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CDKS8 Fine-Tunes IL-6 Transcriptional Activities by
Limiting STAT3 Resident Time at the Gene Loci
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SUMMARY

Cytokines are highly pleiotropic ligands that regulate the immune response. Here, using interleukin-6 (IL-6) as
amodel system, we perform detailed phosphoproteomic and transcriptomic studies in human CD4" T helper
1 (Th-1) cells to address the molecular bases defining cytokine functional pleiotropy. We identify CDKS8 as a
negative regulator of STATS3 transcriptional activities, which interacts with STAT3 upon IL-6 stimulation. In-
hibition of CDK8 activity, using specific small molecule inhibitors, reduces the IL-6-induced phosphopro-
teome by 23% in Th-1 cells, including STAT3 S727 phosphorylation. STAT3 binding to target DNA sites in
the genome is increased upon CDK8 inhibition, which results in a concomitant increase in STAT3-mediated
transcriptional activity. Importantly, inhibition of CDK8 activity under Th-17 polarizing conditions results in an
enhancement of Th-17 differentiation. Our results support a model where CDK8 regulates STAT3 transcrip-
tional processivity by modulation of its gene loci resident time, critically contributing to diversification of IL-6

responses.

INTRODUCTION

Cytokines are critical orchestrators of innate and adaptive immu-
nity (Lin and Leonard, 2019). Despite the functional relevancy of
this family of ligands, the molecular basis governing their large
functional pleiotropy remains poorly defined. Cytokines exert
their activities by dimerizing/oligomerizing surface receptors
and triggering the tyrosine (Tyr) phosphorylation of STAT tran-
scription factors by janus kinases (JAKs) (Gorby et al., 2018;
Martinez-Fabregas et al., 2019; Stroud and Wells, 2004; Wang
et al., 2009; Wilmes et al., 2020). This in turn leads to the nuclear
translocation of STATs and the induction of specific gene
expression programs and bioactivities (Poli and Camporeale,
2015; Schindler et al., 2007). However, how qualitative and
quantitative changes in these pathways contribute to cytokine
functional pleiotropy is poorly understood.

STATs can be modified in conserved Tyr or serine (Ser) resi-
dues (Decker and Kovarik, 2000). Although STAT Tyr phosphor-
ylation plays a critical role in mediating cytokine responses, the
role of STAT Ser phosphorylation in cytokine-mediated activities
is less clear (Chung et al., 1997; Decker and Kovarik, 2000; Kim
and Baumann, 1997; Wen et al., 1995). Early work in cancer cell
lines showed that Ser phosphorylation of STAT proteins regu-
lated their transcriptional activities (Wen et al., 1995). However,
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whether STAT Ser phosphorylation promotes a positive or nega-
tive effect on STAT transcriptional activities remains more
controversial (Bancerek et al., 2013; Decker and Kovarik, 2000;
Levy and Darnell, 2002; Lim and Cao, 1999). Some studies report
a positive effect of STAT Ser phosphorylation in driving STAT
transcriptional activities, whereas others have reported an oppo-
site effect (Bancerek et al., 2013; Decker and Kovarik, 2000; Levy
and Darnell, 2002; Lim and Cao, 1999; Steen et al., 2016; Wen
et al., 1995; Yokogami et al., 2000). For STAT3, Ser phosphory-
lation appears to negatively impact its transcriptional activities
by regulating its chromatin binding dwell time (Yang et al.,
2020). But, earlier studies had reported that STAT3 Ser phos-
phorylation did not have effects on STAT3 chromatin binding
(Wen and Darnell, 1997). The differences in these observations
could be attributed to the use of different cancer cell lines, sug-
gesting a context-dependent regulation of STAT3 signaling.
Interleukin-6 (IL-6) represents a classical paradigm for cyto-
kine functional pleiotropy. IL-6 acts as a central regulator of
the immune response by triggering both pro-inflammatory and
anti-inflammatory responses (Hunter and Jones, 2015; O’Shea
and Murray, 2008; Rose-John, 2018; Scheller et al., 2011). IL-6
drives inflammatory processes by modulating the adaptive and
innate immunity arms. On the one hand, IL-6 promotes the differ-
entiation of T helper-17 (Th-17) cells, while inhibiting the
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differentiation of T regulatory (T reg) cells (Jones et al., 2010;
Korn et al., 2008). On the other hand, IL-6 recruits myeloid cells
to sites of inflammation (Fielding et al., 2008; Gabay, 2006). Addi-
tionally, dysregulation of IL-6 or IL-6-mediated responses is
often associated with inflammatory disorders, making this cyto-
kine highly relevant for human health (Jones and Jenkins, 2018;
Tanaka et al., 2014). IL-6 exerts its activities by triggering the
activation of the JAK1/STAT1/STAT3 signaling pathway upon
recruitment of IL-6Ra and gp130 receptor subunits (Heinrich
et al., 1998; Martinez-Fabregas et al., 2019; Servais et al.,
2019). However, despite the critical contribution that IL-6 plays
in modulating the immune response, the role that STAT3 Ser
phosphorylation plays on regulating IL-6 immune activities has
not been explored in detail. Studies on STAT1 have shown that
CDKS8 appears to be the kinase driving its Ser phosphorylation
in response to interferon gamma (IFNvy) stimulation in macro-
phages (Bancerek et al., 2013). Blockage of STAT1 Ser phos-
phorylation, using STAT1 Ser mutants, significantly altered the
IFNvy transcriptional response and its ability to clear Listeria
monocytogenes infection, highlighting the relevance of STAT1
Ser phosphorylation in modulating IFNy response in macro-
phages (Varinou et al., 2003). However, how Ser phosphorylation
fine-tunes STAT3 immuno-modulatory activities is less well
known.

In this study, we set out to characterize how the signaling
initiated by IL-6 in human T cells leads to its functional pleiot-
ropy. We detected both STAT3 Tyr and Ser phosphorylations
in response to IL-6 stimulation, with STAT3 Ser phosphorylation
exhibiting a delayed activation. Using a battery of small mole-
cule inhibitors, we identified CDK8 and CDK9 as the kinases
driving Ser phosphorylation of STAT3 upon IL-6 stimulation in
T cells. Using proximity ligation studies, we confirmed the
increased interaction between STAT3 and CDK8 and CDK9 in
the nucleus upon IL-6 stimulation. Inhibition of the activity of
these two kinases resulted in a more robust interaction with
STATS, even in the absence of IL-6 stimulation. Chromatin
immunoprecipitation sequencing (ChlP-seq) and RNA
sequencing (RNA-seq) studies revealed a global increase in
STAT3 chromatin binding upon inhibition of CDKS8, resulting in
the induction of a larger gene expression program by IL-6. In
agreement with this enhanced gene expression program, IL-6
induced a more robust differentiation of Th-17 cells upon
CDK8 inhibition in vitro. Overall, our studies identify a STAT3
regulatory mechanism in T cells, whereby CDK8 and CDK9
modulate STAT3 processivity by controlling its chromatin bind-
ing dwell time and transcriptional activity. These observations
suggest ways to manipulate IL-6- and STAT3-mediated re-
sponses by fine-tuning CDK8/9 activities.

RESULTS

IL-6 Signaling Preferentially Induces Tyr/Ser
Phosphorylation of STAT1/3 in Human T Cells

IL-6 critically contributes to modulating the T cell response.
Yet, we have a poor understanding of the signaling networks
engaged by IL-6 in T cells and their role in shaping IL-6 immune
activities. To gain insight into the IL-6 signalosome in T cells,
we carried out detailed signaling studies in human resting or
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activated CD4* and CD8* T cells stimulated with IL-6. IL-6 re-
ceptor expression varies significantly among different T cell
populations and environmental contexts (Figure S1; Betz and
Mdller, 1998; Jones et al., 2010; Ridgley et al., 2019), making
the study of IL-6 signaling in T cells challenging. To minimize
this variability, we have used Hyper-IL-6 (HyIL-6) for our
signaling studies. HylL-6 is a synthetic heterodimer comprised
of IL-6Ra and IL-6 proteins connected by a gly/ser linker
(Fischer et al., 1997). HylL-6 triggers signaling in all cells ex-
pressing gp130, producing a more robust and homogeneous
signaling output (Rose-John, 2012). In Th-1 cells, HylL-6
induced a more potent phosphorylation of STAT1 and STAT3
than IL-6 (Figure S1A, left panels). However, the pSTAT1/
PSTAT3 ratio induced by the two ligands was identical (Fig-
ure S1A, right panel), suggesting that HylL-6 exhibits only qual-
itative and no quantitative signaling differences with IL-6. Dose-
response (Figure 1A) and kinetic signaling studies (Figure 1B)
showed that resting and activated CD4* and CD8" T cells
respond to HylL-6 treatment by Tyr phosphorylating STAT1
and STATS3 transcription factors. The STAT1/3 activation ampli-
tudes elicited by HylL-6 in these cells, however, differ signifi-
cantly, with activated CD4* and CD8" T cells triggering
between 2- to 3-fold higher STAT1/3 phosphorylation ampli-
tudes than resting CD4*/CD8" T cells in response to HylL-6
treatment (Figures 1A and 1B). Interestingly, activated CD4*
T cells triggered higher levels of STAT1 phosphorylation than
activated CD8* T cells upon HylL-6 stimulation (Figures 1A
and 1B, left panels), which correlated with a higher expression
of gp130 and IL-6Ra by CD4" T cells (Figure S1B). Overall,
these results show that IL-6-induced signaling in human
T cells is a dynamic and context-dependent process.

To gain further insight into the signaling networks, beyond
JAK/STAT1/3, engaged by IL-6 in T cells, we used an antibody
array targeting 28 relevant signaling intermediaries. Resting
and activated CD4* and CD8™ T cells were stimulated with satu-
rating concentrations of HylL-6 for the indicated times, and their
signaling signatures in response to HylL-6 treatment were as-
sayed by flow cytometry (Figures 1C and 1D). To ensure the
quality of our signaling antibody array, we stimulated different
populations of T cells with anti-CD3/anti-CD28 antibodies
(TCR)+IL-2 as a positive control, because this treatment acti-
vates a large proportion of the signaling molecules detected by
our antibody array (Ross et al., 2016; Smith-Garvin et al.,
2009). In both resting and activated human CD4" and CD8"
T cells, TCR+IL-2 treatment led to the activation of a large pro-
portion of the signaling intermediaries, including STAT1,
STATS3, STAT4, STAT5, STAT6, ERK, AKT, S6R, and CREB (Fig-
ures 1C and 1D; Figures S2 and S3). HylL-6 treatment on the
other hand preferentially induced the Tyr and Ser phosphoryla-
tion of both STAT1 and STAT3 and, to a lower extent, STAT4
(Figures 1C and 1D; Figure S2). STAT1 and STAT3 Tyr and Ser
phosphorylation in response to HylL-6 treatment were inhibited
by the JAK inhibitor tofacitinib, confirming the dependency of
these two modifications on JAK activity (Figures 1E and 1F; Fig-
ures S3A-S3D). Overall, our signaling data support a dynamic
activation of the JAK/STAT pathway by IL-6in T cells, suggesting
that IL-6 functional pleiotropy emanates from activation of a few
signaling intermediaries.



Cell Reports

>
w

pY701-STAT1 MFI
(x103)
oo
cwowm
pY705-STAT3 MFI
(x10%)
o w o © N

4 2 2 4
Log [HyIL6] (nM) Log [HyIL8] ("M)

C Resting CD4+ T cells Resting CD8+ T cells

ns +HylL6 +TCR/IL2 ns +HylL6 +TCR/IL2

=4 (=} (=3 o o
Minutes ©w0' 282 8 010088 00088 010088010088 688

pSTATY70!
PSTAT1S72/
pSTAT3Y705
pSTAT3S72
pSTATA4Y6®
pSTATSY6%
pSTATEYo4!
PERKT202/Y204
PAKTS#73
PAKTT308
pPIORSKS0
pS6R524D/SQ44
PSERS235/5236
PZAP70Y319/pSYKY?2
pCREBS133
pHIS3S10
pGSK3ps?
pcFOSS32
IRF1

IRF4

IRF7

GATA3
TBET

HIF1a

MYC
O-GIcNAC
STAT3
PLCY1

0 1 2 3
Fold change

m

B CD4

I CD4
20 = cp8

= cp8
15

% 10

pY701-STAT1 MFI
x103)

pS727-STAT1 MFI
(x10%)

N D o

Hyll6 + + + + + + + + Hyll6 + + + + + + + +

pY701-STAT1 MFI

Minutes

pSTAT1Y70!
pSTAT1S727
pSTAT3Y705
pSTAT3872
pSTAT4Y6%
pSTATS5Y6%
pSTATGY64!

0

¢ CellP’ress

-s- CD4 Resting

50

D

Minutes om‘-covom‘—coFomFLovom\—no‘—olo\—no‘—om O

PERKT202/Y204

pAKT$473
PAKTT308
pPYORSKS?

80

pSERS240/5244
PSERS235/5236

PZAP70Y319/pSYKY2

PCREBS13
pHIS3810
pGSK3ps?
pcFOSS32
IRF1

IRF4

IRF7
GATA3
TBET
HIF1a
MYC
O-GIcNAC
STAT3
PLCy1

-

N A OO

pPY705-STAT3 MFI
(x103)

0
HylL6

Tofacitinib - + - + - + -+ Tofacitnib - + - + - + - + Tofacitinib

Resting Activated Resting Activated

Figure 1. IL-6 Signaling Landscape in Primary Human T Cells
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(A and B) STAT1 and STAT3 phosphorylation in response to various doses (A) and exposure time (B) of IL-6 stimulation in resting and activated primary human
CD4* and CD8* T cells. Error bars show mean + SEM from three individual biological replicas.
(C and D) Phospho-FLOW analysis of IL-6 signaling pathways in resting (C) and activated primary human CD4* and CD8* T cells treated with HyIL-6 or anti-CD3/
CD28 (TCR) + IL-2. ns, cells without any stimulation. Heatmaps show fold change in the level of phosphorylation or protein expression of the different proteins.

