScF:re FDR GPR
Oxidoreductases 0.871 0.174 0.081 0.309 0.826 0.638 0.855 0.813 0.863 0.188 0.864
Transferases 0.884 0.222 0.217 0.226 0.778 0.557 0.783 0.774 0.778 0.226  0.778
Hydrolases 0.810 0.186 0.487 0.094 0.814 0.450 0.859 0.625 0.563 0.375 0.566
Lyases 0.896 0.120 0.536 0.036 0.880 0.516 0.899 0.722 0.565 0.278 0.579
Isomerases 0.943 0.060 0.417 0.032 0.940 0.551 0.968 0.583 0.583 0.417 0.583
Ligases 0.878 0.030 0.429 0.013 0.970 0.602 0.981 0.667 0.615 0.333 0.617

AUC = Area under the curve, MMCE = Binary mean misclassification error, FNR = Binary false negative rate, FPR
= Binary false positive rate, ACC = Binary accuracy, MCC = Matthews correlation coefficient, NPV = Binary
negative predictive value, PPV = Binary positive predicted value, F1 = Binary F1 score, FDR = Binary false
discovery rate, GPR = Geometric mean of binary precision and binary recall



Table S3: The binary performance of multiclass multilabel model for predicting the

subclasses of “Oxidoreductases” class on 5-fold cross validation testing. (Related to Table 1

and 2)
Reaction subclass AUC MMCE FNR FPR ACC MCC NPV PPV F1__ FDR __ GPR
Actingonthe CH-OH 5\ (195 0237 0056 0885 0733 0892 0868 0812 0132 0814
group of donors
Actingon the aldehydeor o, 009 5611 0013 0921 0520 0929 0791 0521 0209  0.555
oxo group of donors
Actingon the CH-CHgroup 51/ 009 503 0022 0901 0586 0911 0812 0617 0188  0.635
of donors
Actingonthe CH-NH2 5 o /0 0686 0008 0954 0449 0961 0698 0433 0302  0.468
group of donors
Actingonthe CH-NH 000 636 0723 0004 0964 0440 0967 0743 0403 0257 0453
group of donors
Acting on NADH or NADPH  0.899 0.007 0.714 0.000 0.993 0.533 0.993 1.000 0.444 0.00  0.535
Acting on other
nitrogenous compounds ~ 0.952 0.017 0.800 0.000 0.983 0.420 0983 0900 0.327 0.100 0.424
as donors
A“'"g°":::::'gr°”p°f 0920 0026 0742 0002 0974 0437 0977 0773 038 0227 0.446
ACt'"g°":°hne°"r':gr°“p°f 0744 0001 1.000 0.000 0999 0.00 0999 0.000 0.000 NA NA
Acting on diphenols and
related substancesas ~ 0.881 0.014 1.000 0.000 0.986 0.000 0.986 0.000 0.00 NA NA
donors
Actingonaperoxideas oo, 513 739 0002 0982 0436 0984 0750 0387 0250  0.442
acceptor
Ac“"”:;‘::rmge"as 0877 0.004 0.692 0000 0996 0554 0996 1.000 0.471 0.000 0.555
Acting on single donors
with incorporationof o) 1071 0659 0008 0929 0503 0933 0.824 0483 0176  0.530
molecular oxygen
(oxygenases)
Acting on paired donors,
withincorporationor 00, 197 0723 0175 0.803 0602 0819 0784 0780 0216  0.780
reduction of molecular
oxygen
Oxidizing metalions 0949 0.002 0357 0.000 0998 0.801 0998 1.000 0.783 0.00  0.802
Ac“"g:r’;ﬁ:smc"'z 0930 0026 0.653 0002 0974 0530 0976 0.839 0491 0.161 0.539
Acting oniron-sulfur 500 053 5700 0.000 0997 0547 0997 1.000 0462 0000 0.548
prOtelnS as donors
Acting on reduced 0993 0002 1.000 0000 0998 0000 0998 0.000 0.000 NA NA
flavodoxin as donor
Acting on phosphorusor o 063 1000 0.000 0997 0000 0997 0000 0.000 NA NA
arsenic in donors
Catalysing the reaction X-
0916 0017 0.814 0001 0983 0381 0983 0.800 0302 0200 0.386
H+Y-H=X-Y
Reducing C-O-Cgroupas 015 5004 1000 0000 0996 0000 0996 0000 0000 NA NA
acceptor
Other oxidoreductases ~ 0.798 0.007 0.737 0.000 0.993 0466 0.993 0.833 0.400 0.167 0.468

AUC = Area under the curve, MMCE = Binary mean misclassification error, FNR = Binary false negative rate, FPR

= Binary false positive rate, ACC = Binary accuracy, MCC = Matthews correlation coefficient, NPV = Binary



negative predictive value, PPV = Binary positive predicted value, F1 = Binary F1 score, FDR = Binary false
discovery rate, GPR = Geometric mean of binary precision and binary recall

NA - Although, stratified random sampling was used to split the six datasets into the training and testing
datasets, yet, some of the reaction subclasses had no representation in the respective test datasets, thus few
of the binary matrices could not be calculated for these reaction subclasses. These are represented as NA

values

Table S4: The binary performance of the multiclass multi-label model for predicting the

subclasses of “Transferases” class on 5-fold cross validation testing. (Related to Table 1 and

2)

Reaction subclass AUC MMCE FNR_FPR ACC MCC NPV PPV F1__ FDR _ GPR
Tra"Sfe'::'fu‘L';e'carb°" 0.896 0.150 0.360 0.069 0.850 0.610 0.870 0.781 0.704 0219  0.707
Transferring aldehyde or -

\ 0939 0017 1.000 0.001 0.983 0.984 0.000 0.000 1.000  0.000
ketonic groups 0.004
Acyltransferases 0.853 0.169 0.502 0.057 0.831 0.512 0.848 0.747 0.597 0.253 0.610
Glycosyltransferases 0.890 0.144 0.384 0.059 0.856 0.608 0.873 0.790 0.692 0210 0.698
Transferring alkyl or aryl
groups, other than methyl  0.855 0.090 0.754 0.012 0910 0.383 0918 0.708 0.365 0292 0.417
groups
Tra"Sfe";':il:‘;Zr°ge"°”s 0956 0.062 0.465 0011 0938 0.650 0.944 0.863 0660 0.137 0.679
Transferring phosphorus- 53 (106 0278 0053 0894 0697 0917 0809 0763 0191  0.764
containing groups
Transferring sulfur- 0.891 0073 0745 0014 0927 0366 0937 0617 0361 0383 0397
containing groups
Transferring selenium- ) \\5 1001 1.000 0000 0999 0000 0999 0000 0.000 NA NA

containing groups

AUC = Area under the curve, MMCE = Binary mean misclassification error, FNR = Binary false negative rate, FPR
= Binary false positive rate, ACC = Binary accuracy, MCC = Matthews correlation coefficient, NPV = Binary
negative predictive value, PPV = Binary positive predicted value, F1 = Binary F1 score, FDR = Binary false
discovery rate, GPR = Geometric mean of binary precision and binary recall

