Matter, Volume 4

Supplemental information

Integrated contact lens sensor system based

on multifunctional ultrathin MoS_2 transistors

Shiqi Guo, Kaijin Wu, Chengpan Li, Hao Wang, Zheng Sun, Dawei Xi, Sheng Zhang, Weiping Ding, Mona E. Zaghloul, Changning Wang, Fernando A. Castro, Dong Yang, and Yunlong Zhao

1 Supplemental Information

2 Table S1. Comparison of the PDMS with other commercial materials used for contact

3 lenses substrate.

Contact Lens Substrate	Pros	Cons	
PDMS	Elastic, gas-permeable, biocompatible, low-cost, easy manufacturing	Low hydrophilicity, protein accumulation	
PVA	Low-cost, biocompatible, easy manufacturing	Low gas-permeable, fixed water recipe	
Hydrogel	Elastic, copolymer possibilities	Easily abrasive, comonomer	
HEMA	Low-cost, biocompatible	Low gas-permeable, protein accumulation	
PMMA	Low-cost, well-understood polymer	No gas-permeable, rigid	
RGP	Gas-permeable, long-lasting	Expensive, easily abrasive	
Silicone	Gas-permeable, long-lasting	Expensive, easily abrasive	

Sensor	Туре	Linear Range (mM)	Sensitivity (µA/cm²mM)	Reference
GOx/MoS ₂	Enzyme	0->1	1794.4	This work
Cu ₂ O/MoS ₂	Non-enzyme	0.01-4	3108.87	Fang et al. 2017 ^{S1}
GOx/ZnO/Au	Enzyme	0.01-3.45	23.1	Wei et al. 2006 ^{S2}
GOx/ZnO	Enzyme	Not mentioned	21	Ren et al. 2009 ⁸³
GOx/BSA/Nafion/ZnO nanorode/GE	Enzyme	0.6–1.4	10.911	Marie et al. 2015 ^{S4}
GOx/Cu/MWCNTs	Enzyme	0.7–3.5	251.4	Kang et al. 2007 ^{S5}
ZnO nanoparticle	Non-enzyme	1–10	38.133	Singh et al. 2012 ^{S6}
GC/Cu-Ag ₂ O NW	Non-enzyme	200-3200	298.2	Fang et al. 2009 S7

5 Table S2. Performance comparison of several representative glucose sensors

- 7
- 8 Figure S1. Representative optical image of MoS₂ flake obtained via traditional mechanical
- 9 exfoliation method.

- **Figure S2. Thickness characteristics of the MoS₂ flake.** (A) AFM image and (B) height profile
- 12 showing the thickness of 1.8 nm.

Figure S3. The fabrication process of the FET on the SiO₂/Si substrate. (A) Clean the SiO₂/Si wafer with the standard cleaning process. (B) Exfoliate MoS₂ flake onto the surface of the

substrate. (C) Pattern MoS_2 as the active channel with O_2 and SF_6 plasma. (D) E-beam deposit and

17 pattern Ti/Au (5 nm/150 nm) source and drain electrodes.

- 19 Figure S4. The experimental setup for the transfer printing process of MoS₂ transistor. (A)
- 20 Optical microscope for alignment. (B) PDMS stamp on glass slides for MoS₂ transfer.

- Figure S5. Photographs for releasing the sensor layer from the glass substrate and
- 23 transferring it onto the PDMS contact lens substrate.

24

Figure S6. Design of the entire system including the external connection, the blue line as the metal electrode and red line as PI. (A) The overview architecture of the system. (B) The schematic details of the photodetector and the inset showing the cross-sectional view of the structure. (C) The geometrical details of the glucose sensor. (D) The flat structure details of the temperature sensor.

31 Figure S7. The finite element analysis (FEA) of the sensor system with the device under

- 32 biaxial radial strain. (A) Under a strain of 5%. (B) Under a strain of 15%. (C) Under a radial of
- 33 25%. The maximum principal strains are below 2.0 %.

34

35 Figure S8. The FEA of the sensor system with the device under a uniaxial (X-axis) tensile.

- 36 (A) The original state. (B) Under a strain of 15%. (C) Under a strain of 30%. The maximum
- 37 principal strains are below 2.0%.

38

39 Figure S9. The FEA of the sensor system with the device under a Y-axis tensile. (A) The

- 40 original state. (B) Under a strain of 15%. (C) Under a strain of 30%. The maximum principal
- 41 strains are below 2.0 %.

42

43 Figure S10. The FEA of the sensor system with the increasing of Z-displacement. (A) with Z-

- 44 displacement of 0 mm, (B) with Z-displacement of 2 mm to (C) with Z-displacement of 4 mm.
- 45 The maximum principal strains remain < 3.0 %.

