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Figure S6. The fatty acid mimetic 2CCA-1.  
(A) 2CCA-1 and (B) lauric acid (12:0) in three dimensional representations. (C) 2CCA-1, (D) lauric acid (12:0), (E) stearic acid (18:0), (F) oleic acid (18:1Δ9) and (G) linoleic acid (18:2Δ9, 12) added 
in a concentration titration to D39 grown in supplemented C+Y medium to assess the lysis inducing activity. (H) Treatment of D39 cultures in stationary phase with daptomycin (8 µg/mL) and DMSO (1 
% v/v) as solvent control in supplemented C+Y medium with Ca2+(50 µg/mL). Arrows indicate the timepoint of treatment administration. Avg +/- SD of triplicate treatment in one biological experiment 
are shown. (I) Determination of laurdan generalized polarization (GP) to record of changes in membrane fluidity upon treatment with 2CCA-1 (3 µM (1 x MlytC), 25 µM (8 x MlytC), 50 µM (16 x 
MlytC) and 100 µM (32 x MlytC)). Treatments with 1 % DMSO as solvent control and 30 mM benzyl alcohol as positive control for membrane fluidization were included. Avg +/- SD of at least biological 
triplicates (performed in at least technical duplicates) are shown (J-L) Electro mobility shift assay (EMSA) with (J) a 300 bp fragment including the fakB3 promoter and 300 bp fragments of a sequence 
derived from the GAPDH orf in which FabT binding sites of either (K) the fabT promoter or (L) the fabK promoter were included. The radioactively end-labelled probe (0.4 nM) was incubated with no 
FabT (-) and increasing concentrations of FabT (2.5 nM, 5 nM, 7.5 nM, 10 nM, 15 nM, 20 nM and 25nM). The lower panels show competition conditions for FabT binding. Increasing concentrations (4 
nM, 8 nM, 12 nM and 16 nM) of unlabeled probe as specific competitor and a 300bp GAPDH fragment with no FabT binding site as unspecific competitor were added to 25 nM FabT before the labelled 
probe (0.4 nM). The labelled probe alone (-) and the shift with 25 nM FabT (+) are shown for reference. Representative gels are shown. A band shift was observed when FabT was incubated with the 
radioactively end-labelled probe (J-L, upper panels) of the fakB3 promoter and fragments containing the FabT binding sites within the fabT and fabK promoter. However, competition experiments (J-L, 
lower panels) showed that, in contrast to FabT binding to the fabT and fabK promoter, binding to the fakB3 promoter was not specific. 