NA - Although, stratified random sampling was used to split the six datasets into the training and testing
datasets, yet, some of the reaction subclasses had no representation in the respective test datasets, thus few
of the binary matrices could not be calculated for these reaction subclasses. These are represented as NA
values



Table S5: The binary performance of the multiclass multi-label model for predicting the

subclasses of “Hydrolases” class on 5-fold cross validation testing. (Related to Table 1 and 2)

Reaction subclass AUC MMCE FNR _FPR ACC MCC NPV PPV F1__ FDR _ GPR
Acting on ester bonds 0878 0204 0237 0177 0796 0586 0814 0774 0768 0226 0.768
Acting °"|:;‘:::'"'"°ge" 0336 0.002 1.000 0.000 0.998 0.000 0.998 0.000 0.000 NA NA
GenEionicabon, 0.844 0005 1.000 0.000 0995 0.000 0995 0.000 0.000 NA NA
phosphorus bonds
Acting °E:;‘::r's“”"r 0426 0.001 1.000 0.000 00999 0.000 0.999 0.000 0.000 NA NA
Acting °'L§an:°s°"'s”'f“’ 0.766 0.009 1.000 0.000 0991 0.000 0.991 0.000 0.000 NA NA
Glycosylases 0.890 0.092 0.452 0.023 0908 0.622 0919 0817 0656 0.183  0.669
Acting on etherbonds ~ 0.944 0.032 0475 0.002 0968 0.690 0969 00941 0.674 0059 0.703
Actingonpeptidebonds ) o 135 1000 0000 0968 0000 0968 1.000 0.000 NA NA
(peptidases)
Acting on carbon-nitrogen
bonds, other than peptide 0.903 0.156 0.283 0.094 0.844 0.638 0.870 0.784 0749 0216 0.750
bonds
Acting on acid anhydrides 0.952 0.058 0383 0.023 0942 0.646 00960 0.744 0.674 0256 0.677
Acting °";2;3‘s’"'ca'b°" 0.928 0.060 0907 0.010 0940 0159 0949 0357 0.147 0643  0.182
Acting on halide bonds ~ 0.990 0.021 0.606 0.000 0979 0621 0979 1.000 0.565 0.000 0.628
Acting on phosphorus- o0 503 1000 0000 0997 0000 0997 0000 0000 NA NA

nitrogen bonds

AUC = Area under the curve, MMCE = Binary mean misclassification error, FNR = Binary false negative rate, FPR

= Binary false positive rate, ACC = Binary accuracy, MCC = Matthews correlation coefficient, NPV = Binary

negative predictive value, PPV = Binary positive predicted value, F1 = Binary F1 score, FDR = Binary false

discovery rate, GPR = Geometric mean of binary precision and binary recall

NA - Although, stratified random sampling was used to split the six datasets into the training and testing

datasets, yet, some of the reaction subclasses had no representation in the respective test datasets, thus few

of the binary matrices could not be calculated for these reaction subclasses. These are represented as NA

values



Table S6: The binary performance of the multiclass multi-label model for predicting the

subclasses of “Lyases” class on 5-fold cross validation testing. (Related to Table 1 and 2)

Reaction subclass AUC MMCE FNR FPR ACC MCC NPV PPV F1 FDR GPR
Carbon-carbon lyases 0.851 0.224 0.259 0.201 0.776 0.537 0.823 0.710 0.725 0.290 0.726
Carbon-oxygen lyases 0.839 0.223 0.231 0.214 0.777 0.554 0.742 0.810 0.789 0.190 0.789

Carbon-nitrogen lyases 0.781 0.109 0961 0.011 0.891 0.076 0.899 0.300 0.070 0.700 0.109
Carbon-sulfur lyases 0.922 0.053 0.691 0.001 0.947 0.524 0.947 0.944 0.466 0.056 0.540
Carbon-halide lyases 0.834 0.011 0.583 0.001 0.989 0.585 0.990 0.833 0.556 0.167 0.589

Phosphorus-oxygen lyases 0.968 0.023 0.941 0.001 0.977 0.166 0.978 0.500 0.105 0.500 0.171
carbon-phosphorus lyases 0.760 0.004 1.000 0.000 0.996 0.000 0.996 0.000 0.000 NA NA
Other lyases 0.953 0.026 0.833 0.006 0.974 0.256 0.979 0.429 0.240 0.571 0.267

AUC = Area under the curve, MMCE = Binary mean misclassification error, FNR = Binary false negative rate, FPR

= Binary false positive rate, ACC = Binary accuracy, MCC = Matthews correlation coefficient, NPV = Binary

negative predictive value, PPV = Binary positive predicted value, F1 = Binary F1 score, FDR = Binary false

discovery rate, GPR = Geometric mean of binary precision and binary recall

NA - Although, stratified random sampling was used to split the six datasets into the training and testing

datasets, yet, some of the reaction subclasses had no representation in the respective test datasets, thus few

of the binary matrices could not be calculated for these reaction subclasses. These are represented as NA

values



Table S7: The binary performance of the multiclass multi-label model for predicting the

subclasses of “Isomerases” class on 5-fold cross validation testing. (Related to Table 1 and 2)

Reaction subclass AUC MMCE FNR _FPR _ACC MCC NPV PPV F1__ FDR __ GPR
Racemases and 0946 0108 0.133 0095 0.892 0765 0926 0.832 0849 0168 0.849
epimerases
cis-trans-lsomerases ~ 0.822 0.027 0529 0.005 0.973 0.601 0977 0.800 0.593 0200 0.614
Intramolecular 0924 0167 0356 0077 0.833 0605 0.843 0802 0714 0198 0.719
oxidoreductases
Intramolecular 0.827 0.165 0.646 0.049 0.835 0.389 0.859 0.636 0455 0.364 0.475
transferases
Intramolecular lyases 0.932 0.059 0.292 0.015 0.941 0.767 0.946 0.902 0.793 0.098 0.799
Other isomerases 0277 0.005 1.000 0.000 0.995 0.000 0.995 0.000 0.000 NA NA

AUC = Area under the curve, MMCE = Binary mean misclassification error, FNR = Binary false negative rate, FPR

= Binary false positive rate, ACC = Binary accuracy, MCC = Matthews correlation coefficient, NPV = Binary

negative predictive value, PPV = Binary positive predicted value, F1 = Binary F1 score, FDR = Binary false

discovery rate, GPR = Geometric mean of binary precision and binary recall

NA - Although, stratified random sampling was used to split the six datasets into the training and testing

datasets, yet, some of the reaction subclasses had no representation in the respective test datasets, thus few

of the binary matrices could not be calculated for these reaction subclasses. These are represented as NA

values



Table S8: The binary performance of the multiclass multi-label model for predicting the
subclasses of “Ligases” class on 5-fold cross validation testing. (Related to Table 1 and 2)