See also Figures S2 and S3.

(E and F) Effect of JAK inhibition (2 uM tofacitinib) on the phosphorylation of STAT1 (E) and STAT3 (F) Tyr701 and Ser727 in resting and activated primary human
CD4* and CD8" T cells. Error bars show mean + SEM from three individual biological replicas.

IL-6 Induces a Large Number of Phosphoproteome
Changes in Human T Cells

To obtain a full spectrum of the IL-6 signalosome in T cells, we
next performed a quantitative high-resolution phosphoproteo-

mics assay using stable isotope labeling by amino acids in cell (SI-
LAC). We selected Th-1 cells due to their significance in immunity
and ability to expand in vitro to large quantities of a highly pure
population, which is compatible with SILAC studies (Figure 2A).
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Figure 2. Phosphoproteomic Landscape of IL-6 in Human Primary CD4* Th-1 Cells

(A) Experimental workflow for SILAC-based quantitative phosphoproteomic analysis of human primary CD4* Th-1 cells stimulated with 20 nM HyIL-6 for 15 min.
(B) Volcano plot showing differential phosphopeptides in unstimulated versus stimulated Th-1 cells with 20 nM HyIL-6 for 15 min. Phosphopeptides identified in
six biological replicates are shown as log-transformed SILAC ratios plotted against log-transformed p values (two-sided t test). Phosphosites changed more than
1.5-fold with a p value of <0.05 are shown in red (decreased) or blue (increased). Select phosphopeptides are labeled (see also Table S1 for full list). The 24
phosphosites more reproducibly decreased (red) or increased (blue) are displayed alongside.

(legend continued on next page)
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The combined analysis from six independent biological repli-
cates of unstimulated versus HylL-6-stimulated Th-1 cells iden-
tified 17,935 phosphosites on 4,196 proteins (Figure 2B; Table
S1). Among those phosphosites, 304 were increased and 245
were decreased significantly in response to HylL-6 stimulation
in human primary Th-1 cells, while the rest remained unchanged
(Figure 2B). Gene Ontology (GO) analysis (KEGG, Kyoto Ency-
clopedia of Genes and Genomes) pathways and molecular func-
tion analyses) showed an enrichment of the JAK/STAT pathway,
as expected, upon stimulation of Th-1 cells with HylL-6 (Fig-
ure 2C). Of all proteins with detected phosphosites, 288 were ki-
nases (Figure 2D; Table S1). Of those proteins, 28 were regulated
by HylL-6 treatment (Figure 2D; Table S1) and were enriched in
several signaling pathways (e.g., mTOR and mitogen-activated
protein kinase [MAPK]) (Figure 2E). GO analysis showed that
41% of the phosphoproteomic changes induced by HylL-6
took place in the nucleus (Figures S3B and S4), highlighting
this compartment as an important signaling platform for IL-6 ac-
tivities. Furthermore, our GO analysis indicated an enrichment of
phosphosites involved in the regulation of transcription and more
specifically RNA polymerase Il (RNA Pol Il)-mediated transcrip-
tion (Figure 2C). HylL-6 treatment regulated processes related
to protein transcription, acting as part of DNA-modifying com-
plexes (MTA1, CCAR2, and TRRAP) or serving as transcriptional
regulators (ELF2, RUNX2, TSC22D4, and SP4); histone (de)acet-
ylation (KANSL2, TRRAP, and RBBP7); RNA Pol Il transcription
(MECPE, MEF2C, and MED1); and mRNA splicing (DDX46 and
SF3B4), processing (RBM6 and RBM39), and export (NUP50
and NUP1583) (Figures S3B and S4). HylL-6 treatment also regu-
lated non-nuclear processes, including regulation of the cyto-
skeleton, translation, and proteasome at the cytoplasmic level
(Figure 2C; Figures S3 and S4). Overall, our phosphoproteomic
data revealed a strong regulation of the nuclear phosphopro-
teome by IL-6 that could contribute to fine-tuning its immuno-
modulatory activities.

CDKB8/CDK9 Regulate STAT1 and STAT3 Ser727
Phosphorylation

HyIL-6 triggers the Tyr and Ser phosphorylation of STAT1 and
STAT3in T cells. Although JAK1 contributes to the Tyr phosphor-
ylation of STAT1/3, the kinase responsible for STAT1/3 Ser phos-
phorylation in T cells is currently not known. To identify this
kinase, we used a panel of inhibitors targeting signaling path-
ways previously shown to regulate STAT1 and STAT3 Ser phos-
phorylation in different cellular systems (Decker and Kovarik,
2000). Tofacitinib, a JAK inhibitor, blocked both STAT1/STAT3
Tyr and Ser phosphorylation by HylL-6 treatment (Figures 3A
and 3B), confirming previous observations. Of the battery of in-
hibitors tested, only Torin 1, an mTOR inhibitor targeting both
mTORC1 and mTORC2 complexes (Thoreen et al., 2009), in-
hibited the Ser phosphorylation induced by HylL-6 in both
STAT1 and STAT3, without affecting their Tyr phosphorylation
(Figures 3A and 3B). Rapamycin, an inhibitor that under our
experimental conditions only targets the mTORC1 complex
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(Laplante and Sabatini, 2012; Sarbassov et al., 2006), failed to
do so, suggesting that the Ser phosphorylation of STAT1 and
STAT3 induced by HylL-6 was a mTORC2-mediated response
(Figures 3A and 3B). However, alternative mTOR inhibitors (i.e.,
AZD8055 and KU0063794) failed to restrict STAT1 and STAT3
Ser phosphorylation by HylL-6, indicating that the Torin1-medi-
ated inhibition was an off-target effect (Figure 3C). Moreover, in-
hibitors specifically targeting well-described off-targets of Torin
1, i.e., ataxia telangiectasia mutated (ATM; KU53933) and DNA-
dependent protein kinase (DNA-PK; KU57788) (Liu et al., 2012),
failed to inhibit STAT1 and STAT3 Ser phosphorylation by HyIL-6
(Figure 3D). This finding indicates that the inhibition of STAT1 and
STAT3 Ser phosphorylation is a previously unknown off-target
effect of Torin1 and needs to be accounted for when used in
in vitro or in vivo studies.

Previous studies have described CDKs as regulators of STAT1
Ser phosphorylation in different systems (Bancerek et al., 2013;
Chen et al., 2019; Kosciuczuk et al., 2019; Putz et al., 2013).
Thus, we next tested whether the STAT3 Ser phosphorylation
induced by HylL-6 was mediated by CDKs. For that test, we
measured STAT3 Tyr and Ser phosphorylation levels induced
by HyIL-6 in cells treated with a panel of CDK inhibitors. Flavopir-
idol, a well-described pan-CDK inhibitor (Luke et al., 2012),
completely abolished the Ser phosphorylation of STAT3 induced
by HylL-6 (Figure 3E; Figures S5A-S5C). CDK8-specific inhibi-
tors (i.e., BI-1347 in Hofmann et al., 2020 and MSC2530818) in-
hibited HylL-6 induced STAT3 Ser phosphorylation by 70% in
both human CD4* and CD8* T cells (Figure 3E; Figures S5A-
S5C). CDK9 (i.e., NVP2 and CDK inhibitor Il) or CDK12/CDK13
(i.e., THZ531 and MFH-2-90-1) inhibitors only reduced the
STAT3 Ser phosphorylation by 20% (Figure 3E; Figures S5A-
S5C). None of the inhibitors affected the STAT3 Tyr phosphory-
lation levels (Figure 3E, Figures S5A-S5C). Genetic silencing of
CDK8 and CDK9 in HEK293T cells (Figures S5D-S5F) and
in vitro kinase assays performed with recombinant CDK?7,
CDKS8, CDK9, and STATS3 proteins (Figure S5G) further support
CDK8 and CDKS9 as the main kinases driving STAT3 Ser phos-
phorylation in response to HylL-6. We detected a small decrease
on STAT3 Tyr phosphorylation upon HylL-6 stimulation in cells
depleted of CDK8 and CDK9 (Figure S5E), which we did not
detect in experiments using small molecule inhibitors. We
believe that this decrease results from toxicity associated with
prolonged depletion of CDK8 and CDK9 kinases. Our data high-
light a critical role of CDKS8 in regulating STAT3 Ser phosphory-
lation by HyIL-6, with an accessory role of other CDK members.

HyIL-6 Induces Nuclear Interaction of STAT3 and CDK8/
CDK9

Next, we explored whether STAT3 and CDK®8/9 physically inter-
acted in the nucleus upon HyIL-6 stimulation. For that, we per-
formed proximity ligation assays (PLAs), a technique that allows
the detection of protein complexes at endogenous levels without
the need of protein overexpression or labeling that could inter-
fere with their binding partners (Fredriksson et al., 2002).

(C) Gene Ontology (GO) analysis as determined by DAVID of the phosphosites regulated by HyIL-6 in human primary Th-1 cells.
(D) Kinase phosphosites regulated in response to HylL6 stimulation in human primary Th-1 cells.
(E) GO analysis as determined by DAVID showing main signaling pathways engaged by HyIL-6 in human primary Th-1 cells.
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Figure 3. STAT1 and STAT3 HylL-6-Induced Ser727 Phosphorylation Is CDK8/9 Mediated

(A and B) Spider plots showing pTyr701 STAT1 (A) or pTyr705 STAT3 (B) (blue line) and pSer727 STAT1 (A) or pSer727 STAT3 (B) (red line) MFI normalized to HylL-
6-treated cells in the presence of different inhibitors in human primary CD4" Th-1 cells.

(C) Effect of different mTOR inhibitors on the STAT1 (top panel) and STAT3 (bottom panel) Ser727 phosphorylation induced by HyIL-6 in human primary CD4*

T cells.

(D) Effect of ATM inhibitor (KU53933) and DNA-PK inhibitor (KU57788) on the STAT1 (top panel) and STAT3 (bottom panel) Ser727 phosphorylation induced by

HylIL-6 in human primary CD4" T cells.

(E) Effect of different CDK inhibitors on the STAT3 Tyr705 (top panel) and STAT3 Ser727 (bottom panel) phosphorylation induced by HyIL-6 in human primary
CD4* T cells. For all experiments, quantitative data were calculated from three individual biological replicates. Error bars show mean + SEM.

Activated human primary CD4* T cells were stimulated with
20 nM HylL-6 for the indicated times, and samples were pre-
pared for PLA analysis following manufacturer instructions
(Sigma). In untreated cells, we detected very low levels of
STAT3/CDK8 (Figure 4A) and STAT3/CDK9 complexes (Fig-
ure 4B). Upon HylL-6 stimulation, we detected a 2- to 4-fold in-
crease in the number of STAT3/CDK8 and STAT3/CDK9 com-
plexes, which peak at 30 min after stimulation and return to
basal levels after 3 h (Figures 4A and 4B), paralleling the
STATS Tyr activation kinetics (Figure 1B).

We next studied whether CDK activity modulated the forma-
tion of STAT3/CDK complexes upon HylL-6 stimulation. Acti-
vated human CD4" T cells were stimulated with HylL-6 for
30 min in the presence of different CDKs inhibitors. Levels of
STAT3/CDK8 and STAT3/CDK9 complexes were measured

6 Cell Reports 33, 108545, December 22, 2020

by PLA analysis. As before, HylL-6 stimulation led to a signifi-
cant increase in the number of STAT3/CDK8 and STAT3/
CDK9 complexes, when compared to unstimulated cells (Fig-
ures 4C and 4D). Addition of flavopiridol (panCDK inh.) or
MSC2530818 (CDKS8 inh.) inhibitors resulted in an enhance-
ment in the number of STAT3/CDK8 and STAT3/CDK9 com-
plexes (Figures 4C and 4D). Interestingly, treatment with the
two inhibitors led to an increase in the number of STAT3/
CDK8 and STAT3/CDK9 complexes (Figures 4C and 4D) in
the absence of HylL-6 stimulation, suggesting a role for CDK
activities in regulating STAT3 nuclear resident time and thus
chromatin binding.

Previous studies have reported that mutation of S727 in STAT3
to alanine (Ala) modulates its transcriptional activity (Chung et al.,
1997; Kim and Baumann, 1997; Lim and Cao, 1999; Wen et al.,
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1995; Yokogami et al., 2000). Thus, we next investigated the role
that this mutation plays on recruitment of CDKs upon HylL-6
stimulation. For that investigation, we took advantage of the hu-
man Hut78 cell line, a cutaneous T lymphocyte, where HylL-6
treatment also induced STAT3 S727 phosphorylation in a
CDK-dependent manner (Figure S6A-B). Importantly, only flavo-
piridol treatment resulted in an inhibition of STAT3 Ser phosphor-
ylation by HylL-6 in Hut78 cells, suggesting that in these cells,
CDK9 but not CDK8 is the main CDK driving STAT3 phosphory-
lation (Figures S6A and S6B). Next, we generated STAT3 knock-
down (STAT3 KnD) Hut78 cell lines by CRISPR-Cas9 (Fig-
ure S6C). These cells exhibited a clear reduction in the STAT3
Tyr phosphorylation upon HylL-6 stimulation (Figure S6D).
STAT3 KnD cells were reconstituted with wildtype (WT) STAT3-
GFP or S727A STAT3-GFP mutant, and the levels of STAT3/
CDK9 complex formation were measured by PLA (Figure 4E; Fig-
ure S6E). Due to STAT3 overexpression in these cells, we de-
tected significantly higher levels of the STAT3/CDK9 complex
in unstimulated cells than those detected in human Th-1 cells.
Yet, upon HylL-6 stimulation, we observed a significant increase
in the number of STAT3 WT/CDK9 complexes in the nucleus,
which peaked at 30 min and went back to basal levels by 2 h after
treatment (Figure 4E). The STAT3 S727A mutant exhibited a
similar nuclear translocation profile to STAT3 WT, but it showed
a delayed association kinetic with CDK9 (Figure 4E). Interest-
ingly, at late stimulation times, we observed higher levels of
STAT3 S727A/CDK9 complexes when compared to STAT3
WT, suggesting that the STAT3/CDK9 interaction is stabilized
in the absence of STAT3 Ser phosphorylation (Figure 4E). Over-
all, our studies show that CDK8 and CDKO fine-tune STAT3 nu-
clear dynamics.

