Cell Reports, Volume 33

Supplemental Information

Structural Differences in Translation Initiation

between Pathogenic Trypanosomatids

and Their Mammalian Hosts

Anthony Bochler, Jailson Brito Querido, Terezie Prilepskaja, Heddy Soufari, Angelita Simonetti, Mayara Lucia Del Cistia, Lauriane Kuhn, Aline Rimoldi Ribeiro, Leoš Shivaya Valášek, and Yaser Hashem

SUPPLEMENTARY FIGURES

Supplementary Figure 1. Cryo-EM particle sorting and refinement of the 43S PIC complexes from *T. cruzi* and *L. tarentolae* and their resolutions, Related to Figure 1. (A) 2D classification of the 43S PIC particles yielded ~200 000 40S-like particles from the *T. cruzi* dataset, after which a run of 3D classification (10 classes) was performed. (B) The local resolution of the 43S class varies mainly on eIF3 (ranging from ~3 to ~6 Å), while is varies less on the rest of the structure (ranging from ~2.5 to ~3.5 Å for the 40S, k-DDX60, eIFs 1, 1A and 2b, and from ~3 to ~5 Å for eIFs 2a, 2g and 5). (C) The average resolution was measured after applying a soft-edge mask of the 43S PIC shape filtered to 15Å and extended by 3 pixels. (D) Blow ups on several features of the complex counting 40S rRNA/r-proteins (left), 18S rRNA interaction with eIF 1 and 1A (middle) and the initiator tRNA^{Met} (right), fitted in their corresponding densities. (E) Cryo-EM reconstructions of the *L. tarentolae* 43S PIC. (F) Cryo-EM reconstructions of the *T. cruzi* 43S PIC filtered at 8Å. (G) Superimposition of (E) and (F). (H) Average resolution (8.1Å) of the *L. tarentolae* 43S PIC reconstruction. (I) Average resolution (4.3Å) of the cryo-EM reconstruction from the *T. cruzi* 43S complexes supplemented with ATP.

A 90°

Supplementary Figure 2. Multiple sequence alignment of the eIF2 α NTD and eIF2 β among eukaryotes, and eIF5 CTD structure, Related to Figure 2. (A) Protein sequence alignment of eIF2 α from various eukaryotic organisms was generated by Clone Manger (MultiWay, scoring matrix: Blosum 62). The Kinetoplastida order species are labeled with K*. The kinetoplastidian-specific eIF2 α N-terminal domain insertion is marked with a black box. Areas of high matches (60%) are shaded in green. The individual species with the NCBI Reference Sequence numbers or TriTrypDB numbers are as follows: [*Trypanosoma cruzi*] PWV18423.1, [*Trypanosoma brucei*] Tb927.3.2900, [*Leishmania donovani*] AAQ02666.1, [*Leishmania major*] LmjF.03.0980, [*Strigomonas culicis*] EPY26930.1, [*Plasmodium falciparum* NF54] PKC42156.1, [*Plasmodium berghei* ANKA] VUC53995.1, [*Saccharomyces cerevisiae*] ONH75775.1, [*Oryctolagus cuniculus*] XP_002719561.1, [*Mus musculus*] NP_080390.1, [*Drosophila hydei*] XP_023166950.2, [*Homo sapiens*] NP_004085.1. (B) Protein sequence alignment of eIF2 β protein from various eukaryotic organisms. The Kinetoplastida order species are labeled with K*. Consensus is expressed as a sequence logo. The black boxes mark three conserved poly-lysine stretches (dubbed K-boxes) K1, K2 and K3. (C) Rigid-body fittings of the crystal structure of the human eIF5 CTD in the corresponding *T. cruzi* 43S PIC density (up) and its *T. cruzi* eIF5 CTD homology model in that same density (bottom).

Supplementary Figure 3. Novel interactions between several eIFs, r-proteins and 18S rRNA, fitted in their corresponding densities, Related to Figures 2 and 3. (A) eIF1 with eIF2 β . (B) eIF1 N-ter tail with eIF2 γ . (C) eIF1 with eIF3c N-ter. (D) eIF1A with the 18S. (E) eIF1A with eIF2 β . (F) eIF1A with uS13. (G) eIF1A with uS19. (H) eIF2 β with the 18S. (I) eIF2 β with eIF5 CTD. (J and K) eIF5 CTD with eIF2 γ . (L) eIF2 γ with k-DDX60. (M, N and O) 18S with eIF3c. (P and Q) eIF3c and eIF3d subunits.

Supplementary Figure 4. Interactions of eIF3d and k-DDX60 with eIFs, r-proteins and 18S rRNA, fitted in their corresponding densities, Related to Figures 2 and 3. (A and B) eIF3d with the 18S. (C) eIF3d with eS27. (D and E) k-DDX60 in its corresponding density, viewed from two orientations. (F, G and H) Blow ups on two β -sheets from helicase RecA domains and one buried α -helix from a helical bundle from K-DDX60. Interactions of k-DDX60 with eIF5 (I), 18S (J and K), eS12 (L), eS31 (M), eIF3c N-ter (N), uS12 (O) and the initiator tRNA^{Met} (P).

Supplementary Figure 5. In vitro analysis of eIF3 intersubunit interactions, Related to Figures 2 and 3. (A) In vitro protein-protein binding analysis of the interaction between the *in vitro* translated human 35 S-labeled eIF2 β and its C-terminal truncation (eIF2β 1-309) against wild type eIF1 or its mutated variant (eIF1-boxAla-102-113; residues 102-113 substituted with a stretch of alanines) fused to GST. In vitro translated proteins were tested for binding with three different dilutions of individual GST-fusion proteins. Lane 1 contains 20% of input amounts of in vitro-translated proteins added to each reaction. (B) Same as in (A) except that binding between the human wild type eIF3d subunit, its N-terminally truncated form (19-548), and its mutated variant (W16A G17A P18A) against the human wild type eIF3e subunit, or its inner deletion (delta 244-252), or its mutated variant (I246A Q247A T248A) fused to GST was analyzed. Lanes 1 and 2 show 10% and 5% input, respectively. Quantification was performed by the Quantity One software (see Fig. 3J.) (C) Same as in (A) except that binding between truncations of the human eIF3d subunit (1-114 and 19-114) and eIF3e fused to GST was analyzed. Quantification is presented in Fig. 3K. (D) In vitro protein-protein binding analysis of ³⁵S-labeled eIF3a, eIF3c, eIF3k and eIF3m subunits against eIF3d fused to GST. Lane 1 shows 10% input. (E) In vitro protein-protein binding analysis of human ³⁵Slabeled eIF3d against eIF3c and eIF3a subunits fused to GST. Lane 1 shows 20% input. (F) In vitro protein-protein binding analysis of the interaction between T. cruzi eIF5 and the eIF3c-NTD (residues 1-172) fused with GST either at its N or C terminus. (G) Binding analysis of the interaction between T.cruzi the eIF3c-NTD (residues 1-172) and eIF5-GST. (H) Multiple protein alignment of the N-terminal domain of the eIF3c subunit from indicated species with a consensus expressed as a sequence logo. Specific sequence features mentioned in the main text are boxed. Positions of eIF1- and eIF5-binding sites in the eIF3c-NTD of the selected species identified by us and others are marked by thick lines under or above the alignment; color-coding is as follows: T.c. - Trypanosoma cruzi in pink, S.c. - Saccharomyces cerevisiae in purple, and H.s. - Homo sapiens in green.