Reaction subclass AUC MMCE FNR FPR _ACC__MCC NPV PPV F1__ FDR __ GPR
Forming Eif:s"'“"ge" 0902 008 0463 0029 0914 0581 0933 0733 0620 0267 0.627
F°rmi“g;2;zg"'5”'f”r 0939 0.134 0.167 0112 0866 0722 0.888 0.833 0.833 0.167 0.833
Forming c;;:‘:s""i"°ge" 0933 0124 0099 0151 0876 0752 0.890 0.864 0.882 0.136 0.882
Forming zzzbdzn'carbm 0.892 0.067 0.864 0007 0933 0264 0939 0600 0222 0400 0.286
Forming p:g:zgmc'e“er 0981 0019 0.500 0.007 0.981 0.568 0.987 0.667 0.571 0333 0.577
Forming "::;zii"'o'meta' 0969 0019 1.000 0000 0981 0.000 0.981 0.000 0000 NA NA

AUC = Area under the curve, MMCE = Binary mean misclassification error, FNR = Binary false negative rate, FPR

= Binary false positive rate, ACC = Binary accuracy, MCC = Matthews correlation coefficient, NPV = Binary

negative predictive value, PPV = Binary positive predicted value, F1 = Binary F1 score, FDR = Binary false

discovery rate, GPR = Geometric mean of binary precision and binary recall

NA - Although, stratified random sampling was used to split the six datasets into the training and testing

datasets, yet, some of the reaction subclasses had no representation in the respective test datasets, thus few

of the binary matrices could not be calculated for these reaction subclasses. These are represented as NA

values



Table S$9: The binary performance of the multiclass multi-label model for predicting the

subclasses of “Oxidoreductases” class on stratified random sampling split testing. (Related

to Table 1 and 2)

Reaction subclass AUC MMCE FNR FPR ACC MCC NPV PPV F1__ FDR __ GPR
Actingonthe CH-OH o0 59 (158 0070 0901 0776 0922 0857 0850 0143  0.850
group of donors
Actingon the aldehydeor oo (010 5460 0013 0953 0624 0963 0778 0636 0222  0.647
oxo group of donors
Actingon the CH-CHgroup 5., 0ce 0320 0014 0942 0749 0948 0895 0773 0105 0780
of donors
Actingonthe CH-NH2 ;.\ 115 0500 0000 0988 0703 0988 1.000 0.667 0000 0.707
group of donors
Actingonthe CH-NH .00 515 0333 0006 0988 0661 0994 0667 0667 0333  0.667
group of donors
Actingon NADHor NADPH NA 0000 NA  0.000 1.000 0.000 1.000 0.000 NA  NA NA
Acting on other
nitrogenous compounds ~ 1.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 0.000  1.000
as donors
Acting on :::::' groupof 500 0000 0.000 0000 1.000 1.000 1.000 1.000 1.000 0.000  1.000
Acting on :ohneonr': groupof \\ 0000 NA 0000 1.000 0000 1.000 0000 NA  NA NA
Acting on diphenols and
related substancesas ~ 0.994 0.006 1.000 0.000 0.994 0.000 0.994 0.000 0.00 NA NA
donors
Actingonaperoxideas o5\ 1 50c 1000 0000 0994 0000 0994 0.000 0000 NA NA
acceptor
Acting °:::::°ge" as NA 0000 NA 0000 1.000 0.000 1.000 0.000 NA  NA NA
Acting on single donors
withincorporationof oo/ ey 0583 0013 0948 0521 0958 0714 0526 0286  0.546
molecular oxygen
(oxygenases)
Acting on paired donors,
with incorporationor o)1 (159 0125 0120 0.878 0755 0.890 0864 0870 0136 0.870
reduction of molecular
oxygen
Oxidizing metal ions NA 0000 NA 0000 1.000 0.000 1.000 0.000 NA  NA NA
Ac“"g:r';ﬁ:s” CH2 0.994 0.006 0.500 0.000 00994 0.705 0.994 1.000 0.667 0.000 0.707
Acting on iron-sulfur NA 0000 NA 0000 1.000 0.000 1.000 0000 NA  NA NA
prOtelnS as donors
Acting on reduced NA 0000 NA 0000 1.000 0.000 1.000 0.000 NA  NA NA
flavodoxin as donor
Acting on phosphorusor —\\ 50 NA 0000 1.000 0000 1.000 0000 NA  NA NA
arsenic in donors
Catalysing the reaction X-
1.000 0006 1.000 0.00 0.994 0.000 0994 1.000 0.000 NA NA
H+Y-H=X-Y
Reducing C-O-Cgroupas  \\ 5000  NA 0000 1.000 0000 1.000 0000 NA  NA NA
acceptor
Other oxidoreductases NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA

AUC = Area under the curve, MMCE = Binary mean misclassification error, FNR = Binary false negative rate, FPR

= Binary false positive rate, ACC = Binary accuracy, MCC = Matthews correlation coefficient, NPV = Binary



negative predictive value, PPV = Binary positive predicted value, F1 = Binary F1 score, FDR = Binary false
discovery rate, GPR = Geometric mean of binary precision and binary recall

NA - Although, stratified random sampling was used to split the six datasets into the training and testing
datasets, yet, some of the reaction subclasses had no representation in the respective test datasets, thus few
of the binary matrices could not be calculated for these reaction subclasses. These are represented as NA

values

Table S10: The binary performance of the multiclass multi-label model for predicting the
subclasses of “Transferases” class on stratified random sampling split testing. (Related to

Table 1 and 2)

Reaction subclass AUC MMCE FNR__FPR _ACC_MCC NPV PPV F1__ FDR __ GPR
Tra"Sfe"g':'fuc:;e'carb°" 0924 0.133 0302 0070 0.867 0654 0.892 0789 0741 0211 0.742
Transferring aldehyde or

\ NA 0006 NA 0006 0994 0000 1.000 0.000 0.000 1.000  NA
ketonic groups

Acyltransferases 0.862 0165 0541 0050 0.835 0.492 0.852 0739 0567 0261 0.583

Glycosyltransferases ~ 0.961 0.089 0.220 0043 0911 0.764 0926 0.865 0.821 0.135 0.822
Transferring alkyl or aryl
groups, other than methyl 0.945 0057 0538 0014 0943 0561 0953 0750 0571 0250  0.588
groups
Tra"Sfe";':il:‘;Zr°ge"°”s 0968 0.051 0.500 0.007 0949 0.639 0.953 0.875 0636 0.125 0.661
Transferring phosphorus- ) o3, 09 0786 0033 0911 0731 0922 0862 0781 0138  0.785
containing groups
Transferring sulfur- 0.967 0063 0.667 0027 0937 0345 0960 0.429 0375 0571 0378
containing groups
WIS e LS B NA 0000 NA 0000 1.000 0.000 1.000 0.000 NA  NA NA

containing groups

AUC = Area under the curve, MMCE = Binary mean misclassification error, FNR = Binary false negative rate, FPR
= Binary false positive rate, ACC = Binary accuracy, MCC = Matthews correlation coefficient, NPV = Binary
negative predictive value, PPV = Binary positive predicted value, F1 = Binary F1 score, FDR = Binary false
discovery rate, GPR = Geometric mean of binary precision and binary recall