CDKS8 Regulates IL-6-Induced Nuclear
Phosphoproteome

Our data have highlighted a critical role of CDK8 in regulating
STAT3 Ser phosphorylation and nuclear dynamics in human
Th-1 cells (Figures 3E, 4A, and 4C). Next, we asked which pro-
portion of the IL-6-regulated phosphoproteome was dependent
on CDK8 activity. For that investigation, we performed phospho-
proteomics studies in Th-1 cells stimulated with HylL-6 for
15 min in the absence or presence of the CDKS8 inhibitor
MSC2530818. The combined analysis of our phosphoproteo-
mics study identified 11,035 phosphosites in 3,500 proteins (Fig-
ures 5A and 5B; Table S2). To minimize mis-interpretation of the
data resulting from off-target effects mediated by the CDK8 in-
hibitor, we focused our analysis on phosphosites that were
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induced by HylL-6 treatment and sensitive to CDK8 inhibition.
HylL-6 treatment induced 162 and repressed 160 phosphosites,
of which 88 of them (63 of the upregulated and 25 of the down-
regulated) were sensitive to CDK8 inhibition (Figures 5A and 5B;
Table S2). Consistent with our initial phosphoproteome study
(Figure 2), a large fraction (34%) of the phosphoproteomic
changes induced by HylIL-6 took place in the nuclei of the cells,
based on GO analysis (Figure 5C). GO analysis studies indicated
that HyIL-6 stimulation regulated proteins involved in transcrip-
tion, specifically RNA-Pol-ll-mediated transcription and other
cellular processes such as histone (de)acetylation and DNA
methylation (Figures 5D and 5E). A total of 27% of proteins
involved in transcription and 40% of proteins involved in RNA
Pol Il transcription were affected by CDK8 inhibition (Figure 5F).
A schematic view of the nuclear IL-6-induced phosphoproteome
and its regulation by CDK8 is presented in Figure 5G. Overall, our
data highlight a critical contribution of CDK8 in shaping the IL-6
phosphoproteome by regulating processes associated with
RNA-Pol-ll-mediated transcription.

CDKS8 Regulates STAT3-Mediated Transcription

We showed that STAT3 nuclear dynamics were regulated by
CDKS8 activity. Thus, we next asked whether inhibition of CDK8
activity would alter STAT3-dependent gene transcription. For
that question, we performed RNA-seq studies in Th-1 cells stim-
ulated with HylL-6 with or without the CDK8 inhibitor
MSC2530818 for 6 h (Figures 6A-6D; Figure S7A). CDK8 inhibi-
tion by MSC2530818 neither altered the phosphorylation profile
of RBP1 nor blocked transcriptional upregulation induced by
HyIL-6 treatment, suggesting that CDK8 inhibition did not result
in an overall transcription blockage (Figure 6; Figure S7B) (Czo-
drowski et al., 2016; Harlen and Churchman, 2017). As previ-
ously observed by our laboratory (Martinez-Fabregas et al.,
2019), HylL-6 stimulation alone resulted in changes in the
expression pattern of a small number of genes (n = 27) including
classical STAT3 targets in Th-1 cells (Figures 6A and 6B, left
panel). Treatment with only CDK8 inhibitor led to changes in
the expression of 111 genes, of which 84 were upregulated (Fig-
ures 6A and 6B, middle panel). The combined HylL-6 and
MSC2530818 treatments exhibited a synergistic effect, leading
to changes in the expression of 176 genes (Figures 6A and 6B,
right panel), suggesting that CDK8 inhibition induced transcrip-
tional programs by promoting HylL-6/STAT3-mediated
transcription. Differently regulated genes seem to fall into a few
categories: genes induced by HylL-6 treatment, but not regu-
lated by CDK8 inhibition (e.g., BCL3 and SOCSS3); genes induced

Figure 4. PLA Analysis of the Interaction of STAT3 and CDK8/9 Induced upon HylIL-6 Stimulation in Human Primary CD4* Th-1 Cells

(A and B) Kinetics of the STAT3/CDK8 (A) or STAT3/CDK9 (B) interaction induced by 20 nM HylL-6 in human primary CD4" Th-1 cells. Scale bars, 20 um.
Statistical significance was calculated by one-way ANOVA.

(C and D) STAT3/CDKS8 (C) or STAT3/CDK9 (D) interactions were analyzed by PLA upon 20 nM HylL-6 stimulation in the absence or presence of 2 uM
MSC2530818 or 2 uM flavopiridol or upon treatment with the inhibitor only. Scale bars, 20 um. Statistical significance was calculated by unpaired t test. White
arrows in Ato D indicate examples of cells where interaction signal was detected. Cumulative plots from n = 15 pictures alongside show the percentage of positive
cells. Error bars show mean + SEM. The p values were calculated based on non-parametric two-tailed Wilcoxon rank-sum test against the control group (first bar
on the left).

(E) STAT3/CDK? interaction analyzed by PLA upon 20 nM HylIL-6 stimulation in STAT3 KnD Hut78 cells reconstituted with STAT3 WT-GFP (top panel) or STAT3
S727A-GFP (bottom panels). White arrows indicate examples of cells expressing the recombinant protein and where the STAT3/CDKQ interaction was detected
by PLA. Scale bars, 20 um. Graphs alongside show the nuclear GFP MFI normalized to unstimulated cells (top graph) or the nuclear STAT3/CDK9 PLA MFI in
GFP-positive cells normalized to unstimulated cells (bottom graph). Quantitative data generated from n = 15 pictures. Error bars show mean + SEM.
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upon CDKS8 inhibition but not regulated by HylL-6 treatment
(e.g., AQP3 and CCR5); and genes exhibiting a synergic regula-
tion by HylL-6/CDK8 inhibition combined treatment (e.g., Gl-
MAP5 and PDCD1) (Figure 6C). Next, we performed, gene set
enrichment analysis for evaluating STAT3-mediated transcrip-
tional activity in the absence and presence of CDK8 inhibitor.
As expected, genes upregulated by HylL-6 stimulation were
highly enriched in genes known to be upregulated by STAT3
(GEO: GSE21670) (Figure 6D, top panel). Importantly, however,
genes upregulated by CDK8 inhibition alone (Figure 6D, middle
panel) or in combination with HylL-6 (Figure 7D, bottom panel)
were also highly enriched in known STAT3 targets, indicating
that HylL-6/STAT3 response is mediated by an intrinsic CDK8-
dependent axis.

We next asked whether CDK8 could regulate STAT3 binding
profiles to chromatin in a genome-wide manner. To assess that
question, we carried out STAT3 ChlIP-seq in unstimulated or
stimulated Th-1 cells with the three conditions described above
for 1 h. As expected, in unstimulated Th-1 cells, we detected very
low STAT3 DNA binding, which was significantly enhanced upon
HyIL-6 treatment (Figure 6E; Figure S7C; Table S3). In Th-1 cells
treated with the CDKS8 inhibitor alone, we observed levels of
STAT3 binding that resembled those obtained in native unstimu-
lated cells (Figure 6E). Strikingly, we observed a synergistic in-
crease in binding intensity of STAT3 across target sites in cells
stimulated with the combined HyIL-6/CDK8 inhibitor treatment
when compared to HylL-6 treatment alone, suggesting that inhi-
bition of CDK8 activity amplifies the intensity of HylL-6-induced
STAT3 binding to its target sites (Figure 6E). This increase in
STATS binding was observed in genes from all three categories
described in Figure 6C (Figure 6F). Interestingly, the category of
genes not regulated by CDKS8 inhibition observed in our RNA-seq
study was composed of a set of immediate early genes, such as
BCL3 and SOCSS3 that are rapidly induced after IL-6 treatment,
peaking in the first 2 h of treatment and rapidly declining at later
times (Brocke-Heidrich et al., 2006; Starr et al., 1997). It is thus
possible that this group of genes is also regulated by CDKS8,
but our RNA-seq study, which was performed at 6 h of stimula-
tion, has missed the effect. STAT3 binding to DNA was also
enhanced when Th-1 cells were treated with the structurally un-
related inhibitor flavopiridol, ruling out that our observations
result from off-target effects derived from the use of the
MSC2530818 inhibitor (Figures S7D and S7E). As expected, un-
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der all conditions tested, STAT3 was binding to a canonical
STAT3 GAS sequence motif (Figure S7F). Moreover, genes
that were differentially regulated upon stimulation were highly
enriched in genes that harbor at least one STAT3-binding site
in their promoter and/or enhancer region (Figure 6G), reaffirming
a specific effect of CDK8 inhibition on STAT3 binding to the
target gene loci and transcriptional activity.

CDKS8 Regulates Th-17 Differentiation

IL-6 regulates inflammatory processes by inducing the differen-
tiation of Th-17 cells. Thus, we asked whether CDK8 activity
would modulate Th-17 differentiation. Human primary resting
CD4* T cells were isolated from buffy coats and primed for
5 days under Th-17 polarizing conditions (Sekiya and Yoshimura,
2016). Primed cells were further expanded in media containing
IL-2, anti-IL-4, and anti-IFNYy in the presence or absence of the
CDK8 inhibitor MSC2530818 (Figure 7A). At day 5 or 10 of
expansion, cells were analyzed by flow cytometry and ELISA
for expression of the indicated cytokines (Figure 7). As previously
described, HylL-6 treatment induced a minor increase in the
number of human Th-17 cells, highlighting the challenge of work-
ing with these cells in vitro (Hakemi et al., 2011; Miyahara et al.,
2008). About 2%-3% of the T cells at the end of the polarization
protocol were positive for IL-17 (Figures 7B and 7D). CDK8 inhi-
bition led to an average of a 3-fold increase in the number of IL-
17-positive cells after 10 days of expansion (Figures 7C and 7D).
As expected, we did not see changes in IFNy expression by the
T cells stimulated in the presence of the CDK8 inhibitor (Figures
7B, 7C, and 7E), suggesting a specific regulation of STAT3-
mediated Th-17 differentiation by the CDK8 inhibitor. Moreover,
CDKS8 inhibition resulted in an increase in the levels of secreted
IL-17 as measured by ELISA (Figure 7F), but not of IFNy (Fig-
ure 7G). Overall, our data agree with a model where CDK8 mod-
ulates STATS transcriptional processivity by fine-tuning its gene
loci binding dwell-time, leading to a negative regulation of IL-6-
mediated activities.

DISCUSSION

Our study explores how Ser phosphorylation regulates STAT3
activities in human primary T cells. Overall, our study provides
molecular evidence that establishes CDK8 as a master regulator
of STAT3 transcriptional activities and presents a potential

Figure 5. Regulation of the Phosphoproteomic Landscape of IL-6 in Human Primary CD4* Th-1 Cells by CDK8

(A) Volcano plot of the CDK8-dependent HylL-6-upregulated phosphosites in human primary Th-1 cells (top panel) and the 24 more affected phosphosites
(bottom panel).

(B) Volcano plot of the CDK8-dependent HylL-6-downregulated phosphosites in human primary Th-1 cells (top panel) and the 24 more affected phosphosites
(lower panel). Phosphopeptides identified in three biological replicates are shown as log-transformed SILAC ratios plotted against log-transformed p values (two-
sided t test). Select phosphopeptides are labeled (see Table S2 for full list). For (A) and (B), phosphosites regulated by HylL-6- in a CDK8-dependent way and
changed more than 1.5-fold with a p value of <0.05 are shown in red (decreased) or blue (increased), and highlighted in dark gray is the effect of MSC2530818 on
those same phosphosites.

(C) GO analysis showing the cellular location of the phosphosites regulated by HylL-6 in a CDK8-dependent manner.

(D) GO analysis showing the main pathways and cellular processes regulated by HylL-6 in human primary Th-1 cells.

(E) GO analysis showing the main pathways and cellular processes regulated by HyIL-6 in human primary Th-1 cells in a CDK8-dependent manner.

(F) Pie charts showing the number of HylL-6-regulated and CDK8-dependent phosphosites involved in the regulation of transcription (left graph) or RNA-Pol-II-
mediated transcription (right graph).

(G) The scheme shows the cellular location and molecular function of the proteins regulated by phosphorylation in response to HylL-6 stimulation in human
primary CD4* Th-1 cells in a CDK8-dependent fashion as determined by DAVID analysis.
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strategy to harness the therapeutic potential of cytokines by fine-
tuning CDK8 expression levels and activities in different immune
cells.

Although a large body of work in the existing literature support
a model in which Ser phosphorylation positively contributes to
STATS3 transcriptional activities, our study suggests a negative
role of CDK8 activity in STAT3 DNA binding and transcriptional
activities in human T cells, mediated at least in part by Ser phos-
phorylation of STAT3. How can these apparent contradictory ob-
servations be reconciled? Previous studies used STAT3 Ser-to-
Ala mutants to investigate how Ser phosphorylation regulates
STATS transcriptional activities (Wakahara et al., 2012; Wen
and Darnell, 1997; Wen et al., 1995; Yang et al., 2020). In this
context, CDK8 activity remained intact, and therefore, its contri-
bution to STAT3 transcriptional activity was not explored. In
agreement with our observations, these studies reported that
Ser phosphorylation of STAT3 regulated its chromatin binding
dynamics (Wakahara et al., 2012; Yang et al., 2020). STAT3
Ser phosphorylation contributed to destabilization of STAT3 ho-
modimers, resulting in their release from DNA and in STAT3 Tyr
dephosphorylation (Yang et al., 2020). However, despite the
stronger DNA binding exhibited by the STAT3 S727A mutant,
its transcriptional activity was decreased (Wakahara et al.,
2012; Wen et al., 1995; Yang et al., 2020). Our study shows
that in T cells, CDK8 inhibition prevents STAT3 Ser phosphoryla-
tion by IL-6 and increases STAT3 chromatin binding. However,
contrary to previous observations, in this context, prolonged
STAT3 binding to DNA results in an increased STAT3-dependent
transcription. One explanation for these discrepancies in STAT3
activities upon blockage of its Ser phosphorylation could be
found in the use of different cell types in the different studies.
Although previous studies used cancer cell lines (Wakahara
et al., 2012; Wen et al., 1995; Yang et al., 2020), we have used
primary human T cells, which thus does not rule out possible dif-
ferences in the epigenetic landscape between these different cell
types that dictates STAT binding profiles. An alternative explana-
tion could be that mutation of S727 in STAT3 and blocking CDK8
activity produce different effects on STAT3 transcriptional activ-
ity. Importantly, we show that the STAT3/CDK complex is stabi-
lized in the context of the STAT3 S727A mutant upon IL-6 stim-
ulation. Thus, it is possible that in this context, sustained CDK8
activity, as a result of a stable STAT3/CDK8/DNA complex, could
result in transcriptional repression as the one observed for the
STAT3 S727A mutant. Our phosphoproteomic study agrees
with this model and shows that IL-6 induces the phosphorylation

Cell Reports

of different transcription factors, including CREM, RelB, and
FLI1, in a CDK8-dependent manner, highlighting that active
CDKS elicits a broader regulation of the transcription machinery
in response to IL-6 stimulation. Further molecular studies will be
required to fully understand how the CDK8/STAT3 interaction ul-
timately fine-tunes transcriptional output.

