Supporting Information

Kinetics of Glutathione Depletion and Antioxidant Gene Expression as Indicators of Chemical Modes of Action Assessed *in vitro* in Mouse Hepatocytes with Enhanced Glutathione Synthesis.

Fjodor Melnikov^{§§}, Dianne Botta[⊥][§], Collin C. White[⊥], Stefanie C. Schmuck[⊥], Matthew Winfough[¢], Christopher M. Schaupp[⊥], Evan P. Gallagher[⊥], Bryan W. Brooks^{||}, Edward Spencer Williams^{||}, Philip Coish[§], Paul T. Anastas[§], Adelina Voutchkova-Kostal^{¢,}, Jakub Kostal^{¢*}, Terrance J. Kavanagh[⊥]*

[§]Yale School of Forestry and Environmental Sciences, Yale University, New Haven, CT 06520

¹Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195

Department of Environmental Science, Baylor University, Waco, TX 76798

^gDepartment of Chemistry, George Washington University, Washington, DC 20052

[•]School of Public Health, Yale University, New Haven, CT 06520

Table of Contents

A.	Concentration-response fit details
B.	Table S1: Multivariate changes in antioxidant gene expression between HV and CR cell
	lines for each chemicalp. S2
C.	Table S2: Univariate changes in antioxidant gene expression between HV and CR cell
	linesp. S3
D.	Table S3: Multivariate changes in antioxidant gene expression across all chemicals from 6
	to 24 hr in response to sublethal chemical exposurep. S4
E.	Table S3: Multivariate changes in antioxidant gene expression across all chemicals from 6
	to 24 hr in response to sublethal chemical exposurep. S5
	Figure S1: Schematic of Experimental Designp. S6
G.	Figure S2: GCLC and GCLM protein expression in HV and CR cell lines treated with
	vehicle, hydroquinone or perfluorooctanoic acidp. S7
H.	Figure S4: Correlation between GSH, mRNA and protein expression for GCLC and GCLM
	in HV and CR cell lines exposed to vehicle control, hydroquinone or perfluorooctanoic
	acidp. S8
I.	References

Concentration-response fit details. Cytotoxicity Log AC_{50} estimates were determined based on absolute concentration-response curve (CRC).¹ The curve plateaus were set to average reading from empty media plates and control cell wells. CRC were extrapolated beyond tested concentration ranges when E_{MAX} was not reached in the concentration range tested. For example, tBHP is the least toxic of the 7 analyzed chemicals and does not reach 100% lethality in millimolar concentrations. On the contrary, Dinoseb was extremely potent but MTT fluorescence reading indicated that it did not decrease survival below 50% across wide concentration range above 30 uM. Upon manual examination it was clear that the cells were damaged and not functional – an observation that was not adequately captured by fluorescent reading. Thus, for DNSB cytotoxicity assessment, MTT fluorescence microplate reading from cell exposures to concentration above 30 uM were not use in the CRC fitting and the CRC was allowed to extrapolate the curve into concentrations above 30 uM. The consistent CRC boundaries allow for more exact AC_{50} comparison, less influenced by solubility or selected concentration range.

Table S1: Multivariate changes in antioxidant gene expression between HV and CR cell lines for each chemical.

	Pillai		
Chemical	Statistic	F-score	Pr(>F)
tBHQ	1.00	1104.59	0.023
HQ	1.00	2365881.61	0.001
CHP	1.00	103.08	0.076
tBHP	0.94	2.02	0.498
PFOA	0.27	0.45	0.767
BPA	0.85	6.94	0.028
DNSB	0.24	0.40	0.802

Difference in overall gene expression profiles were established with Multivariate ANalysis of VAriance (MANOVA) using Pillai's trace for significance testing. P-values are corrected for multiple comparisons using family-wise error rate.