NA - Although, stratified random sampling was used to split the six datasets into the training and testing
datasets, yet, some of the reaction subclasses had no representation in the respective test datasets, thus few
of the binary matrices could not be calculated for these reaction subclasses. These are represented as NA
values



Table S11: The binary performance of the multiclass multi-label model for predicting the

subclasses of “Hydrolases” class on stratified random sampling split testing. (Related to

Table 1 and 2)

Reaction subclass AUC MMCE FNR FPR ACC MCC NPV PPV F1 FDR GPR
Acting on ester bonds 0.895 0.202 0.216 0.191 0.798 0.591 0.826 0.763 0.773 0.237 0.773
Acting °"|:;’:::'"'"°ge" NA 0000 NA 0000 1.000 0000 1.000 0.000 NA  NA NA
G ) LI NA 0000 NA 0000 1.000 0000 1.000 0.000 NA  NA NA
phosphorus bonds
Acting °E:;‘::r's“”"r NA 0000 NA 0000 1.000 0000 1.000 0.000 NA  NA NA
Acting °'Lgi:’s°"'s“'f"' NA 0000 NA 0000 1.000 0.000 1.000 0.000 NA  NA NA
Glycosylases 0968 0.083 0250 0.056 0917 0.672 0958 0.692 0720 0.308 0.721
Acting on etherbonds ~ 0.997 0.024 0.400 0.000 0976 0.765 0.975 1.000 0.750 0.000 0.775
Acting on peptide bonds o) 615 1000 0000 0988 0000 0988 0000 0000 NA NA
(peptidases)
Acting on carbon-nitrogen
bonds, other than peptide 0.931 0.119 0200 0.085 0.881 0.715 0915 0.800 0.800 0.200  0.800
bonds
Acting on acid anhydrides 0.963 0.048 0.143 0.039 0952 0.731 0987 0.667 0.750 0.333  0.756
Acting °";2;3‘s’"'ca'b°" 0959 0.036 1.000 0.000 00964 0000 0.964 0.000 0.000 NA NA
Acting on halide bonds ~ 1.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 0.000  1.000
(G ED IO ET S NA 0000 NA 0000 1.000 0.000 1.000 0.000 NA  NA NA

nitrogen bonds

AUC = Area under the curve, MMCE = Binary mean misclassification error, FNR = Binary false negative rate, FPR

= Binary false positive rate, ACC = Binary accuracy, MCC = Matthews correlation coefficient, NPV = Binary

negative predictive value, PPV = Binary positive predicted value, F1 = Binary F1 score, FDR = Binary false

discovery rate, GPR = Geometric mean of binary precision and binary recall

NA - Although, stratified random sampling was used to split the six datasets into the training and testing

datasets, yet, some of the reaction subclasses had no representation in the respective test datasets, thus few

of the binary matrices could not be calculated for these reaction subclasses. These are represented as NA

values



Table S12: The binary performance of the multiclass multi-label model for predicting the

subclasses of “Lyases” class on stratified random sampling split testing. (Related to Table 1

and 2)

Reaction subclass AUC MMCE FNR FPR ACC MCC NPV PPV F1 FDR GPR
Carbon-carbon lyases 0.895 0.169 0.192 0.154 0.831 0.650 0.868 0.778 0.792 0.222 0.793
Carbon-oxygen lyases 0.907 0.169 0.194 0.138 0.831 0.664 0.781 0.879 0.841 0.121 0.841

Carbon-nitrogen lyases 0.850 0.077 1.000 0.000 0.923 0.000 0.923 1.000 0.000 NA NA
Carbon-sulfur lyases 0.968 0.031 0.333 0.016 0.969 0.651 0.984 0.667 0.667 0.333 0.667
Carbon-halide lyases NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA

Phosphorus-oxygen lyases 1.000 0.015 1.000 0.000 0.985 0.000 0.985 1.000 0.000 NA NA
carbon-phosphorus lyases NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA
Other lyases 1.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000

AUC = Area under the curve, MMCE = Binary mean misclassification error, FNR = Binary false negative rate, FPR
= Binary false positive rate, ACC = Binary accuracy, MCC = Matthews correlation coefficient, NPV = Binary
negative predictive value, PPV = Binary positive predicted value, F1 = Binary F1 score, FDR = Binary false

discovery rate, GPR = Geometric mean of binary precision and binary recall

NA - Although, stratified random sampling was used to split the six datasets into the training and testing

datasets, yet, some of the reaction subclasses had no representation in the respective test datasets, thus few

of the binary matrices could not be calculated for these reaction subclasses. These are represented as NA

values



Table S13: The binary performance of the multiclass multi-label model for predicting the
subclasses of “Isomerases” class on stratified random sampling split testing. (Related to

Table 1 and 2)

Reaction subclass AUC MMCE FNR FPR ACC MCC NPV PPV F1 FDR GPR
Racemases and 0973 0083 0077 0087 0917 0824 0955 0.857 0.889 0.143 0.889
epimerases
cis-trans-Isomerases 1.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 0.000  1.000
Intramolecular 0931 0083 0273 0000 0917 0806 0.893 1.000 0.842 0.000 0.853
oxidoreductases
Intramolecular 0842 0.139 0.714 0.000 0.861 0494 0.853 1.000 0444 0.000 0.535
transferases
Intramolecular lyases ~ 0.961 0.056 0.200 0.032 0944 0.768 0968 0.800 0.800 0.200  0.800
Other isomerases NA 0.000 NA 0.000 1.000 0.000 1.000 0.000 NA NA NA

AUC = Area under the curve, MMCE = Binary mean misclassification error, FNR = Binary false negative rate, FPR
= Binary false positive rate, ACC = Binary accuracy, MCC = Matthews correlation coefficient, NPV = Binary
negative predictive value, PPV = Binary positive predicted value, F1 = Binary F1 score, FDR = Binary false

discovery rate, GPR = Geometric mean of binary precision and binary recall

NA - Although, stratified random sampling was used to split the six datasets into the training and testing
datasets, yet, some of the reaction subclasses had no representation in the respective test datasets, thus few
of the binary matrices could not be calculated for these reaction subclasses. These are represented as NA

values



Table S14: The binary performance of the multiclass multi-label model for predicting the
subclasses of “Ligases” class on stratified random sampling split testing. (Related to Table 1

and 2)