IL-6 triggers a strong, albeit transient, phosphorylation of
STAT1, but the role that STAT1 phosphorylation plays in fine-
tuning IL-6 responses is not clear. STAT1 can form heterodimers
with STAT3, having the potential to alter its transcriptional activ-
ity (Hirahara et al., 2015). Interestingly, CDK8 phosphorylates
both STAT1 and STAT3 (Bancerek et al., 2013), but whether
this phosphorylation regulates the formation of STAT1/STAT3
heterodimers is not known at the moment. In addition, STAT1
levels are modulated during inflammation as a consequence of
high IFNa/y expression in this inflammatory environment, lead-
ing to altered responses by cytokines triggering classical
STATS responses, through the modulation of STAT1/3 homo-
and hetero-dimers (Ho and Ivashkiv, 2006). Further studies
will be required to address whether CDK8 regulates formation
of STAT3 homo- and hetero-dimers and if this regulation is
altered in inflammatory environments in which STAT levels are
different.

The role that CDK8 plays in transcription regulation has
been controversial. Although initially CDK8 was identified as
a negative regulator of RNA-Pol-ll-mediated transcription
(Jeronimo and Robert, 2017; Knuesel et al., 2009), more
recent studies have described showing that CDK8 can also
act as a positive modulator of RNA Pol Il transcriptional activ-
ities (Chen et al., 2017; Donner et al., 2007, 2010). Our results
suggest a negative role of CDK8 in STAT3-mediated tran-
scription. CDK8 activity triggers STAT3 dissociation from
chromatin and terminates STAT3-mediated transcription.
Supporting our model, a series of recent studies have
described that modulation of CDK8 activity, by either small-
molecule inhibitors or genetic deletion, fine-tune responses
elicited by different immune cells. Specific deletion of CDK8
in NK cells results in an enhancement of their anti-tumor re-
sponses (Witalisz-Siepracka et al., 2018), an activity that
heavily relies on the action of different cytokines on natural
killer (NK) cells (Hu et al., 2019). Moreover, small-molecule in-
hibitors targeting CDK8 promote the differentiation of T reg
cells and Th-17 cells when T cells were placed under T reg
polarizing conditions (Akamatsu et al., 2019; Guo et al,
2019) or Th-17 polarizing conditions (Figure 7), respectively.

Figure 6. Transcriptional Program Elicited by Interplay between HylL-6 and CDK8 in Human Primary CD4* Th-1 Cells
(A) Number of differentially expressed genes (DEGs; fold chang,e >1.5; p < 0.05) between unstimulated versus HylIL-6-, mesenchymal stem cell (MSC)-, or HyIL-

6+MSC-stimulated Th-1 cells in three biological replicates.

(B) Scatterplot showing mean gene expression values (n = 3) before (x axis) and after indicated stimulation (y axis). Upregulated (red) and downregulated (blue)

genes are highlighted.

(C) Representative gene expression across different stimulation. Bars show mean + SEM.

(D) Gene set enrichment analysis (GSEA) (Subramanian et al., 2005) plots for STAT3 upregulated genes (GEO: GSE21670) comparing stimulated versus un-
stimulated Th-1 transcriptomes. NES, normalized enrichment score; FDR, false discovery rate.

(E) Violin plot showing the mean STAT3 binding intensity in n = 2,585 STAT3-bound regions across different stimulations. Peaks are identified by comparing HyIL-
6+MSC stimulation and input. The p values were determined by two-tailed Wilcoxon rank-sum test (***p < 0.0001).

(F) Representative loci showing STAT3 binding across different stimulations. The height of the tracks are indicated at bottom-right corner of the plots.

(G) GSEA plots for 475 STAT3-bound genes comparing stimulated versus unstimulated Th-1 transcriptomes.
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Figure 7. Role of CDK8 Ser727 Phosphorylation of STAT3 in Th-17 Differentiation In Vitro

(A) Experimental workflow for human Th-17 differentiation in vitro from isolated human resting CD4™ T cells.

(B and C) Dot plot representations of IL-17- and IFNy-positive cells in populations grown in the presence of HylL-6 (B) or HylL-6 + MSC2530818 (C).

(D) IL-17-positive cells were identified by flow cytometry in untreated cells or cells treated with 2 pM MSC2530818. Data are percentage of positive cells + SEM in

four biological replicates; p values were calculated using a paired t test.
(E) As in (D) but for IFN-y-positive cells.

(F) Amount of IL-17 + SEM in four biological replicates detected in growth media following growth of cells minus or plus inhibitor.
(G) Amount of IFNy + SEM in four biological replicates detected in growth media following growth of cells minus or plus inhibitor. Statistical significance was

calculated by unpaired t test.

In both instances, the polarizing conditions were enriched in
different cytokines, highlighting a potentially broad regulation
of cytokine responses by CDK8. Interestingly, CDK8 expres-
sion itself is dynamic. Naive T cells express non-detectable
levels of CDK8, which are upregulated upon T cell activation
and differentiation (Howden et al., 2019). Thus, it is possible
that cells can regulate their CDK8 levels to establish different
thresholds of cytokine sensitivity. In agreement with this
model, despite high levels of STAT3 Tyr phosphorylation
and STAT3 chromatin binding induced by IL-6 treatment, we
detected very few genes induced by IL-6 in Th-1 cells, which
express high levels of CDK8 (Howden et al., 2019).

Limitations of Study
Our study shows that CDK8 regulates STAT3 transcriptional
activities by limiting its binding to the target loci. However,

whether this repressor effect results from CDK8-mediated
phosphorylation of STAT3 on its S727 residue remains an
open question. Previous studies described that STAT3 Ser
phosphorylation regulates its chromatin binding dynamics,
consistent with our model (Wakahara et al., 2012; Yang et al.,
2020). However, comparison of chromatin binding profiles be-
tween STAT3 WT and its S727A counterpart would be ideal
to further support the relative importance of STAT3 Ser phos-
phorylation in the regulation of STAT3-DNA binding kinetics
and its transcriptional activities. Due to the technical challenges
in genetic manipulation of primary human T cells, at present,
the genomic tools available to examine the role of STAT3 Ser
phosphorylation in regulating its transcriptional activities in hu-
man primary T cells are inadequate. Furthermore, elucidating
whether CDK8 activity regulates the formation of STAT1/
STAT3 homo- and hetero-dimers upon IL-6 stimulation,
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ultimately impacting IL-6-mediated gene expression programs,
remains important.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rat anti-human-CD4-FiTC (Clone A161A1) Biolegend Cat#357406; RRID: AB_2562357
Mouse anti-human-CD8-FiTC (Clone SK1) Biolegend Cat#344704; RRID: AB_1877178
Mouse anti-human-CD3-BV510 (Clone Biolegend Cat#300448; RRID: AB_2563468
UCHT1)

Rat anti-human-CD4-PE (Clone A161A1) Biolegend Cat#357404; RRID: AB_2562036
Mouse anti-human-CD8-AF700 (Clone Biolegend Cat#300920; RRID: AB_528885
HIT8a)

Rabbit anti-pSTAT1-Y701-AF647 (Clone Cell Signaling Cat#8009S; RRID: AB_10860764
58D6)

Mouse anti-pSTAT1-S727-AF488 (Clone Biolegend Cat#686410; RRID: AB_2650784
A15158B)

Mouse anti-pSTAT3-Y705-AF488 (Clone Biolegend Cat#651006; RRID: AB_2572084
13A3-1)

Mouse anti-pSTAT333-S727-AF647 (Clone Biolegend Cat#698914; RRID: AB_2750260
A16089B)

Mouse Ultra-LEAF purified anti-human- Biolegend Cat#300438; RRID: AB_11146991
CD3 (Clone UCHT1)

Mouse anti-pSTAT4-Y693-AF488 (Clone BD Biosciences Cat#558136; RRID: AB_397051
38/p-Statd)

Rabbit anti-pSTAT5-Y694-AF647 (Clone Cell Signaling Cat#9365S; RRID: AB_1904151
C71E5)

Mouse anti-pSTAT6-Y641-AF488 (Clone BD Biosciences Cat#612600; RRID: AB_399883
18/P-Stat6)

Mouse anti-pERK-T202/Y204-AF488 eBiosciences Cat#53-9109-41; RRID: AB_2574440
(MILANSR)

Rabbit anti-pAKT-S473-AF488 (Clone D9IE) Cell Signaling Cat#4071S; RRID: AB_1031106
Rabbit anti-pAKT-T308-AF647 (Clone Cell Signaling Cat#48646S;RRID: AB_2799341
D25E6)

Rabbit anti-pP90RSK-S380-AF488 (Clone Cell Signaling Cat#13588S; RRID: AB_2798266
D5D8)

Rabbit anti-pS6R-S240/S244-AF488 Cell Signaling Cat#5018S; RRID: AB_10695861
(Clone D68F8)

Rabbit anti-pS6R-S235/S236-AF647 Cell Signaling Cat#4851S; RRID: AB_10695457
(Clone D57.2.2E)

Rabbit anti-pZAP70-Y319/pSYK-Y352- Cell Signaling Cat#82975S; RRID: AB_2800004
AF647 (Clone 65E4)

Rabbit anti-pCREB-S133-AF488 (clone Cell Signaling Cat#9187S; RRID: AB_659957
87G3)

Rabbit anti-pHIS3-S10-AF647 Cell Signaling Cat#9716S; RRID: AB_330212
Rabbit anti-pGSK3B-S9-AF647 (Clone Cell Signaling Cat#14332S; RRID: AB_2798453
D85E12)

Rabbit anti-pCFOS-S32-AF647 (Clone Cell Signaling Cat#8677S; RRID: AB_11178518
D82C12)

Rabbit anti-IRF1-AF647 (Clone D5E4) Cell Signaling Cat#14105S; RRID: AB_2798393
Rat anti-IRF4-AF647 (Clone IRF4.3E4) Biolegend Cat#646408; RRID: AB_2564048
Mouse anti-IRF7-AF647 (Clone 12G9A36) Biolegend Cat#656007; RRID: AB_2563530
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Mouse anti-GATA3-AF488 (Clone Biolegend Cat#653807; RRID: AB_2563214
16E10A23)

Mouse anti-TBET-AF647 (Clone 4B10) Biolegend Cat#644803; RRID: AB_1595573
Mouse anti-HIF1a-AF488 (Clone 546-16) Biolegend Cat#359707; RRID: AB_2563975
Rabbit anti-cMYC-AF488 (Clone D84C12) Cell Signaling Cat#12855S; RRID: AB_2798045

Mouse anti-O-GIcNAC-AF647 (Clone RL2)

Mouse anti-STAT3-APC (Clone M59-50)

Mouse anti-human-PLCvy1-AF647 (Clone
27/PLC)

Mouse anti-total-STAT3 (Clone 124H6)
Rabbit Anti-total-RPB1 (Clone D8L4Y)
Rabbit anti-pSer2-RPB1 (Clone E1Z3G)
Rabbit anti-pSer5-RPB1 (Clone DON5I)
Rabbit anti-GAPDH (Clone 14C10)
Donkey anti-rabbit-HRP

Donkey anti-mouse-HRP
Rabbit anti-CDK8
Rabbit anti-CDK9 (Clone C12F7)

Rat Purified NA/LE anti-human-IL4 (Clone
MP4-25D2)

Mouse Purified NA/LE anti-human-IFNy
(Clone B27)

Mouse anti-human-IFNy-AF488 (Clone
4S.B3)

Mouse anti-human-IL17A-APC (Clone
BL168)

Rabbit anti-CDK8 (Clone G398)

NOVUS Biologicals

BD Biosciences
BD Biosciences

Cell Signaling
Cell Signaling
Cell Signaling
Cell Signaling
Cell Signaling
Stratech

Stratech
Invitrogen

Cell Signaling
BD Biosciences

BD Biosciences

Biolegend

Biolegend

Cell Signaling

Cat#NB300-524AF647; RRID:
AB_10001871

Cat#560392; AB_1645463
Cat#557883; RRID: AB_396921

Cat#9139S; RRID: AB_331757
Cat#14958S; RRID: AB_2687876
Cat#13499S; RRID: AB_2798238
Cat#13523S; RRID: AB_2798246
Cat#2118S; RRID: AB_561053

Cat#711-035-152-JIR; RRID:
AB_10015282

Cat#715-035-150-JIR; RRID: AB_2340770
Cat#PA1-21780; RRID: AB_2291488
Cat#2316S; RRID: AB_2291505
Cat#554481; RRID: AB_395421

Cat#554698; RRID: AB_395516

Cat#502517; RRID: AB_493030

Cat#512334; RRID: AB_2563986

Cat#4101S; RRID: AB_1903934

Biological Samples

Human peripheral blood mononuclear cells Scottish Blood Transfusion Service N/A

(Proteomics and p-proteomics studies)