Supplementary Figure 6. *T. cruzi* **18S rRNA, Related to Figures 4 and 5.** 2D diagram of the T. *cruzi* 18S rRNA. The largest and more relevant expansion segments are highlighted in colored backgrounds.

Supplementary Figure 7. Charge surface analysis of the *T.cruzi* **and mammalian eIF3 structures, Related to Figures 3. (A)** Overlay of mammalian and kinetoplastidian structures of individual eIF3 subunits with marked structural differences. The *T. cruzi* structures are depicted in dark and mammalian in light color shades. Curved arrows indicate the direction of *T. cruzi* eIF3 subunits structural rearrangement compared to their mammalian counterparts. Colored ovals highlight marked structural differences between *T. cruzi* and mammalian eIF3 subunits. **(B)** Cartoon representation of the eIF3 atomic model showing the eIF3 helical bundle in mammals (upper panel) and in *T. cruzi* (lower panel). Dark arrow indicates the shift of a helix from eIF3f in *T. cruzi* to compensate for the absence of eIF3m. **(C)** Surface representation of the *T. cruzi* (left) and mammalian (right) eIF3 structure seen from the 40S platform side. Lower panel: close-up view of *T.cruzi* eIF3c and its interaction with the ES7^s helix A and helix B. Model is color-coded according to the electrostatic potential – negative in red and positive in blue. **(D)** Surface representation of the *T. cruzi* (left) and mammalian (right) eIF3 structure seen from the 40S solvent side. Lower panel: close-up view of the *T. cruzi* eIF3 structure seen from the 40S RNA.

Supplementary Figure 8. *T. cruzi* **18S k-DDX60 conservation and secondary structure diagram, Related to Figures 4 and 5.** (A) BlastP alignment between *T. cruzi* k-DDX60 and human DDX60 showing the relatively modest global homology between both proteins. Only most homologous regions were presented (in green, purple and red boxes). Magenta boxes on domains annotation schema highlight the trypanosomatid-specific domains that are inexistent in DDX60 from human and other eukaryotic species. Pink and violet colors highlight the A-site Insert (AI) and the ATP binding pocket in k-DDX60, respectively. (B) Secondary structure elements diagram for k-DDX60 based on its 3D model. Some parts could not be modeled.