Reaction subclass AUC MMCE FNR FPR ACC McCC NPV PPV F1 FDR GPR
Forming ;Zr::s"'“"ge" 0957 0.040 0500 0.00 0960 0.692 0958 1.000 0.667 0.000 0.707
F°'mi"g;:;:z"'5“'f”' 0.887 0.200 0.200 0.200 0.800 0592 0.857 0727 0.762 0273 0.763
Forming cs;zz:'"itmge" 0910 0240 0231 0250 0760 0519 0750 0769 0769 0231 0.769
Forming ;?:nb d‘;"'carbm 0958 0.080 1000 0042 0920 -0.042 0958 0.000 0.000 1.000  0.000

Forming p:::z:°ri°'e5ter NA 0000 NA 0000 1.000 0000 1.000 0.000 NA  NA NA

Forming ":;‘:]ii"")'meta' NA 0000 NA 0000 1000 0.000 1000 0000 NA  NA NA

AUC = Area under the curve, MMCE = Binary mean misclassification error, FNR = Binary false negative rate, FPR
= Binary false positive rate, ACC = Binary accuracy, MCC = Matthews correlation coefficient, NPV = Binary
negative predictive value, PPV = Binary positive predicted value, F1 = Binary F1 score, FDR = Binary false
discovery rate, GPR = Geometric mean of binary precision and binary recall

NA - Although, stratified random sampling was used to split the six datasets into the training and testing
datasets, yet, some of the reaction subclasses had no representation in the respective test datasets, thus few
of the binary matrices could not be calculated for these reaction subclasses. These are represented as NA
values



TRANSPARENT METHODS

Construction of microbial species database

The data and text mining of the available literature was performed to construct a manually
curated database of bacterial species present at different skin sites. The protein sequences
of genomes of the bacterial species from the constructed database were retrieved from
NCBI Reference Sequence Database (RefSeq) (O'Leary et al., 2015). Only complete genome
assemblies were used from the RefSeq database. The genomes of all the available strains of
a species were used to construct the pangenome of that species which helped to compile
the metabolic potential of all the strains for a particular species. The pangenome of a
species includes all the genes from all the different strains of that species. The pangenomes
were constructed for all the bacterial species that are experimentally known to be a part of
skin microbiome, and for which the complete genomes were available on the NCBI RefSeq
database. The information on different bacterial species for which the pangenomes were
constructed, and the skin sites harbouring these species is provided in Supplementary Data
Sheet 1. The information on 19 different sites primarily including the sebaceous, moist, and
dry skin niches was retrieved from literature, manually curated, and was used for further
analysis. For the construction of pangenome, the protein sequences of all genomes of a
species were merged and clustered at 100% identity using CD-HIT v4.6 (Li and Godzik, 2006).

Construction of skin microbiome specific metabolic information database

The ExPASy enzyme database was used to find the Uniprot/SwissProt IDs of all the
annotated enzymes that belong a particular metabolic reaction annotated as four-digit EC
number (Gasteiger et al., 2003). The protein sequences for these enzymes were
downloaded from the Uniprot database (Consortium, 2014). The homology search of these
enzyme sequences was performed against each pangenome to identify all the metabolic
enzymes present in that pangenome using the NCBI BLASTP program (Altschul et al., 1990).
The hits were filtered using the cut-off criteria of identity >50%, bit-score >100, query
coverage >50%, subject coverage >50%, E-value <10'°, mismatch percentage <50%, and gap
percentage <50%. Finally, a database of complete reactions annotated as four-digit EC
number and corresponding metabolic enzymes from all the pangenomes was constructed.
Each of the metabolic enzymes was tagged with the bacterial species pangenome containing
the enzyme. Further, the metabolic enzymes were also tagged with the skin sites that

harbour the bacterial species with those enzymes.
Construction of reaction, RDM pattern, and substrate database

All the enzymatic reactions and their corresponding reactions IDs were retrieved from KEGG
database (Kanehisa and Goto, 2000). For each reaction ID, the corresponding reactions pairs
and respective RDM patterns were also retrieved from the KEGG database (Kanehisa and



Goto, 2000). From this data the databases of reactions, reaction pairs, and RDM patterns
were constructed. From the reactions, the primary substrates were identified and a
database of primary substrates and their respective reactions annotated as four-digit EC

number was constructed.
Calculation of molecular features of substrates

The structural and chemical features were calculated for each of the substrate molecule in
the substrate database. Thus, the molecular information of substrates was translated into
machine-readable features that include chemical properties parameters, linear structural
fingerprints, and circular molecular connectivity information. The chemical features were
calculated using the PaDEL software (Yap, 2011). These chemical features included different
types of chemical descriptions such as acidic atom count, aromatic atom count, aromatic
bonds count, carbon types, molecular distance edge etc. encoded into 240 different values.
Two types of structural fingerprints were calculated: linear and circular. The linear
fingerprints were calculated using the PaDEL software (Yap, 2011). A total of 12 different
types of linear fingerprints (Fingerprinter, Pubchem, MACCS, Atom pairs 2D, KlekotaRoth
etc.) were calculated that were represented as 10,208 bits (values either 0 or 1). The two
types of circular/topological fingerprints, Morgan FCFP - 512 bits and Morgan ECFP - 512

bits, were calculated using RDkit software (Landrum, 2016).
Feature selection

The Boruta algorithm implemented in R as the “Boruta” package was used to extract the
important features among all the above calculated molecular features (Kursa and Rudnicki,
2010). Boruta is a wrapper algorithm for feature selection that uses “Random Forest”
algorithm, and scores each feature and marks them as important, unimportant or tentative.
The tentative features were then finalized as important or unimportant using
“TentativeRoughFix” function of Boruta package in R. The variable importance was
calculated for each EC reaction (EC1 to EC6) class separately. Finally, the important features

for each EC were merged and unique sorted to obtain the final set of important features.
Principal component and cluster analysis

Principal component analysis was performed using the “prcomp” function from “stats”
package in R v3.4.4. This function performs the principal component analysis (PCA) by
performing the singular value decomposition of the input data (Mankin, 2003). This method
is the preferred method for better numeric accuracy. The PCA and scree plots were
generated using the “factoextra” and “ggfortify” package in R v3.4.4 (Kassambara and
Mundt, 2017). The density-based clustering was performed using the “fpc” and “dbscan”
package in R v3.4.4. The kNN distance plot was generated using the “kNNdistplot” function



from “dbscan” package in Rv3.4.4 (Tran et al., 2013). The density cluster plot was generated
using the “factoextra” package in R v3.4.4 (Kassambara and Mundt, 2017).