Human peripheral blood mononuclear cells StemCell Technologies Cat#70025
(ChIP-seq and RNA-seq studies)

Chemicals, Peptides, and Recombinant Proteins

Recombinant human Interleukin-2 Novartis Cat#709421
Recombinant human Interleukin-12 Biolegend Cat#573002
Recombinant human Interleukin-1p R&D Systems Cat#201-LB/CF
Recombinant human Interleukin-23 R&D Systems Cat#1290-IL
Tofacitinib Stratech Cat#S2789-SEL
Rapamycin Stratech Cat#S1039-SEL
Torin 1 Tocris Cat#4247
CHIR-99021 Stratech Cat#G09-901B-SGC
PD184352 Stratech Cat#S1020-SEL
Roscovitine Calbiochem Cat#557360
GDC0941 abCam Cat#ab141352
PP2 Stratech Cat#S7008-SEL
VX745 Tocris Cat#3915

JAK inhibitor VII Calbiochem Cat#796041-65-1
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AX15836 Tocris Cat#5843
AZD8055 Stratech Cat#A8214-APE
KU0063794 Tocris Cat#3725
KU55933 Stratech Cat#A4605-APE
KU57788 Stratech Cat#A8315-SEL
BI-1347 Boehringer Ingelheim N/A
MSC2530818 Stratech Cat#S8387-SEL
CDK@ inhibitor Il Calbiochem Cat#140651-18-9
NVP2 Tocris Cat#6535
THZ531 Stratech Cat#A8736-APE
MFH-2-90-1 Kind gift of Dr. Greg Findlay, University of N/A

Dundee, UK
Flavopiridol Stratech Cat#S2679-SEL

Recombinant human Hyper-Interleukin-6
Recombinant human Interleukin-6

Expressed and purified in the lab
Expressed and purified in the lab

N/A
N/A

Deposited Data

Phosphoproteomics raw and analyzed data This paper ProteomeXchange: PXDX020964
ChlIP-seq and RNA-seq data This paper GEO: GSE147399

Experimental Models: Cell Lines

Hut78 cells ATCC Cat#TIB-161

HEK293T cells ATCC Cat#CRL-11268

Recombinant DNA

Human pSEMS-STAT3 WT-meGFP WT This study N/A

Human pSEMS-STAT3 S727A-meGFP WT This study N/A

Human Hyper-IL6 pAcGP67-A This study N/A

Human Interleukin-6 pAcGP67-A This study N/A

Software and Algorithms

MaxQuant

Andromeda

DAVID GO analysis tools
FastQC v0.11.8

RSEM v1.3.1
edgeR v3.24.0
Datagraph v4.5
PRISM v8.4.0

GSEA v4.0.3

Metascape
Bowtie v1.2.2

Samtools v1.9

bamCoverage v3.2.0

MEME Suite v5.0.2

TOMTOM

BEDTools

UCSC bigWigAverageOverBed v2
HOMER v4.10

Cox and Mann, 2008

Cox et al., 2011

Huang et al., 2007, 2009
Babraham Institute Bioinformatics

Li and Dewey, 2011
Robinson et al., 2010
Visual Data Tools, Inc
GraphPad

Subramanian et al., 2005

Zhou et al., 2019
Langmead et al., 2009

Li et al., 2009

Ramirez et al., 2016

Bailey et al., 2009

Gupta et al., 2007

Quinlan and Hall, 2010

University of California Santa Cruz
Gupta et al., 2007

https://www.maxquant.org
https://www.maxquant.org
https://david.ncifcrf.gov/home.jsp

https://www.bioinformatics.babraham.ac.
uk/projects/fastqc/

https://deweylab.github.io/RSEM/
http://bioconductor.org
www.visualdatatools.com

https://www.graphpad.com/
scientific-software/prism/

https://www.gsea-msigdb.org/gsea/index.
jsp
https://metascape.org

http://bowtie-bio.sourceforge.net/index.
shtml

http://www.htslib.org
https://usegalaxy.eu/
http://meme-suite.org
http://meme-suite.org/tools/tomtom
https://bedtools.readthedocs.io/en/latest/
https://genome.ucsc.edu
http://homer.ucsd.edu/homer/
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact Ignacio
Moraga Gonzalez (imoragagonzalez@dundee.ac.uk).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
The phosphoproteomic data have been deposited in the ProteomeXchange: PXD020964 (www.proteomexchange.com). The raw
and processed ChlIP-seq and RNA-seq data are deposited to GEO: GSE147399.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Primary T cells
Peripheral blood mononuclear cells (PBMCs) from healthy donors were purified from buffy coats acquired from the Scottish Blood
Transfusion Service and used for signaling and phosphoproteomics experiments.

In vitro polarized human Th-1 cells generated from human PBMCs acquired from StemCell Technologies (Cat#70025) were used
for RNA-seq and ChIP-seq experiments.

Cell Lines
Hut78 (cat#T1B-161) and HEK293T (cat#CRL-11268) cells were obtained from ATCC (www.|lgcstandards-atcc.org).

METHOD DETAILS

Protein expression and purification

HylL-6 (Fischer et al., 1997) cloned into the pAcGP67-A vector (BD Biosciences) in frame with an N-terminal gp67 signal sequence
and a C-terminal hexahistine tag was produced using the baculoviral expression system, as previously described (LaPorte et al.,
2008). The baculoviral stocks were prepared in Spodoptera frugiperda (Sf9) cells grown in SFO00IIl media (Invitrogen, #12658027)
and used to infect Trichoplusiani ni (High Five) cells grown in InsectXpress media (Lonza, #BELN12-730Q) for protein expression.
After 48h infection, secreted protein was captured from High Five supernatants using HisPur Ni-NTA resin (Thermo Scientific,
#88223) affinity chromatography, concentrated, and purified by size exclusion chromatography on a Enrich SEC 650 1 x 300 column
(Biorad), equilibrated in 10 mM HEPES (pH 7.2) containing 150 mM NaCl. Recombinant HylL-6 was purified to greater than 98%
homogeneity.

CD4* and CD8* T cell isolation

Peripheral blood mononuclear cells (PBMCs) from healthy donors were purified from buffy coats (Scottish Blood Transfusion Service)
by density gradient centrifugation following manufacturer’s instructions (Lymphoprep, StemCell Technologies, #07801). For CD4*
and CD8* T cells isolation, 1 x 108 PBMCs per donor were stained with anti-CD4"T° (Biolegend, #357406) or anti-CD8"'T° (Bio-
legend, #344704) antibodies and isolated by magnetic activated cell sorting (MACS, Miltenyi) using anti-FiTC microbeads (Miltenyi,
#130-048-701) according to manufacturer’s instructions to a purity > 99%.

Dose-response and kinetic experiments
For dose-response experiments of STAT1 or STAT3 phosphorylation, 96-well plates were prepared with 30 uL of cells at 5 x 10°
cells/mL. Cell were then stimulated with different concentrations to obtain the dose-response curves. After stimulation cells were
fixed with 2% formaldehyde for 10 minutes at RT.

For kinetics experiments, cell suspensions were stimulated with saturating concentrations of the cytokines (10 nM HyIL-6) as indi-
cated and cells finally fixed with 2% formaldehyde for 10 minutes at RT.

Permeabilization, fluorescence barcoding and antibody staining

After fixation, cells were collected by centrifugation at 1200 rpm for 5 min, formaldehyde blocked by washing the cells with 200 pL of
PBS containing 5 mg/ml BSA (PBSA) and collected again by centrifugation at 1200 rpm for 5 min. Then, cells were resuspended and
permeabilized in ice-cold methanol for 20 minutes on ice. Cells were then fluorescently barcoded (Krutzik and Nolan, 2006) using a
combination of different concentrations of amino-acid reactive dyes (PacificBlue #10163, DyLight800 #46421, Thermo Scientific).
Finally, cells were pooled and stained with anti-CD35V%'° (Biolegend, #300448), anti-CD4"E (Biolegend, #357404), anti-CD8"F"°°
(Biolegend, #300920), anti-pSTAT1-Tyr70147%47 (Cell Signaling, #8009S), anti-pSTAT1-Ser727°F4% (Biolegend, #686410), anti-
PSTAT3-Tyr705"78 (Biolegend, #651006) and anti-pSTAT3-Ser72747%47 (Biolegend, #698914). Cells were analyzed in a CytoFlex
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S flow cytometer (Beckman Coulter) with the individual cell populations being identified by their barcoding pattern and mean fluo-
rescence intensity (MFI) for the different forms of STAT1 or STAT3 measured.

Phospho-FLOW

Resting PBMCs isolated as described before from buffy coats or upon activation for three days with ImmunoCult Human CD3/
CD28 T Cell Activator (StemCell, #10971) following manufacturer instructions in the presence of 20 ng/mL IL2 (Novartis, #709421)
were starved for 24 hours in RPMI 1640 (Invitrogen) containing 10% fetal bovine serum (FBS, Invitrogen, #A3160801) and then stim-
ulated with 10nM HyIL-6 or 0.1 ng/mL anti-CD3 (Biolegend #300438) and 20 ng/mL IL2 (Novartis #709421). Then, cells were fixed with
2% formaldehyde, permeabilized with ice-cold methanol and barcoded as described above. Finally, cells were pooled and stained
with anti-CD3BV5' (Biolegend, #300448), anti-CD4FE (Biolegend, #357404), anti-CD8"7% (Biolegend, #300920), anti-pSTAT1-
Y7014F847 (Cell Signaling, #8009S), anti-pSTAT1-S727474%8 (Biolegend, #686410), anti-pSTAT3-Y705"7488 (Biolegend, #651006)
and anti-pSTAT3-S72747647 (Biolegend, #698913), anti-pSTAT4-Y693"74%8 (BD Biosciences, #558136), anti-pSTAT5-Y69447647
(Cell Signaling, #9365S), anti-pSTAT6-Y641°78 (BD Biosciences, #612600), anti-pERK-T202/Y204%74%8 (eBiosciences, #53-
9109-41), anti-pAKT-S473%F488 (Cell Signaling, #4071S), anti-pAKT-T308%7%*7 (Cell Signaling, #48646S), anti-pP90RSK-S380"F458
(Cell Signaling, #13588S), anti-pS6R-S240/S244°F488 (Cell Signaling, #5018S), anti-pS6R-S235/5236"4" (Cell Signaling,
#4851S), anti-pZAP70-Y319/pSYK-Y3527647 (Cell Signaling, #82975S), anti-pCREB-S133~F488 (Cell Signaling, #9187S), anti-
pHIS3-S10747 (Cell Signaling, #9716S), anti-pGSK3p-S9°F%” (Cell Signaling, #14332S),anti-pCFOS-S324747 (Cell Signaling,
#8677S), anti-IRF14F647 (Cell Signaling, #14105S), anti-IRF47®7 (Biolegend, #646408), anti-IRF7~F®*" (Biolegend, #656007), anti-
GATA3" ™88 (Biolegend, #653807), anti-TBETA®*" (Biolegend, #644803), anti-HIF1s™ (Biolegend, #359707), anti-MYCAF458
(Cell Signaling, #12855S), anti-O-GIcCNACA™4” (NOVUS Biologicals, #NB300-524AF647), anti-STAT3*FC¢ (BD Biosciences,
#560392) and anti-PLCy1747 (BD Biosciences, #557883). Cells were analyzed in a CytoFlex S flow cytometer (Beckman Coulter)
with the individual cell populations being identified by their barcoding pattern and mean fluorescence intensity (MFI) measured.

Phosphoproteomics

Resting CD4" T cells were labeled with anti-CD4-FiTC antibody (Biolegend, #357406) and isolated from human PBMCs by magnetic
activated cell sorting (MACS, Miltenyi) using anti-FiTC microbeads (Miltenyi, Cat#130-048-701) following manufacturer instructions.
Subsequently, resting CD4* T cells were activated under Th-1 polarizing conditions. Briefly, 3x107 resting human CD4* T cells per
donor were primed for three days with ImmunoCult Human CD3/CD28 T Cell Activator (StemCell, #10971) following manufacturer
instructions in the presence of 20 ng/mL IL2 (Novartis #709421), 20 ng/mL IL12 (BioLegend, #573002) and 10 ng/mL anti-IL4 (BD
Biosciences, #554481). Then, cells were split into three different conditions light SILAC media (40 mg/mL L-Lysine KO (Sigma,
#L.8662) and 84mg/mL L-Arginine RO (Sigma, #A8094)), medium SILAC media (49 mg/mL L-Lysine U-13C6 K6 (CKGAS, #CLM-
2247-0.25) and 103 mg/mL L-Arginine U-13C6 R6 (CKGAS, #CLM-2265-0.25)) and heavy SILAC media (49.7 mg/mL L-Lysine U-
13C6,U-15N2 K8 (CKGAS, #CNLM-291-H-0.25) and 105.8 mg/mL L-Arginine U-13C6,U-15N2 R10 (CKGAS, #CNLM-539-H-
0.25)) prepared in RPMI SILAC media (Thermo Scientific, #88365) supplemented with 10% dialyzed FBS (HyClone,
#SH30079.03), 5 mL L-Glutamine (Invitrogen, #25030024), 5 mL Pen/Strep (Invitrogen, #15140122), 5 mL MEM vitamin solution
(Thermo Scientific, #11120052), 5 mL Selenium-Transferrin-Insulin (Thermo Scientific, #41400045) and expanded in the presence
of 20 ng/mL IL2 and 10 ng/ml anti-IL4 for another 10 days in order to achieve complete labeling. Incorporation of medium and heavy
version of Lysine and Arginine was checked by mass spectrometry and samples with an incorporation greater than 95% were used.
After expansion, cells were starved without IL2 for 24 hours before stimulation with 10 nM HylIL-6 in the presence or absence of 2 uM
MSC2530818 (Stratech, # S8387-SEL) for 15 minutes. Cells were then washed three times in ice-cold PBS, mix in a 1:1:1 ratio, re-
suspended in SDS-containing lysis buffer (1% SDS in 100mM Triethylammonium Bicarbonate buffer (TEAB)) and incubated on ice for
10 minutes to ensure cell lysis. Then, cell lysates were centrifuged at 20000 g for 10 minutes at +4°C and supernatant was transferred
to a clean tube. Protein concentration was determined by using BCA Protein Assay Kit (Thermo, #23227), and 10 mg of protein per
experiment were reduced with 10mM dithiothreitol (DTT, Sigma, #D0632) for 1 hour at 55°C and alkylated with 20mM iodoacetamide
(IAA, Sigma, #16125) for 30 min at RT. Protein was then precipitated using six volumes of chilled (—20°C) acetone overnight. After
precipitation, protein pellet was resuspended in 1mL of 100mM TEAB and digested with Trypsin (1:100 w/w, Thermo, #90058)
and digested overnight at 37°C. Then, samples were cleared by centrifugation at 20000 g for 30 min at +4°C, and peptide concen-
tration was quantified with Quantitative Colorimetric Peptide Assay (Thermo, #23275).