SUPPLEMENTARY TABLES

				BASIC Spectral C	count (# spectra)
				BEFORE Gel Filtration	AFTER Gel Filtration
Q4E5Z1 Q4E5Z1_TRYCC	DDX60	Uncharacterized protein OS=Trypanosoma cruzi (strain CL Brener) GN=Tc00.1047053508153.1050	10	263	96
Q4DLI2 Q4DLI2_TRYCC	ABCE1	Ribonuclease L inhibitor, putative OS=Trypanosoma cruzi (strain CL Brener) GN=Tc00.10470535086	3	103	31
406 ribocomol pr	otoinou				
405 ribosomai pr	otems.			DAGIO Oracetral County	(#
			BEE	ORE Gel Filtration	AFTER Gel Filtration
accession		description	405	435	435
Q4D5P4 Q4D5P4 TRYCC		40S ribosomal protein S4 OS=Trypanosoma cruzi (strain CL Brener) GN=Tc00.1047053509683.117	131	131	93
Q4DTN2 Q4DTN2_TRYCC		Activated protein kinase C receptor, putative OS=Trypanosoma cruzi (strain CL Brener) GN=Tc00.10	100	96	48
Q4E0Q3 Q4E0Q3_TRYCC		40S ribosomal protein S5, putative OS=Trypanosoma cruzi (strain CL Brener) GN=Tc00.1047053506	65	51	40
Q4DZ41 RS3A2 TRYCC		40S ribosomal protein S3a-2 US=Trypanosoma cruzi (strain CL Brener) GN=Tc00.1047053511001.9	98 75	84 73	46
Q4DSU0IQ4DSU0 TRYCC		40S ribosomal protein S10, putative 03=11/panosoma cruzi (strain CL Brener) GN=Tc00.1047053510769.49 P	89	72	58
Q4CLU9 Q4CLU9_TRYCC		40S ribosomal protein S8 OS=Trypanosoma cruzi (strain CL Brener) GN=Tc00.1047053511069.20 P	66	60	46
Q4D4L4 Q4D4L4 TRYCC		40S ribosomal protein S11, putative OS=Trypanosoma cruzi (strain CL Brener) GN=Tc00.104705350	58	47	39
Q4D6I5 Q4D6I5 TRYCC		40S ribosomal protein S14, putative OS=Trypanosoma cruzi (strain CL Brener) GN=Tc00.104705340	60	61	37
		40S ribosomal protein S3, putative OS=Trypanosoma cruzi (strain CL Brener) GN=1c00.104705350401 Bibosomal protein S19, putative OS=Trypanosoma cruzi (strain CL Brener) GN=1c00.104705350401	81 30	72	37
	KSRP	RNA-binding protein, putative OS=Trypanosoma cruzi (strain CL Brener) GN=Tc00, 1047053511727	79	72	29
Q4D4S1 Q4D4S1_TRYCC	Rora	40S ribosomal protein S9, putative OS=Trypanosoma cruzi (strain OL Brener) GN=Tc00, 1047053504	38	38	28
Q4CUC8 Q4CUC8 TRYCC		Ribosomal protein S7, putative OS=Trypanosoma cruzi (strain CL Brener) GN=Tc00.1047053506593	84	80	25
Q4CQU0 Q4CQU0 TRYCC		40S ribosomal protein SA OS=Trypanosoma cruzi (strain CL Brener) GN=Tc00.1047053503719.20 P	65	58	22
Q4D916 Q4D916_TRYCC		40S ribosomal protein S16, putative OS=Trypanosoma cruzi (strain CL Brener) GN=Tc00.104705350	48	52	19
		40S ribosomal protein S15a, putative OS=Trypanosoma cruzi (strain CL Brener) GN=Tc00.10470535	37	34	15
		Hos hosomal protein S2, putative OS=Trypanosoma cruzi (strain CL Brener) GN=Tc00: 1047053503	52	40	14
Q4DTX6 Q4DTX6_TRYCC		Ribosomal protein S25, putative OS=Trypanosoma cruzi (strain CL Brener) GN=Tc00.104705350410	46	44	8
Q4DK39 Q4DK39 TRYCC		40S ribosomal protein S17, putative OS=Trypanosoma cruzi (strain CL Brener) GN=Tc00.104705350	58	57	16
Q4E088 Q4E088 TRYCC		40S ribosomal protein S10, putative OS=Trypanosoma cruzi (strain CL Brener) GN=Tc00.104705350	52	54	22
		40S ribosomal protein S12 OS=Trypanosoma cruzi (strain CL Brener) GN=Tc00.1047053508231.20	34	39	13
04DT01I04DT01_TRYCC		40S ribosomal protein S33, putative OS=Trypanosoma cruzi (strain CL Brener) GN=Tc00.104705350 40S ribosomal protein S23, putative OS=Trypanosoma cruzi (strain CL Brener) GN=Tc00.104705350	33	28	28
Q4D6H7 Q4D6H7 TRYCC		Ribosomal protein S20, putative OS=Trypanosoma cruzi (strain CL Brener) GN=Tc00.104705350847	34	28	16
Q4CWD6 Q4CWD6_TRYCC		40S ribosomal protein S13, putative OS=Trypanosoma cruzi (strain CL Brener) GN=Tc00.104705351	32	30	18
Q4DN73 Q4DN73_TRYCC		40S ribosomal protein S27, putative OS=Trypanosoma cruzi (strain CL Brener) GN=Tc00.104705350	21	17	25
Q4DW38 Q4DW38 TRYCC		40S ribosomal protein S24 OS=Trypanosoma cruzi (strain CL Brener) GN=Tc00.1047053507681.150 Ribosomal protein S29, putative OS=Toypaposoma cruzi (strain CL Brener) GN=Tc00.1047053507681.150	30	26	15
Q4DGZ5IQ4DGZ5 TRYCC		40S ribosomal protein S15, putative OS=Trypanosoma cruzi (strain CL Brener) GN=Tc00, 104705351	23	20	11
Q4CYE4 Q4CYE4_TRYCC		Ribosomal protein S26, putative OS=Trypanosoma cruzi (strain CL Brener) GN=Tc00.104705350380	21	18	12
Q4E3L9 Q4E3L9 TRYCC		40S ribosomal protein S21, putative OS=Trypanosoma cruzi (strain CL Brener) GN=Tc00.104705351	24	18	7
Q4DA48 Q4DA48 TRYCC		40S ribosomal protein S30, putative OS=Trypanosoma cruzi (strain CL Brener) GN=Tc00.104705350	2	5	
Initiation factors:					
initiation factors.				BASIC Spectral Count (# spectra)
			BEF	FORE Gel Filtration	AFTER Gel Filtration
accession		description	40S	43S	435
Q4DL69 Q4DL69_TRYCC	elF3a	Uncharacterized protein OS=Trypanosoma cruzi (strain CL Brener) GN=Tc00.1047053508919.140 P	86	129	50
Q4DSL1 Q4DSL1_TRYCC	elF3b	Translation initiation factor, putative OS=Trypanosoma cruzi (strain CL Brener) GN=Tc00.104705351	95	159	41
Q4E3G1 Q4E3G1_TRYCC	elF3c	Eukaryotic translation initiation factor 3 subunit 8, putative OS=Trypanosoma cruzi (strain CL Brener)	63	96	16
Q4D7F2 Q4D7F2_TRYCC	elF3e	Eukaryotic translation initiation factor 3 subunit E OS=Trypanosoma cruzi (strain CL Brener) GN=Tc0	60	103	24
Q4E620 Q4E620_TRYCC	elF2 alpha	Elongation initiation factor 2 alpha subunit, putative OS=Trypanosoma cruzi (strain CL Brener) GN=T	5	105	22
Q4DCN0 Q4DCN0 TRYCC	elF3d	Eukaryotic translation initiation factor 3 subunit 7-like protein, putative OS=Trypanosoma cruzi (strain	72	113	16
Q4D452 Q4D452 TRYCC	elF3i	Eukaryotic translation initiation factor 3 subunit I OS=Trypanosoma cruzi (strain CL Brener) GN=Tc00	40	69	14
Q4D5W3 Q4D5W3 TRYCC	elF3I	Eukaryotic translation initiation factor 3 subunit L OS=Trypanosoma cruzi (strain CL Brener) GN=Tc0	51	83	25
Q4E3S5 Q4E3S5 TRYCC	elF3h	Homology with eIF3H (InterPro), Uncharacterized protein OS=Trypanosoma cruzi (strain CL Brener)	36	58	8
Q4CUG4 Q4CUG4 TRYCC	elF3g	Eukaryotic translation initiation factor 3 subunit G OS=Trypanosoma cruzi (strain CL Brener) GN=Tc0	43	70	19
Q4CSE1IQ4CSE1_TRYCC	elF5	Eukarvotic translation initiation factor 5, putative OS=Trypanosoma cruzi (strain CL Brener) GN=Tc00	19	115	49
Q4DDK1 Q4DDK1 TRYCC	elF3k	Homology with eIF3K (InterPro), Uncharacterized protein OS=Trypanosoma cruzi (strain CL Brener)	18	29	9
Q4DH88IQ4DH88 TRYCC	elF2 beta	Translation initiation factor, putative OS=Trypanosoma cruzi (strain CL Brener) GN=Tc00.104705350	7	45	25
Q4DQZ2IQ4DQZ2_TRYCC	elF3f	Uncharacterized protein OS=Trypanosoma cruzi (strain CL Brener) GN=Tc00 1047053510089 200 P	46	68	24
Q4CPV7IQ4CPV7_TRYCC	elF2 gamm	Eukarvotic translation initiation factor 2 subunit, putative OS=Trypanosoma cruzi (strain CL Brener) G	5	62	7
O4COB1IO4COB1_TRYCC	elF1A	Eukarvotic translation initiation factor 1A putative (Fragment) OS=Trypanosoma cruzi (strain CL Brei	4	25	4
Q4DM75IQ4DM75_TRYCC	elF1	Protein translation factor SUI1 homolog, putative OS=Trypanosoma cruzi (strain CL Brener) GN=Tc0	10	18	5