Hierarchical clustering

The hierarchical clustering was performed using the ‘hclust’ function of ‘stats’ package in R
v3.4.4. The approximate unbiased p-values (AUp) and the bootstrap probability (BP) values
for each branch/cluster were calculated using multiscale bootstrap resampling and using
normal bootstrap resampling, respectively. The optimum number of clusters was identified
to be two based on the average silhouette method .

Construction of machine learning models
Dataset construction

The dataset of 3,769 substrate molecules was randomly split into a working and blind
dataset with a ratio of 95:5. Thus, the working dataset had 3,602 molecules and the blind
dataset had 167 molecules. The working dataset was utilized for the training and statistical
evaluation of the machine learning model, and the blind dataset was used for the
independent evaluation of the model. The dataset was highly skewed with a higher number
of substrate molecules for “Oxidoreductases” and “Transferases” in comparison to other
reaction classes. Also the abundances of substrate molecules belonging to different
combinations of reaction classes were also highly variable. Thus, a modified strategy of
stratified random sampling approach was used to divide the working dataset into the
training and testing dataset for modeling. The details of the dataset construction are

mentioned in Supplementary Text S1.
Training and evaluation

The prediction of reaction class is a multiclass multilabel problem because one substrate
molecule can undergo more than one type of reaction among the six types of reactions
classes. In machine learning, there exists two methods to model the multiclass multi-label
problem, one is problem transformation method where the multiclass multi-label problem
is divided into several multiclass or binary problems, and another is algorithm adaptation
method where the algorithms are adapted to perform the multiclass multi-label predictions.
For the problem transformation method all the algorithms used for binary or multiclass
classification can be used, whereas for algorithm adaptation method the algorithms need to
be changed before using them for the multiclass multi-label classification. In the problem
transformation method, a learner known as “wrapped multilabel learner” is employed on
the “core learner”. The function of wrapped learner is to manage and combine several core
learners so that they can work in synchronization to achieve the multilabel classification.
The core learner is any traditional algorithm for binary or multiclass classification. We used

five different wrapper methods: (1) binary relevance (BR) method, (2) classifier chains (CC)



method, (3) Nested stacking (NS) method, (4) Dependent binary relevance (DBR) method,
and (5) Stacking method. We used the seven core learners for each of the above mentioned
wrapper methods, these are: k-Nearest Neighbors (kNN), Recursive Partitioning (RPART),
Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost),Perceptive Neural
Network (NNET), Naive Bayes, Random Forests (RF). In the algorithm adaptation method,

we used two methods, randomForestSRC (RFSRC) and random ferns (RFerns).

The performance of the models was evaluated using two types of matrices, multilabel - to
assess the capability of the model to perform the multilabel classification, and binary - to
assess the capability of the model to perform the binary classification for each label. Five
matrices were used in the multilabel case namely: Multilabel Accuracy, Multilabel Sensitivity
or Recall or True Positive Rate, Multilabel Precision or Positive Prediction Value (PPV),
Multilabel F1 measure (F1), and Hamming loss (Charte and Charte, 2015). The formulas for
these matrices for multiclass multilabel classification are mentioned below (Charte and
Charte, 2015):

il i=Ip|
ultilabel Accuracy = ID| £ Pi U Ti|’ ultilabel Precision = D . T
=1 i=1
i=|D|
; . 1 |Pi N Tif
Multilabel Recall or Sensitivity = — -
|D| & | Pi]
=1
i=|D|

Precision * Recall ] 1 |Pi A Ti|
Multlabel F1 measure = 2 * ; Haomming loss = m Z T
i=1

Precision + Recall’ |

Where, D is the total number of instances in the multiclass multilabel dataset, C is the
complete set of labels present in the multiclass multilabel dataset, Pi is the predicted labels
for the i instance, and Ti is the true labels for the i instance. The set operations used

were: N meaning intersection, U meaning union, and 4 meaning symmetric difference.

We used eight matrices to evaluate the binary performance: Binary Accuracy, Mean
Misclassification Error (MMCE), Matthews Correlation Coefficient (MCC), Binary Precision or
Positive Predicted Value (PPV), Area under the curve (AUC), Binary False Negative Rate
(FNR), Binary False Positive Rate (FPR), Binary Sensitivity or Recall or True Positive Rate
(TPR), Binary Specificity or True Negative Rate (TNR), Binary Negative predictive value (NPV),
Binary False discovery rate (FDR), and Binary Geometric Mean of binary precision and binary
recall (GPR). The formulas for these binary performance matrices are mentioned in
Supplementary Text S2. The final model for reaction class and subclass prediction was

constructed with the method that showed the best multilabel and binary performance.

Construction of artificial neural network (ANN) models



Dataset construction

The aim of constructing the ANN model was to improve upon the learning about the class-
specific patterns, thus, only the substrates where the molecule could undergo the reactions
of only one type of reaction class were extracted from the working dataset (as mentioned
above) and were used for the construction of ANN models. This dataset had a total of 1,758
substrate molecules with the distribution of molecules across different reactions classes:
“Oxidoreductases” - 832, “Transferases” - 573, “Hydrolases” - 195, “Lyases” - 79,
“Isomerases” — 41, and “Ligases”- 36. It is evident from the distribution that the dataset is
very biased and imbalanced, thus, the stratified random sampling was performed to split
this dataset into training and testing dataset. For stratified random sampling, this dataset
was first divided into six parts, one for each reaction class, and then each reaction class
dataset was splitted separately into training and testing dataset using random sampling with
the split ration of approximately 90:10. Now all the six training sets were merged to create
the final training dataset and all the six testing datasets were merged to create the final
testing dataset.

Training and evaluation

The ANN network was constructed in Python using libraries tensorflow v1.4.1 and keras
v2.2.4. Based on the nature of the problem, the best suited multilayer perceptron model
that is based on the backpropagation method for training is used. In the backpropagation
method, the error rate is provided as feedback to the whole neural network that is known
as back propagating the error, which is then used by an optimizer algorithm to optimize the

parameters of artificial neural network.