Digested samples were fractionated to reduce sample complexity and increase the efficiency of phosphopeptide enrichment. Briefly,
peptides (approx. 3.5 mg per sample) were resuspended in 200uL Buffer A (10mM ammonium formate), separated on a XBridge Peptide
BEH column (Waters, C18, 3.5 uM, 4.6 x 250 mm) after initially trapped on a XBridge trap cartridge (Waters, C18, 3.5 uM, 4.6 x 20 mm)
using an Ultimate 3000 RSLCnano system (Thermo Scientific). Peptides were resolved using a gradient (102 min, 0.8 ml/min) of Buffer A
(10mM ammonium formate) and Buffer B (10mM ammonium formate, 90% acetonitrile): 8% Buffer B for 6 min, 8%-45% Buffer B for
54 min, 45%-100% Buffer B for 5 min, 100% Buffer B for for 16 min and 100%-2% Buffer B for 21 min. 80 Fractions were collected
using a WPS-3000FC autosampler (Thermo Scientific) of 1 minute (0.8 ml) duration from 1-80 min over the chromatogram. These frac-
tions were then concatenated to 20 fractions to provide a similar quantity of peptide per fraction based on the online (U3000 Variable
Wavelength Detector) (Thermo Scientific) UV values of the eluted peptides at 220 nm. These concatenated fractions were taken to dry-
ness (EZ-2 Plus centrifugal evaporator, Genevac) prior to suspending for nLC-MS analysis.
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Phosphopeptide enrichment in the peptide fractions generated as described above was carried out using MagResyn Ti-IMAC
following manufacturer instructions (2BScientific, MR-TIM002). Phosphopeptide samples were analyzed using a nanoflow liquid
chromatography system (Ultimate 3000 RSLCnano system, Thermo Scientific) coupled to a Q Exactive Plus Mass Spectrometer
(Thermo Scientific). Samples (10 pl) were loaded onto a C18 trap column and washed for 5 minutes with 0.1% formic acid. Peptides
were resolved using a gradient (170 min, 0.3 ul/min) of buffer A (0.1% formic acid) and buffer B (80% acetonitrile in 0.08% formic acid):
5% buffer B for 5 min, 5%-35% buffer B for 125 min, 35%-98% buffer B for 2 min, 98% buffer B for 20 min, 98%-2% buffer B for
1 min and 2% buffer B for 17 min. Peptides, initially trapped on an Acclaim PepMap 100 C18 colum (100 pm x 2 cm, Thermo Scien-
tific), were separated on an Easy-Spray PepMap RSLC C18 column (75 pm x 50 cm, Thermo Scientific), and finally transferred to a Q
Exactive Plus Mass Spectrometer via an Easy-Spray source with temperature set at 50°C and a source voltage of 2.0kV. For the iden-
tification of peptides, a top 15 method (1 MS plus 15 MS2, 150 min acquisition) consisting of full scans and mass range (m/z) between
350 to 1600 (m/z) for MS search and 200 to 2000 (m/z) for MS? search was used. For the MS scan the Q Exactive Plus Mass Spec-
trometer was operated in a data dependent acquisition mode, resolution of 70,000 with a lock mass set at 445.120024 and max fill
time of 20 ms. For the MS? scan Q Exactive Plus Mass Spectrometer was operated in a centroid mode, resolution of 15,000 with
isolation window = 1.4 (m/z), normalized collision energy = 27, max fill time of 100 ms and dynamic exclusion of 45.0 s.

Inhibition of Ser727 STAT3 phosphorylation

Resting CD4™ T cells were labeled with anti-CD4-FiTC antibody (Biolegend, #357406) and isolated from human PBMCs by magnetic
activated cell sorting (MACS, Miltenyi) using anti-FiTC microbeads (Miltenyi, Cat#130-048-701) following manufacturer instructions.
Then, CD4* T cells were activated for three days with ImmunoCult Human CD3/CD28 T Cell Activator (StemCell, #10971) following
manufacturer instructions in the presence of 20 ng/mL IL2 (Novartis, #709421). After activation, cells were expanded for 5 days in the
presence of 20ng/mL IL2. Then, cells were starved of IL2 for 24 hours before stimulation with 10nM HylL-6 in the presence or absence
of different inhibitors [2 uM Tofacitinib (Stratech, #S2789-SEL), 2 uM Rapamycin (Stratech, #S1039-SEL), 2 uM Torin1 (Tocris,
#4247), 2 uM CHIR-99021 (Stratech, #G09-901B-SGC), 2 uM PD184352 (Stratech, #S1020-SEL), 2 M Roscovitine (Calbiochem,
#557360), 2 uM GDC0941 (abCam, #ab141352), 2 uM PP2 (Stratech, #S7008-SEL), 2 puM VX745 (Tocris, #3915), 2 uM JAK inhibitor
VII (Calbiochem, #796041-65-1), 2 uM AX15836 (Tocris, #5843), 2 uM AZD8055 (Stratech, #A8214-APE), 2 uM KU0063794 (Tocris,
#3725), 2 uM KU55933 (Stratech, #A4605-APE), 2 uM KU57788 (Stratech, #A8315-APE), 2 uM BI-1347 (a kind gift of Boehringer In-
gelheim), 2uM MSC2530818 (Stratech, #58387-SEL), 2 uM CDK9 inhibitor Il (Calbiochem, #140651-18-9), 2 uM NVP2 (Tocris,
#6535), 2 uM THZ531 (Stratech, #A8736-APE), 2 uM MFH-2-90-1 (a kind gift of Dr. Greg Findlay, University of Dundee, UK) and
2 uM Flavopiridol (Stratech, #S2679-SEL)] as indicated.

Western blotting

Cells were rinsed in ice-cold PBS then lyzed in RIPA buffer (Thermo Scientific) supplemented with protease inhibitor cocktail
(ROCHE), 5 mM sodium fluoride, 2 mM sodium orthovanadate and 0.2 mM PMSF incubating on ice for 15 min. Lysates were cleared
by centrifugation at 20,000 g for 15 min at 4°C then protein concentrations determined using Coomassie Protein Assay Kit (Thermo
Scientific, UK). For each sample, 30 pg of total protein were separated on 4%-12% Bis-Tris polyacrylamide gels (NUPAGE, Invitroge)
in MES SDS running buffer then blotted onto Protran 0.2 mM Nitrocellulose (GE Healthcare, UK). Membranes were probed with
1:1000 dilution of the appropriate primary antibody anti-total-STAT3 (Cell Signaling, #9139S), anti-total-RPB1 (Cell Signaling,
#14958), anti-pSer2-RPB1 (CellSignaling, #13499), anti-pSer5-RPB1 (CellSignaling, #13523) and anti-GAPDH (Cell Signaling,
#2118S). 1:5000 dilution of donkey anti-rabbit-HRP (Stratech, 711-035-152-JIR) or donkey anti-mouse-HRP (Stratech, 715-035-
150-JIR) as the secondary antibody. Immobilon Western Chemiluminescent HRP substrate (Millipore, UK) was used for visualization.

Proximity ligation assay

Resting CD4™ T cells were labeled with anti-CD4-FiTC antibody (Biolegend, #357406) and isolated from human PBMCs by magnetic
activated cell sorting (MACS, Miltenyi) using anti-FiTC microbeads (Miltenyi, Cat#130-048-701) following manufacturer instructions.
Then, CD4* T cells were activated for three days with ImmunoCult Human CD3/CD28 T Cell Activator (StemCell, #10971) following
manufacturer instructions in the presence of 20 ng/mL IL2 (Novartis, #709421). After activation, cells were expanded for 5 days in the
presence of 20ng/mL IL2. Then, cells were starved of IL2 for 24 hours before stimulation as indicated and 10° cells were used per
experiment. Cells were attached to coverslips by incubating them at 37°C for 1 hour in PBS, then PBS was replaced with RPMI sup-
plemented with 10% FBS and cells stimulated as described. After stimulation, cells were fixed with 2% formaldehyde for 10 minutes
at RT, permeabilized with ice-cold methanol for 20 minutes on ice and stained with anti-STAT3 (Cell Signaling, #9139S) and anti-
CDKS8 (Invitrogen, #PA1-21780) or anti-STAT3 (Cell Signaling, #9139S) and anti-CDK9 (Cell Signaling, #2316S) for Proximity Ligation
Assays following manufacturer instructions (Sigma, #DU092008).

Chromatin immunoprecipitation by sequencing (ChlP-Seq)

In vitro polarized human Th-1 cells generated from human PBMCs (StemCell Technologies, Cat#70025) were expanded in the
presence of IL-2 for 10 days and cells were then washed with complete media and rested for 24 hr starvation in the absence
of IL-2, these cells were then either not-stimulated (control) or stimulated with IL-6 or different IL-6 variants for 1 hr, cells were
then immediately fixed with 1% methanol-free formaldehyde (Formaldehyde 16%, Methanol-Free, Fisher Scientific, PA, USA)
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at room temperature for 10mn with gentle rocking cells were then washed twice with cold PBS. For each STAT3 ChIP-seq library
sample, approximately 10 x 106 cells were used and the fixed cell palettes were kept at —80°C prior to further processing. The
ChlPseq experiments were performed as previously described (Martinez-Fabregas et al., 2019) with some modification as
described below. In brief, the frozen cell pellets were thawed on ice and washed once with 1 mL cold PBS by centrifugation
at 5000 RPM for 5 min, the resulting cell pellets were re-suspended in 500 uL of lysis buffer (1X PBS, 0,5% Triton X-100, cOmplete
EDTA-free protease inhibitor cocktail, Roche Diagnostics, Basel, Switzerland) and incubated for 10 min on ice, followed by a 5 min
centrifugation at 5000 RPM. Then the pellets were washed once with 1 mL of sonication buffer (1X TE, 1: 100 protease inhibitor
cocktail), re-suspended in 750 uL of sonication buffer (1X TE, 1: 100 protease inhibitor cocktail and 0,5 mM PMSF) and sonicated
for 20 cycles (on-20sec and off-45sec) on ice using VCX-750 Vibra Cell Ultra Sonic Processor (Sonics, USA). The sonicated lysates
were centrifuged 20 min at 14000 RPM and the clear lysate supernatants were collected and incubated with 30 uL of Protein-A
Dynabeads (ThermoFisher, USA) that were pre-incubated with incubated with 10 ug of anti-STAT3 antibody (anti-Stat3, 12640S,
Cell Signaling Technology) at 4°C overnight with gentle rotation. Next day, the beads were washed 2 times with RIPA-140 buffer
(0.1% SDS, 1% Triton X-100, 1 mM EDTA, 10 mM Tris pH 8.0, 300 mM NaCl, 0.1% NaDOC), 2 times with RIPA-300 buffer (0.1%
SDS, 1% Triton X-100, 1 mM EDTA, 10 mM Tris, 300 mM NaCl, 0.1% NaDOC), 2 times with LiCl buffer (0.25 mM LiCl, 0.5% NP-
40, 1 mM EDTA, 10 mM Tris pH 8.0, 0.5% NaDOC), once with TE-0,2% Triton X-100 and once with TE buffer. Crosslinks were
reversed by incubating the bound complexes in 60 uL TE containing 4.5 uL of 10% SDS and 7.5 uL of 20 mg/mL of proteinase
K (Thermofisher, USA) at 65°C overnight for input samples, we used 6 uL of 10% SDS and 10 pL of 20 mg/mL of proteinase K.
Then, the supernatants were collected using a magnet and beads were further washed one in TE 0.5M NaCl buffer. Both super-
natants were combined, and DNA was extracted with phenol/chloroform, followed by precipitation with ethanol and re-suspended
in TE buffer. The library was constructed following the manufacturer protocol of the KAPA LTP Library Preparation Kit (KAPA Bio-
systems, Roche, Switzerland). ChIP DNA libraries were ligated with the Bioo scientific barcoded adaptors (BIOO Scientific, Perkin
Elmer, USA) with T4 DNA ligase according to KAPA LTP library preparation protocol and the ligated ChIP DNA libraries were pu-
rified with 1.8x vol. Agencourt AMPure XP beads and PCR amplified using KAPA hot start High-Fidelity 2X PCR Master Mix and
NextFlex index primers (Bioo Scientific, PerkinElmer) for 12 cycle by following thermocycler cycles: 30 s hot start at at 98°C, fol-
lowed by 12 cycle amplification [98°C for 10 s, 60°C for 30 s and 72°C for 30 s] and final extension at 72°C for 1 min. The ampli-
fication and quality of the ChiPseq libraries were checked by running 10% of the samples in E-Gel Agarose Gels with SYBR Safe
DNA Gel Stain (ThermoFisher Scientific, USA), and if necessary, samples were reamplified additional four cycles using the same
thermocycler protocol described above. Then, the libraries were purified and size-selected using Agencourt AMPure XP beads
(1.25x vol. to remove short fragments. The concentration of ChIP-DNA libraries was measured by Qubit-4 fluorometer (Thermo-
Fisher, USA) and equal amounts of each sample were pooled and 50 bp paired-end reads were sequenced on an lllumina 4000
platform by GENEWIZ technology (GENEWIZ, USA).