Supplementary Table 1. Mass-spectrometry analysis of the *T. cruzi* **43S PIC, Related to Figure 1.** Composition of the *T. cruzi* **43S** PIC in 40S ribosomal proteins and initiation factors. K-DDX60 and ABCE1 were singled out. The analysis compares the 43S related fractions without (labeled 40S) and with GMP-PNP (labeled 43S), before and after Gel-filtration. Accessions, description and spectral counts are indicated for each fraction. Full dataset can be found at the PRIDE partner repository with the dataset identifier PXD016063 (See Methods).

			Spectral Count
	Name		IC
tr E9ACL4 E	DDX60	Uncharacterized protein OS=Leishmania major GN=LMJF_03_0690 PE=4 SV=1	111
tr Q4QCE4	ABCE1	Putative ATP-binding cassette protein subfamily E,member 1 OS=Leishmania major GN=ABCI	101
400 1			
<u>405 rib</u>	osomal pr	<u>oteins:</u>	
	Name		Spectral Count
accession			IC
tr Q868B1 C		40S ribosomal protein S5 OS=Leishmania major GN=LMJF_11_0960 PE=4 SV=1	188
		Putative dblquitin/hbosomal protein S2/a US=Leishmania major GN=LMJF_36_0000 PE=4 SV	200
		40S ribosomal protein S4 OS-Leisinnania major GN-ES4 PE-2 SV-1	200
triO4O8H1		40S ribosomal protein S14_OS=Leishmania major GN=LM IE_28_0960 PE=3 SV=1	155
trIQ4Q0111		Putative 40S ribosomal protein S23_OS=L eishmania major GN=LMJE_21_1060 PE=3 SV=1	90
triQ4Q4A0I		Putative 40S ribosomal protein S3 OS=Leishmania major GN=LMJF 15 0950 PE=4 SV=1	99
sp P25204 I		40S ribosomal protein S8 OS=Leishmania major GN=RPS8A PE=3 SV=1	108
sp Q9NE83		40S ribosomal protein S6 OS=Leishmania major GN=RPS6 PE=3 SV=1	175
tr Q4Q817 0		Putative ribosomal protein S29 OS=Leishmania major GN=LMJF_28_2205 PE=4 SV=1	62
tr Q4Q1V1 0		Putative 40S ribosomal protein S9 OS=Leishmania major GN=LMJF_36_1250 PE=2 SV=1	98
tr Q4Q5P0 0		40S ribosomal protein S2 OS=Leishmania major GN=LMJF_32_0450 PE=3 SV=1	144
tr Q4Q3M1		Putative 40S ribosomal protein S13 OS=Leishmania major GN=LMJF_19_0390 PE=3 SV=1	83
tr Q4QH01		Putative 40S ribosomal protein S21 OS=Leishmania major GN=LMJF_11_0760 PE=4 SV=1	39
sp Q4FX73		40S ribosomal protein S3a OS=Leishmania major GN=LmjF.35.0400 PE=2 SV=1	288
tr Q4Q8G4		Putative ribosomal protein S20 OS=Leishmania major GN=LMJF_28_1010 PE=3 SV=1	99
tr Q4Q7P0 0		Putative 40S ribosomal protein S30 OS=Leishmania major GN=LMJF_30_0670 PE=4 SV=1	36
tr Q4QCN7		Putative 40S ribosomal protein S11_OS=Leishmania major GN=LMJF_20_1650 PE=3 SV=1	153
sp Q4Q0Q0		40S ribosomal protein SA OS=Leishmania major GN=LmjF36.5010 PE=3 SV=1	145
tr E9AEE8 E		40S ribosomal protein S19-like protein OS=Leishmania major GN=LMJF_29_2860 PE=4 SV=1	129
tr Q4Q931 0		Putative 40S ribosomal protein S33 OS=Leishmania major GN=S33-1 PE=4 SV=1	102
tri040C07		40S ribosomal protein S12_OS-Leishmania major GN-LMJF_30_0900 FE-4 SV-1	03
trIQ4QG97		Putative 40S ribosomal protein S15A_OS=Leishmania major GN=LMSF_15_05701 L=5 SV=1	84
triQ4Q9A50		Putative 40S ribosomal protein S16 OS=Leishmania major GN=LMJF 26 0880 PE=2 SV=1	79
trlQ4Q806l0		Putative 40S ribosomal protein S17 OS=Leishmania major GN=LMJF 28 2555 PE=3 SV=1	42
tr Q4Q140 0		Putative 40S ribosomal protein S27-1 OS=Leishmania major GN=LMJF 36 3750 PE=3 SV=1	63
tr Q4Q8L6 0		Putative ribosomal protein S26 OS=Leishmania major GN=LMJF_28_0540 PE=4 SV=1	34
tr Q4Q1D2		40S ribosomal protein S24 OS=Leishmania major GN=S24E-2 PE=3 SV=1	120
tr Q4Q3G4		Ribosomal protein S25 OS=Leishmania major GN=S25 PE=4 SV=1	91
tr 043943 0	RACK1	LACK OS=Leishmania major PE=4 SV=1	58
tr Q4Q5K7 0	KSRP	Putative RNA binding protein OS=Leishmania major GN=LMJF_32_0750 PE=4 SV=1	56
tr Q4QBV0		Putative 40S ribosomal protein S15 OS=Leishmania major GN=LMJF_22_0420 PE=3 SV=1	31
tr E9AC32 E		Putative ribosomal protein S7 OS=Leishmania major GN=LMJF_01_0410 PE=4 SV=1	27
Initiatio	on factors:		
	Name		C Spectral Count (# sp
accession		description	IC
tr Q4QEJ8 0	elF3a	Uncharacterized protein OS=Leishmania major GN=LMJF_17_0010 PE=4 SV=1	278
tr Q4QE62	elF3b	Putative translation initiation factor OS=Leishmania major GN=LMJF_17_1290 PE=4 SV=1	175
	eir3d	Eukaryotic translation initiation factor 3 subunit 7-like protein OS=Leishmania major GN=LMJF	125
	eirse olE2l	Eukaryotic translation initiation factor 3 subunit E OS=Leishmania major GN=LMJF_28_2310 F	84
tri0401270	ell 3i	Eukaryotic translation initiation factor 3 subunit L OS-Leisinnania major GN-LMJF_36_3880 Pl	70
	elF2 alpha	Putative elengation initiation factor 2 alpha subunit COS-Leishmania major GN-LMJF_30_3000 FI	79
triO4OIM7I	elF3h	I locharacterized protein_OS=I eishmania major GN=I M.IF_07_0640 PE=4 SV=1	76
trIQ4Q3H3I	elF5	Putative eukarvotic translation initiation factor 5 OS=Leishmania major GN=LMJE 34 0350 PE	75
tr Q4Q9T0 0	elF3f	Uncharacterized protein OS=Leishmania major GN=LMJF 25 1610 PE=4 SV=1	67
tr Q4Q05510	elF3c	Putative eukaryotic translation initiation factor 3 subunit 8 OS=Leishmania major GN=LMJF 36	62
tr Q4Q557 0	elF3k	Uncharacterized protein OS=Leishmania major GN=LMJF 32 2180 PE=4 SV=1	59
tr Q4QHR7	elF2 gamma	Putative eukaryotic translation initiation factor 2 subunit OS=Leishmania major GN=LMJF 09	49
tr Q4Q2S5 0	elF3g	Eukaryotic translation initiation factor 3 subunit G OS=Leishmania major GN=LMJF_34_2700 F	46
tr Q4QAL1 0	elF1A	Putative translation factor sui1 OS=Leishmania major GN=LMJF_24_1210 PE=4 SV=1	33
tr Q4QIB4 C	elF2 beta	Translation initiation factor-like protein OS=Leishmania major GN=LMJF_08_0550 PE=4 SV=1	29
tr Q4QF06 0	elF1A	Putative eukaryotic translation initiation factor 1A OS=Leishmania major GN=LMJF_16_0140 F	27
	L	l	<u> </u>