Three different matrices were used to evaluate the performance of the ANN model:
categorical accuracy, binary accuracy, and log loss/binary cross entropy. Since it is a
multiclass classification problem the target variable here is one hot encoded. The
categorical accuracy checks if the maxima in the true values and the maxima in the
predicted values have the same index, if yes, it is considered a true prediction, else it is
considered a wrong prediction. This is performed on all test dataset instances, and the
fraction of correct predictions out of total predictions on test dataset gives the categorical
accuracy. In contrast, for calculating the binary accuracy, at first all the probabilities are
converted into values with the threshold of 0.5 (if <0.5 means 0, and if >0.5 means 1), then
all the true values of each instance are compared with the predicted values. If the true value
is equal to the predicted value then it is considered as correct prediction, else it is
considered a wrong prediction. This was also performed on all the values of each of the test
dataset instance, and the fraction of correct predictions out of the total predictions gives

the binary accuracy. The formula to calculate the log loss/binary cross entropy is:



N
— Z Y(i, o)log (P(i, ©))
c=1

Where, N is the number of different classes present in the dataset, log is the natural
logarithm, Y(i,c) is the indicator if the classification is correct (1 if yes and 0 if no) for i
observation for c class, and P(i,c) is the probability predicted by the ANN model for ith

observation for c class

The hypermeters of the ANN models were also optimized based on the three evaluation
matrices mentioned above to obtain the best performance from the ANN model. To
calculate the optimum number of neurons in the hidden layer, the values close to the
average of the size of input and output layers were tried and the best value was selected
while keeping the number of hidden layer as one. Different number of hidden layers were
tried to select the best performing ANN model with the most optimum number of hidden
layers. A range of epoch values from 1 to 4000 were tried and based on the plateau in the
performance an optimum value was selected. The other parameters of the ANN models
were optimized using the grid search method with 5-fold cross validation the details are
mentioned in Supplementary Text S3. The parameters optimized were: Weight initializer,

Learning rate, Optimizer, Batch size, Dropout rate, and Weight constraint.
Statistical evaluation of the machine learning and ANN models

We used three methods to statistically evaluate the performance of the machine learning
and ANN models. These three methods are split testing, cross validation, and blind set

testing. The details of these methods are mentioned in Supplementary Text S4.
Molecular similarity search

The open source chemoinformatics tool Open Babel v2.3.2 was used for performing the
molecular similarity search using the inbuilt default fingerprint FP2 which is a path-based
fingerprint. The complete substrate molecule database was divided into several reaction
subclass specific databases, depending on the type of reaction subclass a particular
substrate can undergo. Once the reaction class and subclass are predicted by the machine
learning and ANN models, the molecular similarity search against the predicted reactions
subclass specific database is performed and Tanimoto Coefficient or Jaccard Index was

calculated. The formula for calculating the Tanimoto Coefficient or Jaccard Index is:

Nc
Na + Nb — Nc

Tanimotto coef ficient or jaccard index T(a,b) =

Where, T(a,b) is the tanimoto coefficient for molecule a and b, Na is number of bits that are

1 in the fingerprints of molecule a, Nb is number of bits that are 1 in the fingerprints of



molecule b, and Nc is the number of bits that are 1 in the intersection of fingerprints of

molecule a and b.
K-nearest neighbour (KNN) model construction or lazy learning

KNN is a preferred method for the identification of structurally and chemically similar
molecules to the input molecule in the search against a heterogeneous database (Soucy and
Mineau, 2001). The KNN algorithm was implemented using the R package “FNN”
(Beygelzimer et al., 2015). The k-nearest neighbours for any given molecule were extracted
using the function “get.knnx” from the “FNN” package that uses “Euclidean distance” as the

measure of similarity between molecules.
Identification of reaction center

The reaction centers were identified by using the RDM pattern information that is
associated with each of the substrate-product pair of an enzyme catalyzed reaction in KEGG
database (Kanehisa, 2002). In the RDM pattern database constructed in this study, all the
complete metabolic reactions are associated with the respective Reaction Class (RC) pairs,
and all the RC pairs were tagged with corresponding RDM patterns. For a given biochemical
reaction available in KEGG, the KEGG-defined RDM (Reaction center, Difference region,
Matching region) patterns contain the information on the KEGG atom type changes at the
reaction center, matched region of the molecule, and the difference region of the molecule
(Kotera et al.,, 2013). Here a reaction center is the atom where the reaction occurs, a
matched region is the region common between substrate and product that remained
unchanged after the reaction, and a difference region is the part of molecule that changed
after the reaction. The RDM patterns are derived from the structural alignments of the
substrates and products which identifies the reaction center, matched and difference
regions (Yamanishi et al., 2009). To identify the reaction center in a molecule for each of the
predicted metabolic reaction, all the RC pairs and corresponding RDM patterns were
extracted. Using these RDM patterns, the reaction centers were identified by in-house
python scripts. Thus, this computational approach is similar to the biochemical approach in
which the primary substrate and product are compared to identify the reaction center

where the biochemical reaction has occurred in the enzyme active site.



SUPPLEMENTARY TEXT
Supplementary Text S1: (Related to Figure 4 and 5)

The dataset of 3,769 substrate molecules was randomly split into a working and blind
dataset with a ratio of 95:5, the working dataset had 3602 molecules and the blind dataset
had 167 molecules. The working dataset was utilized further for the training and statistical
evaluation of the machine learning model and the blind dataset was used for the
independent evaluation of the model. Since the dataset was much skewed with a very
higher number of substrate molecules for “Oxidoreductases” and “Transferases” in
comparison to other reaction classes and also abundance of substrate molecules with
different combinations of reaction classes was very variable, thus, a modified strategy of
stratified random sampling approach was used to divide the working dataset into the

training and testing dataset for modeling.

In this approach, to account for the differences in substrates belonging to different
combinations of reaction classes the working dataset was divided into pure (contains
substrates that can undergo only one type of reaction among different reaction classes) and
mixed datasets (contains substrates that can undergo multiple reactions among different
reaction classes). The pure dataset which had 1756 substrate was statistically down-
sampled to randomly select the same number (lowest in the sample = 36) of substrates for
each reaction class. Thus, the down-sampled pure had a total of 216 substrates (36 of each
reaction class). The mixed dataset had 1,846 substrate molecules which was split into two
datasets large and small with the ratio of 95:5, the large part had 1,774 substrates, whereas
the small part had 72 substrate molecules. The training dataset was constructed by merging
the down-sampled pure dataset (216 substrates) and the large part of mixed dataset (1,774
substrates), and had a total of 1,990 substrate molecules. The testing dataset was
constructed by merging the remaining of pure dataset after down-sampling (1,540
substrates) and the small part of the mixed dataset (72 substrates), and has a total of 1,612
substrate molecules. These final training and testing datasets corresponded to an

approximate ratio of 55:45 of the working dataset of 3602 substrate molecules.

Similarly, for the training of machine learning models for reaction subclass prediction the
working dataset was divided into six parts, one for each reaction class. The same substrate
could belong to multiple parts if it can undergo reactions from multiple reaction classes. The
numbers of reaction sub-classes in each reaction class were: “Oxidoreductases” - 22,
“Transferases” - 9, “Hydrolases” -13, “Lyases” -8, “Isomerases” — 6, and “Ligases”- 6. For
each dataset the stratified random sampling was performed to split the input dataset into

training and testing dataset with the split ration of 90:10.