RNA-sequencing

For RNA-seq library preparation, in vitro polarized human Th-1 cells generated from human PBMCs (StemCell Technologies,
Cat#70025) either not stimulated or stimulated with HylL-6 in the presence or absence of 2 uM MSC2530818 variants at 37°C for
6 hr, total RNA was extracted and RNaseq libraries were prepared by Edinburg Sequencing Core facility.

CDK8 and CDK9 knock-down in HEK293T cells

CDK8 and CDK9 knock-down in HEK23T cells was done using Lipofectamine RNAIMAX following manufacturer instructions. Briefly,
cell were seeded at 6x10° per well in 6-well plates and transfected with siRNA SMARTPools against CDK8 (Dharmacon, Cat# LQ-
003242-00-0005) and/or CDK9 (Dharmacon, Cat# LQ-003242-00-0005) 24 hours later. Cells were cultured for 48 hours in the pres-
ence of the siRNA mixture before using them for FACS or western blot analysis. Knock-down efficiency was checked by western
blotting using anti-CDK8 (G398, Cat# 4101), anti-CDK9 (C12F7, Cat# 2316) and anti-GAPDH (14C10, Cat# 2118).

In vitro CDK assay

In vitro CDKs phosphorylation reactions (20 pL total volume) were as follows: 10 pL of 2x CDK phospho assay buffer (50mM B-glyc-
erophosphate pH 7.4, 10mM MgCl,, 10mM NaF, 1mM DTT) with 100 uM ATP and 5 uL of STAT3 at 20ng/pL. Reactions were initiated
by adding 5 pL of varying amounts of CDK7, CDK8 or CDK9. Reactions were incubated for 30 minutes at 30°C and stopped by adding
5 uL of 4x SDS sample buffer and heating to 95°C for 5 minutes. All kinase reactions were performed at least three times. ATP was
purchased from Sigma (Cat# A2383-10G), human recombinant CDKs were purchased from Thermo (CDK7/CyclinH/MNAT1 Cat#
PV3868, CDK8/CyclinC Cat# PV4402 and CDK9/CyclinK Cat# PV4335) and human recombinant STAT3 was purchased from Novus-
Biologicals (Cat# H0000677-P01-10 png).

Crispr/CAS9 generation of STAT3 KnD Hut78 cells

5 uL of 200 uM Alt-R CRISPR -Cas9 crRNA (IDT, Hs.Cas9.STAT3.1.AF) were added to 5 ulL of 200 uM Alt-R CRISPR-Cas9 tracrRNA
(IDT, #1072532), heated to 95°C for 5 min and finally the tube cooled to room temperature. Then, 1.2 uL. RNA duplex was mixed with
1.7 pL Alt-R S.p. HiFi Cas9 Nuclease V3 (IDT, #1081059) and 2.1 pL sterile PBS and incubated at RT for 20 min. 2 x 105 Hut78 cells
resuspended in 8 uL of buffer R (Neon Transfection System Kit, Thermo) were added to the tubes with the RNP complexes. The
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electroporation parameters used were: three pulses of 1,325 V with a pulse width of 10 ms. Then, reactions were added directly into
antibiotic-free media in a well of the 96-well plate and incubated at 37°C for 16 hr. HeLa cells electroporated with RNP particles were
transferred into IMDM media containing 10% FCS and Pen/Strep, expanded and finally individual clones were isolated and tested for
STAT3 expression levels.

STAT3 KnD Hut78 Cells S727A STAT3 Reconstitution

STAT3 KnD Hut78 cells were reconstituted with a plasmid coding for STAT3 WT or STAT3 S727A mutants by electroporation. 2 x 107
cells were resuspended in 0.25 mL of Ingenio electroporation solution (Mirus, #MIR50111), 30 ng of the appropriate construct added
and the mix transferred into 4 mm gap-width cuvettes and incubated at RT for 15 minutes. Cells were electroporated using the Bio-
Rad X-Gene Pulser system (0.28 kV, 960 uF), cells transferred to pre-warmed media without Pen/Strep and allow to recover for 24
hours.

T cells population differentiation

Resting CD4* T cells isolated as described above were activated under Th-1 or Th-17 polarizing conditions. Briefly, resting human
CD4* T cells freshly isolated were activated using ImmunoCult Human CD3/CD28 T Cell Activator (StemCell, Cat#10971) following
manufacturer instructions for 3 days in the presence of the cytokines required for the different CD4* T cells populations: Th-1 (IL-2
(20 ng/ml), anti-IL-4 (10 ng/ml, BD Biosciences, Cat#554481), IL-12 (20 ng/ml)) or Th-17 (IL-18 (10 ng/ml, R and D Systems,
Cat#201-LB/CF), IL-23 (10 ng/ml, R and D Systems, Cat#1290-IL), anti-IL-4 (10 ng/ml, BD Biosciences, Cat#554481), anti-IFNy
(10 ng/ml, BD Biosciences, Cat#554698)). After three days of priming, cells were expanded in the presence of IL-2 (20 ng/ml).
Th-1 and Th-17 cells were restimulated for 6 hr in the presence of PMA (100 ng/ml, Sigma, Cat#P8139), lonomycin (1 uM, Sigma,
10634) and Brefeldin A (5 pg/ml, Sigma, B7651) before FACS analysis. In all cases cells were fixed with 2% formaldehyde and
prepared to be analyzed by FACS. Cells were then permeabilised with Saponin 2% in PBS for 20 min at room temperature
and then stained in Saponin 2% in PBS with the appropriate antibodies: Th-1 ((anti-CD35V%'® (1:100, Biolegend, Cat#300448),
anti-CD47E (1:100, Biolegend, Cat#357404), anti-CD87%° (1:100, Biolegend, Cat#300920), anti-IFNy"™# (1:100, Biolegend,
Cat#502517)) and Th-17 ((anti-CD3B%'°, anti-CD4FE, anti-CD8"7", anti-IL17A*FC (1:100, Biolegend, Cat#512334)) and analyzed
in a CytoFLEX S (Beckman Coulter).

QUANTIFICATION AND STATISTICAL ANALYSIS

Bioinformatics
The following software were used:

MaxQuant (Cox and Mann, 2008)

Andromeda (Cox et al., 2011)

DAVID GO analysis tool (Huang et al., 2007, 2009)

FastQC v0.11.8 (www.bioinformatics.babraham.ac.uk)

RSEM v1.3.1 (Li and Dewey, 2011)

edgeR v3.24.0 (Robinson et al., 2010)

Datagraph v4.5 (www.visualdatatools.com)

PRISM v8.4.0 (https://www.graphpad.com/scientific-software/prism/)
GSEA v4.0.3 (Subramanian et al., 2005)

Metascape (Zhou et al., 2019)

Bowtie v1.2.2 (Langmead et al., 2009)

Samtools v1.9 (Li et al., 2009)

bamCoverage v3.2.0 (Ramirez et al., 2016)

MEME Suite v5.0.2 (Bailey et al., 2009)

TOMTOM (Gupta et al., 2007)

BEDTools (Quinlan and Hall, 2010)

UCSC bigWigAverageOverBed v2 (https://genome.ucsc.edu)
HOMER v4.10 (Gupta et al., 2007)

Mass spectrometry data analysis

Q Exactive Plus Mass Spectrometer .RAW files were analyzed, and peptides and proteins quantified using MaxQuant (Cox and
Mann, 2008), using the built-in search engine Andromeda (Cox et al., 2011). All settings were set as default, except for the minimal
peptide length of 5, and Andromeda search engine was configured for the UniProt Homo sapiens protein database (release date:
2018_09). Peptide and protein ratios only quantified in at least two out of the three replicates were considered, and the p values
were determined by Students t test and corrected for multiple testing using the Benjamini-Hochberg procedure (Benjamini and
Hochberg, 1995).
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DAVID GO ANALYSIS TOOL (HUANG ET AL., 2007, 2009) WAS USED TO FIND STATISTICALLY OVER-REPRESENTED
GENE ONTOLOGY (GO) CATEGORIES IN THE PROTEOMIC DATA

RNA-Seq analysis

The quality of libraries was inspected by FastQC v0.11.8. The expression level of mRNA in each library was quantified by ‘rsem-calcu-
late-expression’ in RSEM v1.3.1 (Li and Dewey, 2011) using default parameters except ‘~bowtie-n 1-bowtie-m 100-seed-length 28—
paired-end’. The bowtie index required by RSEM software was generated by ‘rsem-prepare-reference’ on all RefSeq genes, down-
loaded from UCSC table browser on April 2017. edgeR v3.24.0 (Robinson et al., 2010) package was used to normalize gene expres-
sion among all libraries and identify differentially expressed genes among samples with following constraints: fold change > 1.5, p
value < 0.05. Scatter and bar plots were drawn by Datagraph v4.5 and PRISM v8.4.0, respectively. Geneset enrichment analysis was
performed by GSEA v4.0.3 (Subramanian et al., 2005) with default parameters except ‘-collapse No_Collapse -permute gene_set’.
Pathway analysis of differentially expressed genes was performed by Metascape (Zhou et al., 2019) on all GO terms related to bio-
logical processes, KEGG Pathways, BioCarta Gene Sets and Hallmark Gene Sets.

ChlIP-Seq analysis

The quality of libraries was inspected using FastQC v0.11.8. All sequencing reads were aligned to human reference genome
(GRCh37; hg19) using bowtie v1.2.2 (Langmead et al., 2009) with default pair-end alignment settings and additional parameters
‘—chunkmbs 1000 S -m 1’. The index for reference genome was constructed by using ‘bowtie-build’ with default parameters. Sorting
and indexing of the aligned reads were conducted by Samtools v1.9 (Li et al., 2009). The genome-wide binding profiles (i.e., bigWig
files) were generated by bamCoverage v3.2.0 (Ramirez et al., 2016) using parameters ‘—normalizeUsing BPM-minMappingQuality
30-ignoreDuplicates—extendReads 250-blackListFileName hg19.blacklist.bed’. The binding profiles were visualized using IGV
genome browser v2.7.0 (Robinson et al., 2011). Binding peaks were called by ‘callpeaks’ procedure from MACS2 v2.1.2 (Zhang
et al., 2008) using default parameters except ‘-f BAMPE-nomodel -t treatment -c input’. The identified peaks were further screened
against ‘hg19 blacklisted’ genomic regions, mitochondrial DNA, and pseudo-chromosomes. De novo motif findings were performed
in 200 bp surrounding the summit of n = 500 top bound regions using MEME Suite v5.0.2 (Bailey et al., 2009) with default parameters
except ‘-maxsize 10000000 -dna -mod zoops -nmotifs 10’. De novo motifs were compared against all JASPAR known motifs by
TOMTOM (Gupta et al., 2007). STAT3 shared bound regions in HyIL6 (n = 540) or HylL-6+MSC (n = 2585) stimulated cells were gener-
ated by the intersection between bound regions from n = 3 donor using BEDTools (Quinlan and Hall, 2010). STAT3 binding intensity in
shared bound regions was calculated by UCSC bigWigAverageOverBed v2 with default parameters and the mean signal intensity
was visualized by PRISM v8.4.0. The shared STAT3 bound regions were annotated with the nearest gene by ‘annotatePeaks’
from HOMER v4.10 (Gupta et al., 2007), yielding 475 unique genes. Statistical analyses were performed using the Two-tailed para-
metric and non-parametric tests as appropriate.

Statistical analysis

Statistical signinficance of differential induction of phophopeptide ratios only quantified in at least two out of the three replicates were
considered, and the p values were determined by Students t test and corrected for multiple testing using the Benjamini-Hochberg
procedure (Benjamini and Hochberg, 1995). For RNA-seq, statistical significance was calculated by edgeR v3.24.0 (Robinson et al.,
2010) package. Calculation of statistical significance for binding intensity of STAT3 ChlIP-seq was conducted by non-parametric two-
tailed Wilcoxon test. Further information related to the statistical analyses performed is provided in the figure legends.
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Supplemental Figure S1. HyIL-6 vs IL-6 effect on human primary activated CD4+ T cells and expression
levels of gp130 and IL-6Ra in different subpopulations of human T cells. Related to Figure 1. A) STATI1
and STAT3 phosphorylation in response to exposure time of HyIL-6 and IL-6 stimulation in activated primary
human CD4" T cells. B) Levels of expression of gp130 (left panel) and IL-6Ra (right panel) expressed as fold
change in different population of resting primary human CD4" and CD8" T cells. Data represents mean = SEM

calculated from three individual biological replicas.
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Supplemental Figure S2. Phospho-FLOW analyses of the HyIL-6 signalosome in resting and activated
human primary CD4" and CD8" T cells: Time-course. Related to Figure 1. A) Time-course data of the
changes induced by HyIL-6 in the phosphorylation state of the main signaling pathways in resting human primary
CD4" and CD8" T cells unstimulated, treated with HyIL-6 or with anti-CD3+Interleukin-2, as shown in Figure
1C. B) Time-course data of the changes induced by HyIL-6 in the phosphorylation state of the main signaling
pathways in activated human primary CD4" and CD8" T cells unstimulated, treated with HyIL-6 or with anti-
CD3+Interleukin-2, as shown in Figure 1D. For all experiments data represents mean + SEM calculated from
three individual biological replicas.