Supplementary Table 2. Mass-spectrometry analysis of the *L. Tarentolae* **43S PIC, Related to Figure 1.** Composition of the *L. Tarentolae* 43S PIC in 40S ribosomal proteins and initiation factors. K-DDX60 and ABCE1 were singled out. The analysis of the 43S related fraction was made after supplementation with GMP-PNP (IC), before Gel-filtration. Accessions, description and spectral counts are indicated. Full dataset can be found at the PRIDE partner repository with the dataset identifier PXD016063 (See Methods).

	Ribosomal RNA	Ribosomal protein	Initiation factors
eIF1	N65-G2303, C64-G2303, Q81-	none	eIF2-β: R29-S251, Q31-S327, Q43-T325, H27-T325, V77-Y326
	C2282, R33-A1341, R33-		eIF2-y : S16-N459, V17-V147, Q12-Q412, L21-V85, Q13-V147
	G2283, K37-G2283, R56-		eIF3c : L49-F36, I54-W35 R53-E37, R52-T39, N96-R26, L49-I31
TTI A	G2303, R61-C2183	620 E25 D10 E00 L0	
elfIA	N48-A2277, R66-C620, W74-	e830 : E35-R10, F88-L8	elF2-β : Y133-L282, V134-N208, F135-P213, F135-Y279
	A22/9, K155-G1085	uS13 : D162-R119, L164-V124 uS10 : V158 V100 V158 A82	
		V158_A111	
		uS12 : F88-L91	
eIF2-α	none	uS7 : , Y200-K177, Y200-D180,	tRNA: K104-C55, R105-G52, R108-U54, W119-C55, H 232-C55, E296-U54
		Y200-R184, T148-R122, Y166-	eIF2-y: R331-E279, F315-L321, V320-L350, P350-F268
		V120, T167-R122, D195-R184	
eIF2-β	R333-U1340, R333-G1342,	uS19 : N259-R137	tRNA: K221-A36, N255-G25, K300-G68, R303-G69,
	R337-U1339, R337-U1340		elF1 : S251-R29, E267-Q32, T325-Q43, Y326-V77, Y326-H27, S323-R29
			elF1A : N208-V134, P213-F135, Y279-F135, L282-Y133
			eIF5 : N118-R205, L120-V329, L120-A202, L125-V325, K125-Q304, V152- W372 I 142 F331
			eIF2-v · N173-H248 T176-Y245 G181-Y241 Y182-Y211 Y184-D240 S185-
			N238, R189-E204, M305-E83, T317-M86, T317-E83
eIF2-y	none	none	tRNA : K79-C73, D269-A75, K272-A72, R282-A75
-			eIF1: V85-L21, I88-L21, V147-V17, N459-S16, Q412-Q12
			eIF2-α : E279-R331, L321- F315, L350- V320, F268- P350
			eIF2-β : H248- N173, Y245- T176, Y241- G181, Y211- Y182, D240- Y184,
			N238- S185, E204- R189, E83- M305, M86- T317, E83-T317
			eIF5 : S224-R230, D219-R229, S220-R273, F383-L240, N430-T205, P431-
			D204, W405-1257, K409-1205
eIF3c	\$52-A1360, R53-C1361, K56-	e\$27 • 0191-056 K192-F54	eIF1 · 131-M97 131-L49 F36-L49 F37-R53 W35-F91 W35-I54 T39-R52
chrot	C1596, R127-C370, O204-		eIF3d : P234-W44, R295-W44, L489-W44, L233-A47, L380-F9, L418-W16,
	U1526, K207-A1525 R215-		R419-P13, I434-M28, N437-D26
	A1523, R232-U1476 and		k-DDX60: N-ter tail with Y832 and F834
	U1478, Q329-G1438, R331-		
	U1439, R243-U1526		
eIF3a		eS1 : T7-Q77, R8-T77, T12-	
eIF3d	D43-G1532 D50-A1475	e\$27 · T36_K37 139_F80 139_	eIF3c · F9-L380 P13-R419 W16-L418 D26-N437 W44-P234 W44-R295
tirbu	R149-U1863 and U1862.	L74	W44-L489. A47-L233. M28-I434
	R294-U1866 and C1867,	S33 : R219-E76, D255-R83,	elF3e : F3-T198, L5-A196, P6-T198, W16-I246, W16-Q247, E7-T245 ; P13-
	D306-U1864,Q296-G1861,	K371-M98, Q368-K94, L435-	T248
	K301-U1863	M73	
		uS7 : Q434-E21, Q368-D26,	
		E368-R51	
		RACKI: S409-E2/7, N410-	
eIF5	none	None	eIF2-8 : A262-L120, R265-N118, V325-L123, V329-L120, I332-L142, O364-
0115	none	none	K125, W372-V132
			eIF2-y: D204-P431, T205-R469, T205-N430, R229-D219, R230- S224, T237-
			W465, L240-F383, R273-S220
			k-DDX60: D284-S944, D288-R941, K292-S826
k-DDX60	S26-U1722, R95-U1723,	eS12 : S3-D70, R6-E72	tRNA : Q1548-A34, S1551-A34
	K724-A51, Q725-A51,	eS31 : Y5-K94, E92-L92, E93-	eIF2-γ: P770-P171, R902-D209
	H728-G477	K94	eIF3c: Y832 and F834 with N-ter tail
		u812 : R739-Q73, D744-N97	eif5 : 8826-K292, R941-D288, 8944-D284