Chem	Endpoint	Time	Effect in CR ΔΔΕ	Effect in HV ΔΔΕ	Difference in ∆∆E at (HV-CR)	p.adj
BPA	gclc	24	-0.22	-0.05	0.17	0.156
BPA	gclm	24	-0.07	-0.04	0.03	0.834
BPA	hmox	24	-0.14	0.11	0.25	0.101
BPA	nqol	24	-0.01	0.21	0.22	0.130
CHP	gclc	6	0.12	0.12	0.00	0.998
CHP	gclc	24	0.19	0.44	0.25	0.121
CHP	gclm	6	0.31	0.28	-0.03	0.885
CHP	gclm	24	0.26	0.53	0.26	0.109
CHP	hmox	6	0.88	1.15	0.27	0.330
CHP	hmox	24	0.52	0.93	0.41	0.101
CHP	nqol	6	0.23	0.26	0.03	0.834
CHP	nqol	24	0.30	0.64	0.34	0.162
DNSB	gclc	24	0.19	0.31	0.12	0.376
DNSB	gclm	24	0.21	0.25	0.04	0.772
DNSB	hmox	24	0.56	0.62	0.06	0.834
DNSB	nqol	24	0.18	0.27	0.08	0.543
HQ	gclc	6	0.31	0.79	0.48	0.005
HQ	gclc	24	0.08	0.46	0.38	0.101
HQ	gclm	6	0.57	0.77	0.20	0.083
HQ	gclm	24	0.38	0.64	0.26	0.101
HQ	hmox	6	1.82	2.01	0.19	0.049
HQ	hmox	24	1.17	1.82	0.65	0.005
HQ	nqol	6	0.38	0.35	-0.02	0.834
HQ	nqol	24	0.88	1.18	0.30	0.112
PFOA	gclc	24	-0.14	-0.14	0.00	0.998
PFOA	gclm	24	-0.07	-0.10	-0.02	0.812
PFOA	hmox	24	-0.17	-0.14	0.04	0.568
PFOA	nqol	24	-0.03	-0.06	-0.03	0.830
tBHP	gclc	6	0.00	0.05	0.06	0.475
tBHP	gclc	24	-0.29	-0.16	0.12	0.376
tBHP	gclm	6	0.20	0.28	0.08	0.346
tBHP	gclm	24	-0.15	-0.01	0.14	0.374
tBHP	hmox	6	0.59	0.86	0.28	0.169
tBHP	hmox	24	-0.25	0.06	0.31	0.186
tBHP	nqol	6	0.13	0.19	0.06	0.341
tBHP	nqol	24	-0.13	0.06	0.19	0.374
tBHQ	gclc	6	0.12	0.69	0.57	0.001

Table S2: Univariate changes in antioxidant gene expression between HV and CR cell lines

gclc	24	-0.02	0.22	0.24	0.070
gclm	6	0.43	0.66	0.23	0.036
gclm	24	0.36	0.55	0.19	0.011
hmox	6	1.42	1.88	0.46	0.005
hmox	24	0.75	1.30	0.55	0.101
nqol	6	0.22	0.47	0.25	0.101
nqol	24	0.73	1.13	0.40	0.002
	gclm gclm hmox hmox nqo1	gclm 6 gclm 24 hmox 6 hmox 24 nqol 6	gclm 6 0.43 gclm 24 0.36 hmox 6 1.42 hmox 24 0.75 nqol 6 0.22	gclm 6 0.43 0.66 gclm 24 0.36 0.55 hmox 6 1.42 1.88 hmox 24 0.75 1.30 nqol 6 0.22 0.47	gclm 6 0.43 0.66 0.23 gclm 24 0.36 0.55 0.19 hmox 6 1.42 1.88 0.46 hmox 24 0.75 1.30 0.55 nqol 6 0.23 0.47 0.23

Table S3: Multivariate changes in antioxidant gene expression across all chemicals from 6 to 24 hr in response to sublethal chemical exposure.

	Cell			
Gene	line	Pillai	F-Score	Pr(>F)
Gclc	HV	0.913446	13.19192	0.036
Gclc	CR	0.778847	4.402198	0.18
Gclm	HV	0.709742	3.056517	0.18
Gclm	CR	0.895029	10.65803	0.046
Hmox	HV	0.790072	4.70442	0.18
Hmox	CR	0.96225	31.86248	0.006
Nqol	HV	0.978375	56.55384	0.002
Nqol	CR	0.978272	56.27903	0.002

Difference in overall gene expression profiles were established with Multivariate ANalysis of VAriance (MANOVA) using Pillai's trace for significance testing. P-values are corrected for multiple comparisons using family-wise error rate.

