Cell Reports, Volume 33

Supplemental Information

Divergent Role for STAT5 in the Adaptive

Responses of Natural Killer Cells

Gabriela M. Wiedemann, Simon Grassmann, Colleen M. Lau, Moritz Rapp, Alejandro V. Villarino, Christin Friedrich, Georg Gasteiger, John J. O'Shea, and Joseph C. Sun

Supplementary Material

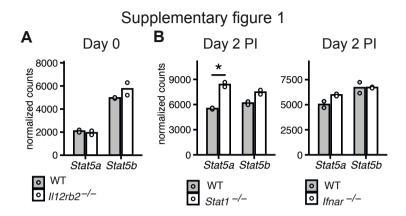
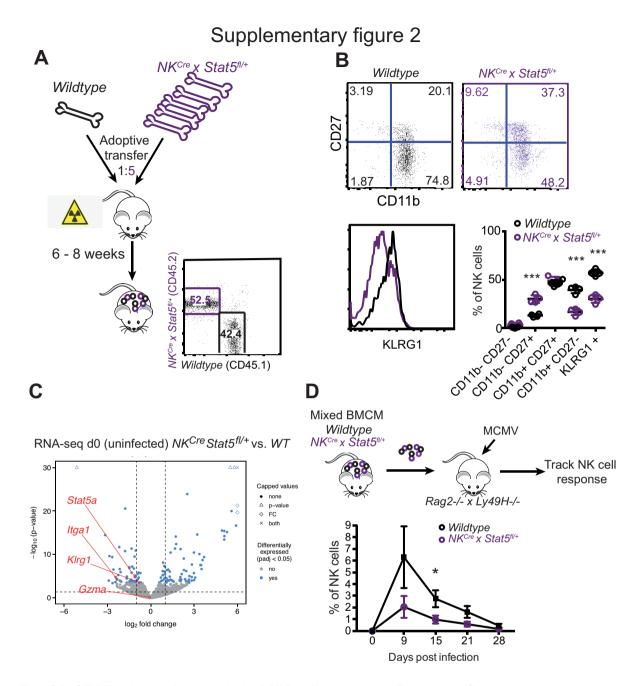



Fig. S1. IL-12- and STAT4-dependent induction of STAT5 in NK cells during MCMV infection. Related to Figure 1.

(**A**) RNA-seq on WT vs. *II12rb2*^{-/-} NK cells from mixed BMC on day 0 (uninfected). Normalized counts of *Stat5a* and *Stat5b* are displayed. (**B**) RNA-seq on WT vs. *Stat1*^{-/-} or *Ifnar*^{-/-} from mixed BMC on day 2 PI. Normalized counts of *Stat5a* and *Stat5b* are displayed.

Fig. S2. STAT5-dependent anti-viral NK cell response. Related to figure 2. (**A-C**). Mixed bone marrow chimeras (mBMC) were generated by lethal irradiation (900 cGy) of host mice, which were then reconstituted with a 1:5 mixture of bone marrow cells from WT and NK^{Cre} x $Stat5^{fl/+}$ donor mice. (**A**) Experimental schematic of mBMC generation. Representative flow blot of NK cell reconstitution 8 weeks after reconstitution. (**B**) Analysis of NK cell maturation markers on WT and NK^{Cre} x $Stat5^{fl/+}$ NK cells in mBMC 8 weeks post reconstitution. (Data is representative of at least 3 experiments). (**C**) Volcano blot of RNA-seq data on uninfected (d0) Ly49H⁺ WT or NK^{Cre} x $Stat5^{fl/+}$ NK cells from mBMC. Blue dots show differentially expressed (FDR < 0.05) genes. Horizontal line indicates p = 0.05, and vertical lines show absolute log2 fold change = 1. (**D**) Splenocytes from mixed WT : NK^{Cre} x $Stat5^{fl/+}$ BMC where adoptively transferred into $Rag2^{-l-}$ x $Ly49h^{-l-}$ mice and infected with MCMV. Graph shows percentage of Ly49H+ WT or KO NK cells of total NK cells over the course of infection. Data is representative of 2 independent experiments (n=3-4). All error bars indicate SEM.

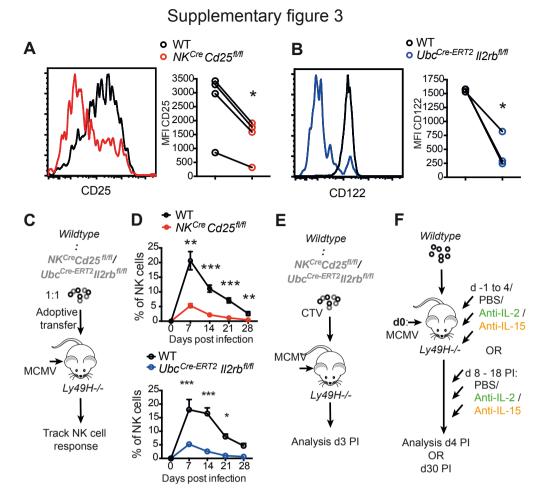


Fig. S3. Both IL-2 and IL-15 drive NK cell expansion in vivo. Related to figures 3 and 4. (A-C) Equal numbers of WT and Ubc^{Cre-ERT2} x II2rb^{fl/fl} or NK^{Cre} x CD25^{fl/fl} NK cells were transferred into $Lv49h^{-1}$ mice. Mice transferred with $Ubc^{Cre-ERT2} \times II2rb^{fl/fl}$ NK cells were treated with tamoxifen on days -3, -2 and -1 before infection with MCMV. Following MCMV infection, relative percentages of Ly49H⁺ WT and KO NK cells are displayed (n = 4-5). (A) Analysis of CD25 expression on WT and NK^{Cre} x CD25^{fl/fl} NK cells on day 3 Pl. Data is representative of 2 independent experiments. (B) Analysis of CD122 expression on WT Ubc^{Cre-ERT1} x II2rb^{fl/fl} on day 3 Pl. Data is representative of 2 independent experiments. (C) Experimental schematic of adoptive transfer and infection. (D) Graphs display percentage of Ly49H+ WT and NK^{Cre} x CD25^{fl/fl} or Ubc^{Cre-ERT2} x II2rb^{fl/fl} NK cells of total NK cells over the course of infection. Data is representative of at least 2 independent experiments (n=4-5). (E). Experimental schematic of CTV labeling and analysis: NK cells from WT mice, NK^{cre} x CD25^{fl/fl} mice, or Ubc^{Cre-ERT2} x II2rb^{fl/fl} mice treated with tamoxifen on days -3, -2 and -1 were labeled with CTV and transferred into Ly49h^{-/-} mice, followed by infection with MCMV. (F) Experimental schematic of antibodymediated IL-2 and IL-15 depletion: WT Ly49H⁺ NK cells were transferred into Ly49h^{-/-} mice treated with PBS, anti-IL-2, or anti-IL-15 on day -1 to 4 PI (early) or days 8 to 18 PI (late) and analyzed on day 4 PI (early) or day 30 PI (late). All error bars indicate SEM.