Supplementary Table 3. Detailed overview of interactions between eIFs, ribosomal proteins, rRNA and k-DDX60, Related to Figures 2, 3 and 5. Novel interactions revealed by analysis are colored in deep blue. Most of these novel interactions are shown in ribbons and sticks models fitted into their corresponding densities in Fig. S 3 and 4.

Data Collection	T. cruzi 438	T. cruzi 43S + ATP	L. tarentolae 438
Microscope	Titan Krios	Titan Krios	Talos Artica
Voltage (kV)	300	300	200
Magnification	127,272	127,272	120,000
Pixel size (Å)	1.1	1.1	1.21
Detector	Gatan Summit K2	Gatan Summit K2	Falcon III
Defocus range (µm)	-0.6 to -4.5	-0.6 to -4.5	-0.6 to -3.0
Tot. electron exposure (e ⁻ Å ⁻²)	30	30	40
Exposure rate (e ⁻ Å ⁻² frame ⁻¹)	1.5	1.5	2.0
Data collection software	SerialEM	EPU	EPU
Data Processing			
Independent data collections	1	1	1
Useable micrographs	3271	2638	?
Particles	202920	98840	52302
Final particles (43S)	33775	19700	10144
Accuracy			
translations (pix) / rotations (°)	0.432/0.234375°	0.432/0.234375°	0.432/0.234375°
Resolution (Å, 0.143 FSC)	3.33	4.3	8.1
Local resolution range (Å)	2.5-6	N/A	N/A
Model Composition			
Chains	59	N/A	N/A
Non-hydrogen atoms	136893	N/A	N/A
Protein residues	11196	N/A	N/A
RNA bases	2225	N/A	N/A
Refinement			
Software	Phenix_ValidationEM	N/A	N/A
Resolution (Å)	3.33	N/A	N/A
CC (mask)	0.57	N/A	N/A
CC (main chain)	0.5	N/A	N/A
CC (side chain)	0.58	N/A	N/A
R.M.S deviations			
Bond lengths (Å)	0.020	N/A	N/A
Bond angles (°)	2.209	N/A	N/A
Validation			
	2.65	21/4	N T/A
Molprobity score	2.65	N/A	N/A
Clashscore, all atoms	9.20	N/A	N/A
Rotamers outliers (%) C^{0}	3.48	N/A	N/A
Cp outliers (%) C-DL AM sutliars $(0/)$	1.41	IN/A	IN/A
CabLAIVI outliers (%)	10.9	IN/A	1N/A
Fevered (%)	70.00	NI/A	N1/ 4
Allowed (%)	19.09	IN/A N/A	IN/A
Allowed (70) Outliers (%)	14.19	1N/A	1N/A
	6 7 2	NI/A	NI/A

Supplementary Table 4. Data collection, processing, refinement and model statistics, Related to Figure 1 and STAR Methods section. A near complete atomic model was only derived for the highest resolution cryo-EM reconstruction, i.e. the *T. cruzi* 43S PIC stalled with GMP-PNP. The *T. cruzi* 43S PIC stalled with GMP-PNP supplemented with ATP presents a lower resolution and therefore we didn't derive a full atomic model, instead we flexibly fitted k-DDX60 only into its map to illustrate its conformational changes.