Chem	Endpoint	Cell line	Effect at 6 hr ΔΔΕ	Effect at 24 hr ΔΔΕ	Difference in ∆∆E (24 hr - 6 hr)	p.adj
HQ	nqo1	HV	0.35	1.18	0.83	0.000
HQ	nqo1	CR	0.38	0.88	0.50	0.019
HQ	hmox	HV	2.01	1.82	-0.19	0.109
HQ	hmox	CR	1.82	1.17	-0.65	0.001
HQ	gclc	HV	0.79	0.46	-0.33	0.008
HQ	gclc	CR	0.31	0.08	-0.22	0.211
HQ	gclm	HV	0.77	0.64	-0.13	0.100
HQ	gclm	CR	0.57	0.38	-0.19	0.157
tBHQ	nqo1	HV	0.47	1.13	0.66	0.002
tBHQ	nqo1	CR	0.22	0.73	0.51	0.002
tBHQ	hmox	HV	1.88	1.30	-0.58	0.060
tBHQ	hmox	CR	1.42	0.75	-0.67	0.001
tBHQ	gclc	HV	0.69	0.22	-0.47	0.003
tBHQ	gclc	CR	0.12	-0.02	-0.14	0.086
tBHQ	gclm	HV	0.66	0.55	-0.11	0.109
tBHQ	gclm	CR	0.43	0.36	-0.07	0.336
CHP	nqo1	HV	0.26	0.64	0.38	0.100
CHP	nqo1	CR	0.23	0.30	0.07	0.633
СНР	hmox	HV	1.15	0.93	-0.22	0.432
СНР	hmox	CR	0.88	0.52	-0.35	0.070
CHP	gclc	HV	0.12	0.44	0.31	0.100
СНР	gclc	CR	0.12	0.19	0.06	0.643
CHP	gclm	HV	0.28	0.53	0.25	0.162
СНР	gclm	CR	0.31	0.26	-0.04	0.713
tBHP	nqo1	HV	0.19	0.06	-0.13	0.451
tBHP	nqo1	CR	0.13	-0.13	-0.26	0.070
tBHP	hmox	HV	0.86	0.06	-0.81	0.008
tBHP	hmox	CR	0.59	-0.25	-0.84	0.001
tBHP	gclc	HV	0.05	-0.16	-0.22	0.060
tBHP	gclc	CR	0.00	-0.29	-0.28	0.049
tBHP	gclm	HV	0.28	-0.01	-0.30	0.041
tBHP	gclm	CR	0.20	-0.15	-0.36	0.022

Table S4: Univariate changes in antioxidant gene expression from 6 to 24 hr in response to sublethal chemical concentrations and separated by cell line.

Figure S1. Schematic of Experimental Design

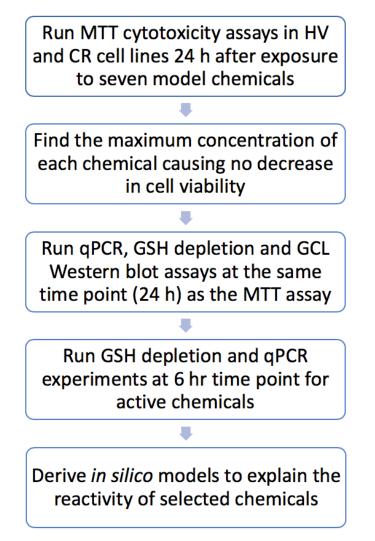
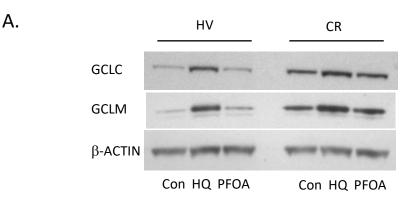
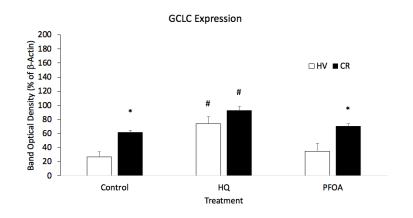




Figure S2. GCLC and GCLM protein expression in HV and CR cell lines treated with vehicle control, 100 uM hydroquinone or 100 uM perfluorooctanoic acid. Panel A: Representative Western immunoblot showing bands for GCLC, GCLM and β -Actin. Lanes for vehicle control (Con), hydroquinone (HQ) and perfluorooctanoic acid (PFOA) are indicated. Quantitation of GCLC (Panel B) and GCLM (Panel C) band optical density represented as a percentage of β -Actin optical density. N=3 independent experiments. *Statistically significant difference (p<0.05) between HV and CR cell lines within treatments. #Statistically significant difference (p<0.05) between control and treated samples within HV or CR cell lines.

