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Supplementary Material

Results

Table S1: Goal-Directed Molecule Design

Objective Method Mean Reward Max Reward Diversity Scaff. Similarity Uniqueness

cLogP BLOCKS -1.80 ± 0.08 1.80 ± 0.32 0.94 ± 0 N/A 100% ± 0

Hill Climbing 7.14 ± 0.20 10.90 ± 0.04 0.73 ± 0.01 0.13 ± 0.01 100% ± 0
ORGAN -2.47 0.97 0.83 0.14 63%
JTVAE -1.48 ± 0.56 0.16 ± 0.14 0.54 ± 0.2 N/A 41% ± 34%
GCPN 1.03 ± 0.28 8.51 ± 0.35 0.90 ± 0 0.20 ± 0.01 100% ± 0

MolDQN 12.84 ± 0.23 18.42 ± 0.37 0.71 ± 0.01 0.72 ± 0.23 72% ± 3.6%
REACTOR 8.01 ± 0.18 10.74 ± 0.28 0.69 ± 0.01 0.20 ± 0 99.7% ± 0.5%

QED BLOCKS 0.523 ± 0.005 0.763 ± 0.009 0.94 ± 0 N/A 100% ± 0

Hill Climbing 0.811 ± 0.007 0.943 ± 0.004 0.879 ± 0.003 0.20 ± 0.023 100% ± 0
ORGAN 0.608 0.906 0.871 0.178 89.5%
JTVAE 0.604 ± 0.017 0.876 ± 0.048 0.841 ± 0.018 0.638 ± 0.046 92.8% ± 5.5%
GCPN 0.607 ± 0.012 0.916 ± 0.012 0.91 ± 0.002 0.112 ± 0.004 100% ± 0

MolDQN 0.857 ± 0.026 0.936 ± 0.004 0.791 ± 0.007 0.620 ± 0.123 67% ± 5.8%
REACTOR 0.876 ± 0.007 0.947 ± 0.001 0.878 ± 0.002 0.161 ± 0.021 100% ± 0
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Figure S1: REACTOR convergence ablation when using a masked action space
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(a) DRD2 Molecule Samples

(b) DRD2 with D1 selectivity (c) DRD2 with D3 selectivity

Figure S2: Molecule samples for the various DRD2 optimization tasks

Reward Model Details

DRD2 Reward Model

The model for the DRD2 receptor was trained using data from ExCAPE-DB,S1 with 8323

active and 343206 inactive compounds. Molecules were then sanitized and duplicate molecules

were removed. We then performed a stratified split consisting of 90% training and 10%
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test splits. 3-fold cross validation was performed over the training set in order to select a

model. We compared Random Forest, Gradient Boosting, Support Vector Machines and

Feed-Forward Neural Networks, using 2048 Morgan Fingerprints with radius 2 as molecular

featurizations. The selected model is a 200 neuron single-layer neural network, with its

classification performance on the held-out test set provided in Figure S3.
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Figure S3: Model performance on test data for the selected DRD2 model

DRD1 and DRD3 Reward Models

DRD1 and DRD3 modulators were obtained from ExCAPEDB.S1 Due to the high data

imbalance, only structurally diverse inactive (pXC50 < 5) compounds with experimentally

validated activity were retained. Each dataset was subsequently cleaned using the following

procedure:

• All molecules are sanitized and standardized.

S4



• Duplicate compounds were removed and only the largest fragment was retained for

each molecule. This resulted in a dataset of 1753 actives vs 10317 inactives for DRD1

and 3498 vs 10074 inactives for DRD3. Each dataset was split into an 80% training

and 20% test set, using a stratified split.

• The DRD1 and DRD3 activity models were trained using cross-validation (80-20) under

various splits of the training set (random split, stratified activity split, structural-

similarity based clustering split, scaffold split) and evaluated using balanced accuracy

and f1-score. We considered various featurizations and their combinations, as well as

several machine learning algorithms (Support Vector Machine, Random Forest, Gradient

Boosting, Logistic Regression and a Multi-Layer Perceptron). The hyper-parameters,

including molecular featurization, resulting in the best performances were selected for

each algorithm, and the best performing model on the held out test set was retained.

For both datasets, the best model according to the F1-score/ROC-AUC/Balanced Accuracy

was a Gradient Boosting Classifier.

Caco-2 Reward Model

Data for the Caco-2 cell permeability assay was obtained from Wang et al., with a measure-

ment unit of log(10−6)cm/s. Model selection was performed using a 6-fold stratified split.

Algorithms compared at this stage were Random Forest, Kernel Ridge, and Gaussian Process

regression algorithms, with model selection additionally performed over various Fingerprint

featurizations. The final model is a Kernel Ridge Regression model with a Laplacian kernel,

with 512-bit Estate Fingerprints.
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