Supplementary Text S2: (Related to Figure 4)

To evaluate the binary performance we used eight matrices, Binary Accuracy, Mean
Misclassification Error (MMCE), Matthews Correlation Coefficient (MCC), Binary Precision or
Positive Predicted Value (PPV), Area under the curve (AUC), Binary False Negative Rate
(FNR), Binary False Positive Rate (FPR), Binary Sensitivity or Recall or True Positive Rate
(TPR), Binary Specificity or True Negative Rate (TNR), Binary Negative predictive value (NPV),
Binary False discovery rate (FDR), and Binary Geometric Mean of binary precision and binary
recall (GPR). The formulas for these binary performance matrices are mentioned below:

Bi 4 _TP+TN
lnary Accuracy = PN
FP+FN TP * TN — FP x FN
MMCE = ; MCC =
P+N (TP + FP)(TP + FN)(TN + FP)(TN + FN)
Bi Precision = e . Bi FNR = N ; Bi FPR =
mary rrecision = FP+ TP , binary = TP + FN , binary = TN + FP
Bi Sensitivity or Recall = e . Bi Specificity = o
mary sensitivity or recatl = FN + TP’ mary pelelCl y = FP+TN
Bi NPV = ki Bi FDR = ki Bi GPR
mary = TN + FP, mmary = TP + FP , blnary

= +/Precision * Recall

Where, TP is true positives, FP is false positives, TN is true negatives, FN is false negatives, P
is the total number of positives, and N is the total number of negatives in the input dataset.

Supplementary Text S3: (Related to Figure 5)

The other parameters of the ANN models were optimized using the grid search method with
5-fold cross validation, the parameters along with the values tested are: (1) Weight
initializer — Zero, Normal, Uniform, Glorot normal, Glorot uniform, He normal, He uniform,
and Lecun uniform (2) Learning rate — 0.0, 0.02, 0.1, 0.2, and 0.3 (3) Optimizer — Adadelta,
Adagrad, Adam, Adamax, Nadam, RMSprop, and SGD (4) Batch size — 0, 50, 100, 150, 200,
250, 300, 400, and 500 (5) Dropout rate and Weight constraint — [0.0, 1], [0.0, 2], [0.0, 3],
[0.0, 4], [0.0, 5], [0.1, 1], [0.1, 2], [0.1, 3], [0.1, 4], [0.1, 5], [0.2, 1], [0.2, 2], [0.2, 3], [0.2, 4],
[0.2, 5], [0.3, 1], [0.3, 2], [0.3, 3], [0.3, 4], [0.3, 5], [0.4, 1], [0.4, 2], [0.4, 3], [0.4, 4], [0.4, 5],
[0.5, 1], [0.5, 2], [0.5, 3], [0.5, 4], [0.5, 5], [0.6, 1], [0.6, 2], [0.6, 3], [0.6, 4], [0.6, 5], [0.7, 1],
[0.7, 2], [0.7, 3], [0.7, 4], [0.7, 5], [0.8, 1], [0.8, 2], [0.8, 3], [0.8, 4], [0.8, 5], [0.9, 1], [0.9, 2],
[0.9, 3], [0.9, 4], and [0.9, 5]. The final model was constructed using the most optimum

parameters selected based on the gird search method.



Supplementary Text S4: (Related to Figure 4 and 5)

a) Split testing: As mentioned in the dataset construction part the complete working
dataset was divided into training and testing dataset using a specific splitting approach.
The models were trained on the training dataset and evaluated in the test dataset.

b) Cross validation: In this study, we used 5-fold cross validation for machine learning
models and ANN models. In this method, during the process of training the dataset was
randomly divided into five equal parts and five iterations of training and testing are
performed. In each of the iteration four parts are used for training and the rest one part
is used for the testing. This way in five iterations each of the training instances is used for
testing the model and thus, avoiding any bias in the evaluation of the performance
matrices. Finally, the mean/median and standard deviation value of performance
matrices across five iterations is used to evaluate any bias in the model such as over-
fitting or under-fitting.

c) Blind set testing: Approximately 5% of the randomly selected instances are kept aside
before starting the training and testing process of model and, the model never sees these
instances at any stage of its training and testing, hence called a blind dataset to model.
Therefore, the performance of the model on this blind dataset is considered to be a real

or unbiased performance of the model.

Supplementary Text S5: (Related to Figure 1)

To further evaluate the variability in skin sites in terms of enzymatic reactions it is critical to
know the reactions that are common to the different sites. To identify the number of
reactions that are common to different sites the matrix layout analysis performed using the
‘UpSetR’ package in R (Conway et al., 2017; Lex and Gehlenborg, 2014). It generates a

matrix layout diagram for visualizing the set intersections.

Supplementary Text S6: (Related to Figure 1)

A skin microbiome specific metabolic enzyme database of four-digit EC number and
corresponding metabolic enzymes from all the pangenomes was constructed. Each
metabolic enzyme in this database is tagged with the bacterial species if their pangenome
harbors this enzyme. Also the metabolic enzymes were tagged with the skin sites based on
the presence and absence of the bacterial species harboring the enzyme on that particular

skin site. All the well-annotated enzymatic reactions were extracted from KEGG database



and corresponding reaction, primary substrates, RC pair and RDM pattern databases were
constructed. A total of 10,629 reactions, 3,769 primary substrates, and 2,592 RC pairs and
RDM patterns were extracted from the KEGG database. Also each of the primary substrate
in the database was tagged with the reaction class (EC-one digit), reaction subclass (EC-two
digit), and complete reaction category (EC-four digit). The four types of molecular features
were calculated for each of the primary substrate: chemical descriptors, linear fingerprints,
Morgan ECFP fingerprints, and Morgan FCFP fingerprints. All this data was used for the
training of the prediction models and for making the final metabolism predictions.

Supplementary Text S7: (Related to Figure 4 and 5)

Feature selection was performed using the Boruta package on chemical descriptor and
linear fingerprints (Kursa and Rudnicki, 2010). Boruta selected 194 features out of 240
chemical descriptors and 1,104 features out of 10,208 linear fingerprints across different
reaction classes. All features of Morgan FCFP and Morgan ECFP were included and were not
subjected to feature selection as these features are elementary and all the bits are needed
to adequately describe a substrate molecule. The total number of features used for further
analysis was 2,322: 194 from chemical descriptors, 1104 linear fingerprints, 512 Morgan

ECFP fingerprints, and 512 Morgan FCFP fingerprints.

Supplementary Text S8: (Related to Figure 6)

A previous study have reported that the adjustment in the threshold of multiclass multilabel
classification model could significantly improve on their performance (Al-Otaibi et al., 2014;
Fan and Lin, 2007). Thus, although we evaluated the performance of our models using the
threshold value of 0.5 for all the machine learning and ANN models so that we do not
overestimate the sensitivity of our models, the prediction threshold of the models deployed
in the web server was lowered for the reaction subclass prediction models of
“Oxidoreductases”, “Transferases”, “Hydrolases”, and “Lyases” classes from 0.5 to 0.2
because they had a range of 8 to 22 different subclasses and a high threshold could lead to

miss out on some possible reaction subclasses.
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