Β.

C.

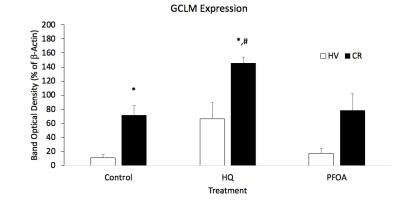


Figure S3. Correlations between GCLC and GCLM mRNA expression, and GCLC and GCLM protein expression in HV and CR cell lines exposed to vehicle control, 100 uM hydroquinone or 100 uM perfluorooctanoic acid. GCLC and GCLM mRNA expression are plotted as a percentage of β -Actin mRNA. GCLC and GCLM protein expression are plotted as a percentage of β -Actin protein. Symbols for vehicle control (Control), hydroquinone (HQ) and perfluorooctanoic acid (PFOA) are indicated. N=3 independent experiments.

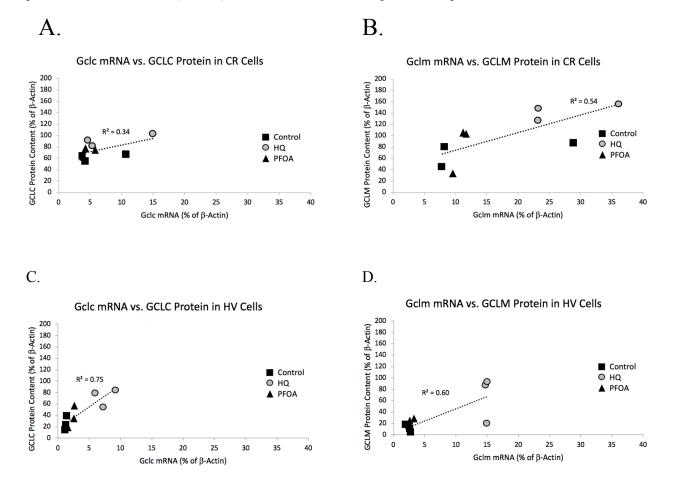
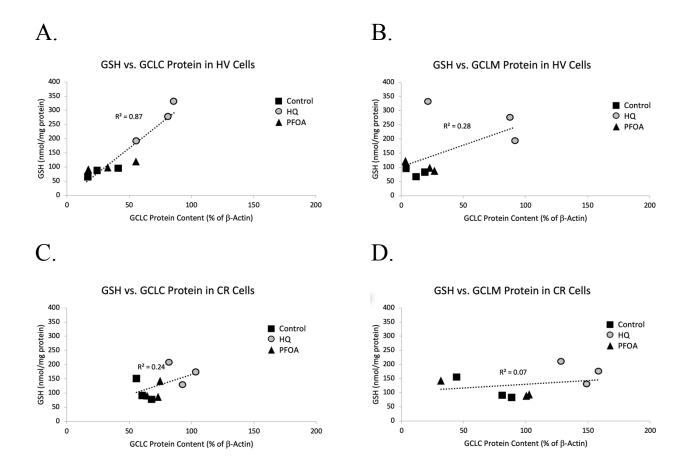



Figure S4. Correlations between GCLC and GCLM protein expression and GSH content in HV and CR cell lines exposed to vehicle control, 100 uM hydroquinone or 100 uM perfluorooctanoic acid. GCLC and GCLM protein expression are plotted as a percentage of β -Actin protein. GSH levels were measured by the NDA assay. Symbols for vehicle control (Control), hydroquinone (HQ) and perfluorooctanoic acid (PFOA) are indicated. N=3 independent experiments.

References

(1) Sebaugh, J. L. (**2011**) Guidelines for accurate EC50/IC50 estimation. Pharm. Stat. 10, 128–134.