Primer	Sequence
AH-h3c-PmeI	ATATAGTTTAAACGCCATGTCGCGGTTTTTCACC
AH-h3c-FseI	ATATAGGCCGGCCTCAGTAGGCCGTCTGAGACTG
AH-h3a-PmeI	ATATAGTTTAAACAAGATGCCGGCCTATTTTCAG
AH-h3a-FseI	ATATAGGCCGGCCTTAACGTCGTACTGTGGTCCA
AH-h3m-EcoRI	ATATAGAATTCACCATGAGCGTCCCGGCCTTC
AH-h3m-FseI	ATATAGGCCGGCCTCAGGTATCAGAAAGACTCAA
AH-h3k-EcoRI	ATATAGAATTCGTCATGGCGATGTTTGAGCAG
AH-h3k-FseI	ATATAGGCCGGCCTTACTGGGAGGAGGCCATGAT
AH-h3d-EcoRI	ATATAGAATTCAAGATGGCAAAGTTCATGACA
AH-h3d-FseI	ATATAGGCCGGCCTTAAGTTTCTTCCTCTTCTTCTTCCTC
AH-h3e-EcoRI	ATATAGAATTCAAGATGGCGGAGTACGACTTG
AH-h3e-FseI	ATATAGGCCGGCCTCAGTAGAAGCCAGAATCTTG
DS-eIF1-BamHI	ATCGGATCCATATGTCCGCTATCCAGAACC
DS-eIF1-Sall	TGTGTCGACTTAAAACCCATGAACCTTCAG
SW-heIF5-EcoRI	ATAGAATTCGATGTCTGTCAATGTCAACC
SW-heIF5-SalI-R	ACTAGTCGACTTAAATGGCATCAATATCG
DS-eIF2β-BamHI	ATCGGATCCATATGTCTGGGGACGAGATG
DS-eIF2β-SalI	CGTGTCGACTTAGTTAGCTTTGGCACG
AH-h3c-325-Fsel	ATATACGGCCGGCCTCAGGTGATCTCAGTTCCCTTGGC
TS-h3c-326-PmeI	ATATAGTTTAAACGCCATGCATGCTGTTGTTATCAAGAAACTG
TS-h3c-30-325-PmeI	ATATAGTTTAAACGCCATGAACTATGGCAAACAGCCATTG
TP-h3c-130-325-PmeI	GCCGCGTTTAAACGCCATGAACAAGAACAATGCCAAGGC
TP-pGL4-CMV-heIF2β-EcoRI	CGCCAGAATTCACCATGTCTGGGGACGAGATGATT
TP-pGL4-CMV-eIF2β-FseI	ATATAGGCCGGCCTTAGTTAGCTTTGGCACGGAG
TP-pGL4-CMV-eIF2β-1-309-	CGCCAGGCCGGCCTTAACATCTAGAATGACAAGTTTC
Fsel	
TP-pGEX-5X3-telF1-BamHI	
TP-pGEX-5X3-telF1-Sall	
TP-pGEX-5X3-telF5-BamHI	
TP-pGEA-5A3-telF5-Sall	
TP-pGL4-telF5-EcoKI	
TP-pGL4-telF5-FSel	
IP-pGL4-CMV-terF3C-Pmer	AGTG
TP-pGL4-CMV-teIF3c-FseI	ATATAGGCCGGCCGTTAAAATCCTCCTCTACCACGTCCTCGAC
TP-pGL4-CMV-teIF3c-14-PmeI	CGCGCGTTTAAACACCATGCTGGATGAGGTCATACATCACGAT G
TP-pGL4-CMV-teIF3c-39-PmeI	AGCCAGTTTAAACACCATGACCGATGATGAGGACGCGGATG
TP-pGL4-CMV-teIF3c-172-FseI	TATATGGCCGGCCGTTACTCCTCACCCTGTCCTTCATC
TP-pGEX-teIF3c-BamHI	GCGGCGGATCCCCATGAGCAACTTTTTTGATGTC
TP-pGEX-teIF3c-1-172-EcoRI	GCCGCGAATTCCTTTACTCCTCACCCTGTCCTTC
TP-pGEX-5X3-eIF3e-BamHI	ATATAGGATCCCCATGGCGGAGTACGACTTGAC
TP-pGEX-5X3-eIF3e-Sall	ATGCCGTCGACTCAGTAGAAGCCAGAATCTTG

TP-pGL4-CMV-h3d-19-EcoRI	CTGCAGAATTCAAGATGTGTGCGGTTCCCGAGCAG
AH-h3d-FseI	ATATAGGCCGGCCTTAAGTTTCTTCCTCTTCTTCTTCCTC
AH-h3d-EcoRI	ATATAGAATTCAAGATGGCAAAGTTCATGACA
TP-pGL4-CMV-h3d-114-FseI	ACGTAGGCCGGCCTTACATGTTCCGACGATCTTTGTC
TP-pGEX-heIF3d-BamHI	ATATCGGATCCCCATGGCAAAGTTCATGACACCC
TP-pGEX-heIF3d-SalI	GCGCGGTCGACTTAAGTTTCTTCCTCTTCTTCTTCCTC
TP-pGEX-eIF3c-EcoRI	ACCGAGAATTCCATGTCGCGGTTTTTCACCACC
TP-pGEX-eIF3c-SalI	TATATGTCGACTCAGTAGGCCGTCTGAGACTG
TP-pGEX-eIF3a-SalI	ACCTAGTCGACATGCCGGCCTATTTTCAGAGG
TP-pGEX-eIF3a-NotI	ATATAGCGGCCGCTTAACGTCGTACTGTGGTCCA
TP-teIF3c-AsiSI	GCACCGCGATCGCATGAGCAACTTTTTTGATGTCAGCG
TP-teIF3c-1-172-MluI	ATATAACGCGTCTCCTCACCCTGTCCTTCATC
TP-teIF5-AsiSI	ACCGAGCGATCGCATGTCGGTTCCAATGATACCC
TP-teIF5-MluI	TCGATACGCGTTGTCGATCCTACAAGCCATTC

Supplementary Table 5. List of primers, Related to STAR Methods section.