10 - CD4 8
iy -®- CD4 + Tofacitinib E=
L =g °©
nx 6 -#- CD8 + Tofacitinib DX 4
S 4 N
cs 2 H= 2
s ]
o o
minutes 0 20 40 60 80 minutes 0 20 40 60 80
-e-CD4
B 4 -®- CD4 + Tofacitinib 1.5
e, -=CD8 ©_
=g -@- CD8 + Tofacitinib =% 10
0X2 2
8z SZ o5
S=1 5=
O S ]
iy TS 04
minutes 20 40 60 80 minutes

S

-e-CD4
-@- CD4 + Tofacitinib
-=-CD8
-#- CD8 + Tofacitinib

PY701 STAT1
B8

MFI
=)

A pS727 STAT1
MFI (x10%)
o v b O ®

E}
5
g
T
&

0 20 40 60 80

20 40 60 80

3
5
£
g
&
o

-e-CD4
@ CD4 + Tofacitinib
-=-CD8
-#- CD8 + Tofacitinib

pY705 STAT3
MFI(x109)

on s o ® D
pS727 STAT3
MFI (x10%)

o =N whs o

minutes 0 20 40 60 80 minutes 0 20 40 60 80

Nucleus ADAR, ATR, ATRX, BARD1, PRDM1, C1QBP, RUNX2, CDC5L, CENCP, CENPF, CHD2, CREM,
ELF2, ERF, ETV6, FOXO1, FLI1, MTOR, XRCCB, GFI1, GTF2F1, GTF2I, GTF3C2, HISTIH1E,
[J Nucleus HCFC1, HIC1, HMGA1, HNRNPH1, HNTNPK, HNRNPU, AGFG1, HSPB1, IFI16, ILF3, INCENP,
[ cytopl IRF3, LIG1, MBP, MCM4, MECP2, MEF2C, MKI67, KMT2A, AFF1, MTF1, NACA, NCBP1,
yioplasm NFATC2, NPAT, NUMA1, PKNOX1, POLR2I, MED1, PPID, PPP1CC, PPP1R7, PPP1R10, PRCC,
[ cytoskeleton PRKAA1, PRKCD, MAPK1, MAPK3, PSMD11, PTPN2, PTPN11, RANBP2, KDM5A, RBBP7,
7 Endosome RRLB2, RELB, RFC1, RFC2, RLF, RPS6KA1, ATXN1, SFSWAP, SP4, STAT1, STAT3, STAT4,
STATSA, STATSB, STAT6, STK4, SUV39H1, TCF4, TCF3, TCF20, VPS72, TCOF1, TMF1,
[ Golgi apparatus TP53BP1, TP53BP2, NR2C1, TTF1, XRCC5, ZNF8, NELFE, KAT6A, NCOA3, HIST1H4I, TRRAP,
[ Lysosome EOMES, MKNK1, NOP14, SAP30, SQSTM1, MCM3AP, PRPF4B, LIMD1, MTA1, NEMF, MTA2,
STK17B, TUP2, RBM39, NCOR1, MDC1, MATR3, DDX46, HELZ, NUP153, CASP8AP2, RBMS,
[ Membrane SF3B4, UBE4B, NDC8O0, MCRS1, PLK4, NUP50, PPP1R13L, ARIDSA, AKAP13, ATXN2L, SPEN,
KDM1A, PDS5B, ZNF609, CIC, PASK, SMG6, UBR2, NCAPH, SF3B1, ETHE1, NUP188, SRRM2,
KIF4A, SUN2, NIPBL, POLDIP2, TOR1AIP1, NOCL, STAU2, FOXP1, AFF4, INVS, ZNF638,
CPSF1, HP1BP3, WAC, UBRS, YTHDF2, RSF1, MPHOSPHS, ZNF280D, BCAS3, KANSL2, PHIP,
RIF1, TMEMS7, MIS8BP1, ZCCHC8, CDKN2AIP, CHD7, WDR11, LRIF1, CENPN, WRNIP1,
EMSY, REXO1, GATAD2B, ZNF687, RANBP10, CCAR2, KMT2C, EPS15L1, RBM25, WIZ,
UBE20, ZNF106, PAPOLG, AHNAK, PHC3, AKNA, FIP1L1, TSC22D4, FAM175A, FYTTD1,
PARP10, ZNF276, AGAP2, SPATA33, SSBP4, CRTC2, HIPK1, RNF169, BCLOL, NACA2

Cytoplasm ADD3, APRT, BNIP2, CDC258, DAB2, MTOR, GPI, IREB2, STMN1, LCP1, LIPE, MAP1A, MOV10,
MYH8, PFAS, PI4KA, MAPK1, MAPK3, PSMD11, PTPN2, PTPN11, PXN, WARS, RPSBKAT,
SNTB1, STAT1, STAT3, STAT4, STAT5A, STATSB, STAT6, STK4, TALDO1, TRAF2, FXR1,
MKNK1, IRS2, EIF3C, RIPK1, SYNJ1, ARHGEF7, SQSTM1, HERC1, ARHGEF2, CCP110,

IFT140, FAMB5B, CASP8AP2, OPTN, MPHOSPH9, PLIN3, UBE4B, GAS2L1, PLK4, LZTS1,

[a——
AKAP13, AKAP11, COPE, FNBP1, KIF1B, CUL9, TAB2, CLASP2, EPB41L3, MAST2, FRMD4B,
EFR3A, PASK, SMG6, ANKS1A, KIF13B, LARP1, ETHE1, MACF1, SCRIB, PRKD3, RNF19A,
. SIPA1L1, SACS, GPSM2, DUSP13, BIN2, YTHDF?2, LIMA1, FBXWS, PPP1R12C, HAUSS, TRITA,

PANK4, DENND4C, MAP7D1, ASUN, KIZ, KIAA1217, RALGAPA2. RANBP10, UBE20, SMAP2,
MICAL1, EPS8L2, CORO7, MICALL2, CARD11, FGD3, KLC4, FAM129A, RFFL, SPATA33,
FAM101B, MAST4, CCDC88C

Cytoskeleton | AKAP11, BCAS3, FRMD4B, FGD3, GPSM2, HAUSS, LIMA1, MPHOSPH9, MAP7D1, MICALL2,
RELB, ARHGEF2, ADD3, CDC258, CCP110, CENPF, CLASP2, EPB4L13, FAM65B, FNBP1,
GAS2L1, HSPB1, INCENP, IFT140, INVS, KIF13B, KIF1B, KIF4A, KLC4, KIZ, LCP1, MTA1,
MICAL1, MAP1A, MAST2, MACFC1, MAPK1, NUMA1, PXN, PLK4, FAM101B, RIF1, RNF19A,
SIPA1L1, STMN1M, SNTB1

Endosome MICALL1, MICALL2, RAB10, RAPGEF1, SUN2, TBCD1D5, ATG9A, FAM21A, FAM21C, INPPSF,
OPTN, OSBPL11, OSBPLY, PLIN3, RFFL, SQSTM1, SPPL2B, SNX3, VAMP7

Golgi ATR, LIG1, ERF, FGD3, HERC1, LRBA, MPHOSPHS, PASK, RAB10, ARHGEF2, SEC16A, TMF1,
apparatus ACSL3, COPE, CORO7, CLASP2, KAT6A, HLA-A, MACF1, MAPK1, MAPK3, OPTN, OSBPL11,
(OSBPLY, PLIN3, PARP10, TRRAP, VAMP7

Lysosome AHNAK, DAB2, WDR11, CLCN7, C180RF8, HM13, IGF2R, MTOR, SPPL2B, SLC12A4, STX8,
VAMPT

Membrane CNP, AKAP13, AHNAK, AKNA, AGAP2, CD300A, CDS, DDX46, FXR1, GIGYF2, HERC1, LRBA,
LARP1, MPHOSPH9, NDC80, NOP14, RANBP2, WDR11, WRNIP1, XRCC5, XRCC6, ACSL3,
ADD3, ADAR, AVEN, ATXNL2L, ATG9A, CDC5L, CLCN7, CCDC77, CCDC88B, C1QBP, CORO7,
CLASP2, DOCK10, EPS15L1, EIF4EBP3, FAM129A, GTF2I, GPI, HELZ, HNRNPH1, HNRNPK,
HNRNPU, HM13, HIST1H4I, HCFC1, IGF2R, ITGAL, IFI16, ILF3, INVS, KIF4A, LTK, LSP1, HLA-A,
MKI67, MATR3, MTOR, MED1, MTA2, MCM4, NCAPH, NCOR1, NUP188, PLIN3, PI4K1, PIK3R1,
PAPOLG, PSMD11, PRKCD, PTPRC, RPL4, RFFL, SEMA4C, SPPL2B, SLC12A4, SLCAA3,
SORCS1, STMN1, STAU2, STX4, UBRS, VAMP7, ZNF106

Supplemental Figure S3. Effect of Tofacitinib in the HyIL-6-induction of Tyr and Ser phosphorylation in
STAT3 and STATI in resting and activated primary human CD4* and CD8" T cells (A-D) and Proteins
regulated by HyIL-6 in human primary CD4" Th-1 cells (E). Related to Figures 1 and 2. A) Time-course of
STAT1 Tyr701 (left panel) and Ser727 (right panel) phosphorylation induced by IL-6 stimulation in the
presence (dash line) or absence (solid line) of 2uM Tofacitinib in resting primary human CD4" and CD8" T
cells. B) Time-course of STAT3 Tyr705 (left panel) and Ser727 (right panel) phosphorylation induced by IL-6
stimulation in the presence (dash line) or absence (solid line) of 2uM Tofacitinib in resting primary human
CD4" and CD8" T cells. C) Time-course of STAT1 Tyr701 (left panel) and Ser727 (right panel)
phosphorylation induced by IL-6 stimulation in the presence (dash line) or absence (solid line) of 2uM
Tofacitinib in activated primary human CD4" and CD8" T cells. D) Time-course of STAT3 Tyr705 (left panel)
and Ser727 (right panel) phosphorylation induced by IL-6 stimulation in the presence (dash line) or absence
(solid line) of 2uM Tofacitinib in activated primary human CD4" and CD8" T cells. For all experiments
quantitative data was calculated from three individual biological replicas. Error bars show mean + SEM. E) The
scheme shows the cellular location (See Supplementary Figure 5) and molecular function of the proteins
regulated by phosphorylation in response to HyIL-6 stimulation in human primary CD4" Th-1 cells as
determined by DAVID analysis. Refer also to Supplementary Figure 4.
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Supplemental Figure S4. Cellular location of the proteins regulated by HyIL-6 in primary human Th-1
cells. Related to Figure 2. GO analysis of the cellular location of the proteins regulated by phosphorylation in
human primary CD4" Th-1 cells in response to HyIL-6 alongside with a table showing the different proteins
identified in our study and their subcellular location as inferred from our GO analysis.
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Supplemental Figure S5. Role of CDKs in the regulation of Ser727 STAT3 and STAT1 phosphorylation.
Related to Figures 3 and 4. A) Effect of different CDK inhibitors on the STAT3 Tyr705 (left panel) and

STAT3 Ser727 (right panel) phosphorylation induced by HyIL-6 in human primary CD8" T cells. B) Kinetics of

the HyIL-6-induced STAT3 Tyr705 (left panel) and Ser727 (right panel) phosphorylation in the presence of
different CDK inhibitors in human primary CD4" T cells. C) Kinetics of the HyIL-6-induced STAT3 Tyr705
(left panel) and Ser727 (right panel) phosphorylation in the presence of different CDK inhibitors in HEK293T
cells. D) Effect of different CDK inhibitors on the STAT3 Tyr705 (left panel) and STAT3 Ser727 (right panel)
phosphorylation induced by HyIL-6 in HEK293T cells. E) Effect of knocking-down CDKS8 or CDK®9 in the
STAT3 Tyr705 (left panel) and STAT3 Ser727 (right panel) phosphorylation induced by HyIL-6 in HEK293T
cells. F) Inmunoblot analysis of the knocking-down of CDK8 or CDK9 in HEK293T cells. G) In vitro
phosphorylation of STAT3 Ser727 by varying amounts of CDKs. Quantitation showing the dose response effect
is shown alongside. For all experiments quantitative data was calculated from three individual biological
replicas. Error bars show mean + SEM.
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Supplemental Figure S6. Regulation of Ser727 STAT3 phosphorylation in Hut78 cells. Related to Figure
4. A) Effect of Torinl, Flavopiridol or MSC2530818 on the STAT1 Tyr701 (left panel), STAT3 Tyr705 (middle
panel) and STAT3 Ser727 (right panel) phosphorylation induced by HyIL-6 in human primary CD4" T cells as
measured by phosphor-FLOW. B) Time-course of STAT1 Tyr701 (left panel), STAT3 Tyr705 (middle panel)
and STAT3 Ser727 (right panel) phosphorylation induced by HyIL-6 in human primary CD4"* T cells in the
presence or absence of Torinl, Flavopiridol or MSC2530818 as measured by phosphor-FLOW. C) STAT3
immunoblot of Hut78 WT cells vs Crispr/CAS9 generated STAT3 KnDs Hut78 cells. Quantitation of the levels
of STATS3 are shown in the graph. D) FACS analysis of the level of STAT3 Tyr705 phosphorylation in Hut78
WT and the different STAT3 KnDs Hut78 cell lines upon 15 min HyIL-6 stimulation. E) FACS analysis of the
expression of STAT3 WT-GFP or STAT3 S727A-GFP recombinant proteins in Hut78 STAT3 KnDs
electroporated with pLV-CMV-GFPSpark plasmid. For experiments A-B quantitative data shows normalized
data + SEM of three individual biological replicas.
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Supplemental Figure S7. CDKS fine-tunes STAT3 transcriptional program. Related to Figure 6. A)
Pathway analysis of differently expressed genes before and after HyIL-6, MSC or HyIL-6+MSC stimulation
using Metascape (Zhou et al., 2019). Top 20 pathways are shown. B) Immunoblot analysis of the Ser2 and Ser5
phosphorylation state of RPB1 in Th-1 cells treated or untreated with MSC2530818 upon HyIL-6 stimulation.
Quantitative data shows normalized data = SEM of three individual biological replicas. C) Scatter plot
comparing the mean STAT3 binding intensity in n=2585 STAT3 bound regions between HyIL-6+MSC versus
HyIL-6. D) Violin plot showing the mean STAT3 binding intensity in n= 4359 STAT3 bound regions across
different stimulations. Peaks are identified by comparing HyIL-6+Flavo stimulation and input. P-values are
determined by two-tailed Wilcoxon test (**** p<0.0001). E) Representative loci showing STAT3 binding
across different stimulations. The height of the tracks are indicated at bottom right corner of the plots. F) Shown
are the most significant de novo motifs identified in STAT3 bound regions after HyIL6, MSC or HyIL6+MSC
stimulation (top) and the matched STAT3 motif (bottom) from JASPAR database using TOMTOM.
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