- 47 Figure S11. Illustration, optical image and FEA performed on the system with the lens on an
- 48 **artificial eyeball.** (A) Schematic illustration and (B) optical image the contact lens wearing on an
- 49 artificial eyeball. (C) FEA strain map with Z-displacement of 0.5 mm. The maximum principal
- 50 strains remain < 1.0%.

- 52 Figure S12. Photograph of smart contact lens after connecting with an external print circuit
- 53 board (PCB) through an anisotropic conductive film (ACF) cable.

Figure S13. The magnified plot of one response cycle and the rise and decay curve. (A)
Magnified plot of one response cycle by illumination via UV light at a bias of 3 V. (B) Sigmoid
curve fitting of the rise showing ~ 50 ms rise time. (C) Sigmoid curve fitting of the decay showing
~ 50 ms decay time.

60

61 Figure S14. Energy band diagrams showing the mechanism of MoS₂ photodetector. (A) The

band diagrams of separate MoS_2 and gold, corresponding to the vacuum level. (B) Illustration for

63 the band alignment between electrodes and MoS_2 channel with the Schottky barrier height (SBH).

64 (C) After bias and light are applied, the electrons are excited and moved to the conduction band,

65 resulting in higher current flow.

67 Figure S15. Stability test of the glucose sensor with various concentrations of glucose in

artificial tear and for different storage times, up to 24 hours.

Figure S16. Photographs of the smart contact lens stretched under uniaxial tensile stress. (AC) Photographs of the stretched device at the original state and under uniaxial (X-axis) tensile
strain of 15% and 30%. (D-F) The photograph of the stretched device at the original state and
under uniaxial (Y-axis) tensile strain of 15% and 30%. Due to the curvature of the lens, parts of
the sensor may come out of the camera focus during stretch, which leads to parts of the electrodes
to be less visible in some images.

Figure S17. The sensing properties of the stretched device under uniaxial tensile. (A, B)
Relative changes in current as a function of the X-axis tensile strain up to 30% for the UV response
(A) and glucose response (B). (C, D) Relative changes in current as a function of the Y-axis tensile
strain up to 30% for the UV response (C) and glucose response (D).

Figure S18. The photograph and sensing properties of the stretched device under Z displacement. (A) The photograph of the device under a Z-axis displacement of 4 mm from the centre. (B) The resistance of the temperature sensor versus Z-axis displacement under different temperatures. (C, D) Relative changes in current as a function of Z-axis displacement for the UV response (C) and glucose response (D).

87 **References:**

- 88 S1. Fang, L., Wang, F., Chen, Z., Qiu, Y., Zhai, T., Hu, M., Zhang, C., and Huang, K. (2017). Flower-
- 89 like MoS₂ decorated with Cu₂O nanoparticles for non-enzymatic amperometric sensing of glucose. Talanta
 90 *167*, 593-599.
- 91 S2. A. Wei, X.W.S., J. X. Wang, Y. Lei, X. P. Cai, C. M. Li, Z. L. Dong, and W. Huang (2006). Enzymatic
- glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition. Applied Physics
 Letter 89, 123902.
- S3. Ren, X., Chen, D., Meng, X., Tang, F., Hou, X., Han, D., and Zhang, L. (2009). Zinc oxide
 nanoparticles/glucose oxidase photoelectrochemical system for the fabrication of biosensor. J Colloid
 Interface Sci 334 (2), 183-187.
- S4. Marie, M., Mandal, S., and Manasreh, O. (2015). An Electrochemical Glucose Sensor Based on Zinc
 Oxide Nanorods. Sensors (Basel) 15 (8), 18714-18723.
- 99 S5. Kang, X., Mai, Z., Zou, X., Cai, P., and Mo, J. (2007). A sensitive nonenzymatic glucose sensor in
- alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode.
 Anal Biochem 363 (1), 143-150.
- S6. Singh, K.; Umar, A.; Kumar, A.; Chaudhary, G.R.; Singh, S.; Mehta, S.K. (2012) Non-enzymatic
 glucose sensor based on well-crystallized ZnO nanoparticles. Sci. Adv. Mater. 2012, 4 (9), 994–1000.
- 104 S7. Fang, B., Gu, A., Wang, G., Wang, W., Feng, Y., Zhang, C., and Zhang, X. (2009). Silver oxide
- 105 nanowalls grown on Cu substrate as an enzymeless glucose sensor. ACS Appl Mater Interfaces 1 (12),
- 106 2829-2834.