Gene string	Sequence 5'-3'
heIF1-box-Ala-102-113	GGCGACCATCCTCCAAAATCGGATCTGATCGAAGGTCGTGGGATCCAT
	ATGTCCGCTATCCAGAACCTCCACTCTTTCGACCCCTTTGCTGATGCAA
	GTAAGGGTGATGACCTGCTTCCTGCTGGCACTGAGGATTATATCCATA
	TAAGAATTCAACAGAGAAACGGCAGGAAGACCCTTACTACTGTCCAA
	GGGATCGCTGATGATTACGATAAAAAGAAACTAGTGAAGGCGTTTAA
	GAAAAAGTTTGCCTGCAATGGTACTGTAATTGAGCATCCGGAATATGG
	AGAAGTAATTCAGCTACAGGGTGACCAACGCAAGAACATATGCCAGT
	TCCTCGTAGAGATTGGAGCAGCAGCAGCAGCAGCAGCCGCAGCCGCG
	GCAGCATAAGTCGACTCGAGCGGCCGCATCGTGACTGACT
	TGCCTCGC
pGEX-heIF3e-delta-244-	GACCATCCTCCAAAATCGGATCTGATCGAAGGTCGTGGGATCCCCATG
252	GCGGAGTACGACTTGACTACTCGCATCGCGCACTTTTTGGATCGGCAT
	CTAGTCTTTCCGCTTCTTGAATTTCTCTCTGTAAAGGAGATATATAATG
	AAAAGGAATTATTACAAGGTAAATTGGACCTTCTTAGTGATACCAACA
	TGGTAGACTTTGCTATGGATGTATACAAAAACCTTTATTCTGATGATA
	TTCCTCATGCTTTGAGAGAGAAAAGAACCACAGTGGTTGCACAACTG
	AAACAGCTTCAGGCAGAAACAGAACCAATTGTGAAGATGTTTGAAGA
	TCCAGAAACTACAAGGCAAATGCAGTCAACCAGGGATGGTAGGATGC
	TCTTTGACTACCTGGCGGACAAGCATGGTTTTAGGCAGGAATATTTAG
	ATACACTCTACAGATATGCAAAATTCCAGTACGAATGTGGGAATTACT
	CAGGAGCAGCAGAATATCTTTATTTTTTAGAGTGCTGGTTCCAGCAA
	CAGATAGAAATGCTTTAAGTTCACTCTGGGGAAAGCTGGCCTCTGAAA
	TCTTAATGCAGAATTGGGATGCAGCCATGGAAGACCTTACACGGTTAA
	AAGAGACCATAGATAATAATTCTGTGAGTTCTCCACTTCAGTCTCTTC
	AGCAGAGAACATGGCTCATTCACTGGTCTCTGTTTGTTTCTTCAATCA
	CCCCAAAGGTCGCGATAATATTATTGACCTCTTCCTTTATCAGCCACA
	ATATCTTATTCTTCGCTATTTGACTACAGCAGTCATAACAAACA
	TGTTCGAAAACGTCGGCAGGTTCTAAAAGATCTAGTTAAAGTTATTCA
	ACAGGAGTCTTACACATATAAA
pGEX-heIF3e-I246A-	GACCATCCTCCAAAATCGGATCTGATCGAAGGTCGTGGGATCCCCATG
Q247A-T248A	GCGGAGTACGACTTGACTACTCGCATCGCGCACTTTTTGGATCGGCAT
	CTAGTCTTTCCGCTTCTTGAATTTCTCTCTGTAAAGGAGATATATAATG
	AAAAGGAATTATTACAAGGTAAATTGGACCTTCTTAGTGATACCAACA
	TGGTAGACTTTGCTATGGATGTATACAAAAACCTTTATTCTGATGATA
	TTCCTCATGCTTTGAGAGAGAGAAAGAACCACAGTGGTTGCACAACTG
	AAACAGCTTCAGGCAGAAACAGAACCAATTGTGAAGATGTTTGAAGA
	TCCAGAAACTACAAGGCAAATGCAGTCAACCAGGGATGGTAGGATGC
	TCTTTGACTACCTGGCGGACAAGCATGGTTTTAGGCAGGAATATTTAG
	ATACACTCTACAGATATGCAAAATTCCAGTACGAATGTGGGAATTACT
	CAGGAGCAGCAGAATATCTTTATTTTTTAGAGTGCTGGTTCCAGCAA
	CAGATAGAAATGCTTTAAGTTCACTCTGGGGAAAGCTGGCCTCTGAAA
	TCTTAATGCAGAATTGGGATGCAGCCATGGAAGACCTTACACGGTTAA
	AAGAGACCATAGATAATAATTCTGTGAGTTCTCCACTTCAGTCTCTTC
	AGCAGAGAACATGGCTCATTCACTGGTCTCTGTTTGTTTTCTTCAATCA
	CCCCAAAGGTCGCGATAATATTATTGACCTCTTCCTTTATCAGCCACA
	ATATCTTAATGCAGCTGCGGCAATGTGTCCACACATTCTTCGCTATTTG
	ACTACAGCAGTCATAACAAACAAGGATGTTCGAAAACGTCGGCAGGT
	TCTAAAAGATCTAGTTAAAGTTATTCAACAGGAGTCTTACACATATAA
	A

pGL4-CMV-h3c-1-325-	TGGGAGGTCTATATAAGCAGAGCTCTCTGGCTAACTAGAGAACCCACT
d171-240	GCTTACTGGCTTATCGAAATTAATACGACTCACTATAGGGAGACCCAA
	GCTGGCTAGCGTTTAAACGCCATGTCGCGGTTTTTCACCACCGGTTCG
	GACAGCGAGTCCGAGTCGTCCTTGTCCGGGGAGGAGCTCGTCACCAA
	ACCTGTCGGAGGCAACTATGGCAAACAGCCATTGTTGCTGAGCGAGG
	ATGAAGAAGATACCAAGAGAGTTGTCCGCAGTGCCAAGGACAAGAGG
	TTTGAGGAGCTGACCAACCTTATCCGGACCATCCGTAATGCCATGAAG
	ATTCGTGATGTCACCAAGTGCCTGGAAGAGTTTGAGCTCCTGGGAAAA
	GCATATGGGAAGGCCAAAAGCATTGTGGACAAAGAAGGTGTCCCCCG
	GTTCTATATCCGCATCCTGGCTGACCTAGAGGACTATCTTAATGAGCT
	TTGGGAAGATAAGGAAGGGAAGAAGAAGAAGAACAAGAACAATGCC
	AAGGCTCTGAGCACCTTGCGTCAGAAGATCCGAAAATACAACCGTGA
	TTTCGAGTCCCATATCACAAGCTACAAGCAGAACCCCGAGCAGTCTGC
	GGATGAAGATGACTCAGAGGAGGAAGAAGGGAAACAAACCGCGCTG
	GCCTCAAGATTTCTTAAAAAGGCACCCACCACAGATGAGGACAAGAA
	GGCAGCCGAGAAGAAACGGGAGGACAAAGCTAAGAAGAAGCACGAC
	AGGAAATCCAAGCGCCTGGATGAGGAGGAGGAGGACAATGAAGGCG
	GGGAGTGGGAAAGGGTCCGGGGGGGGGGGGGGGGGGGGG
	GCCAAAAATGTTTGCCAAGGGAACTGAGATCACCTGAGGCCGGCC
	TTCGAGCAGACATGATAAGATACATTGATGAGTTTGGACAAACCACA
	ACTAGAATGCAGTGAAAAAAATGCTTTATTTGTGAAATTTGTGATGCT
	ATTGCTTTA
pGL4-CMV-h3d-W16A-	GGCTAGCGTTTAAACGGGCCCTCTAGACTCGAGCGGCCGCCACTGTGC
G17A-P18A	TGGATATCTGCAGAATTCAAGATGGCAAAGTTCATGACACCCGTGATC
	CAGGACAACCCCTCAGGCGCGGCTGCCTGTGCGGTTCCCGAGCAGTTT
	CGGGATATGCCCTACCAGCCGTTCAGCAAAGGAGATCGGCTAGGAAA
	GGTTGCAGACTGGACAGGAGCCACATACCAAGATAAGAGGTACACAA
	ATAAGTACTCCTCTCAGTTTGGTGGTGGAAGTCAATATGCTTATTTCC
	ATGAGGAGGATGAAAGTAGCTTCCAGCTGGTGGATACAGCGCGCACA
	CAGAAGACGGCCTACCA

Supplementary Table 6. List of gene strings, Related to STAR Methods section.