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SUMMARY
Nascent RNA sequencing has revealed that pre-mRNA splicing can occur shortly after introns emerge from
RNA polymerase II (RNA Pol II). Differences in co-transcriptional splicing profiles suggest regulation by cis-
and/or trans-acting factors. Here, we use single-molecule intron tracking (SMIT) to identify a cohort of reg-
ulators by machine learning in budding yeast. Of these, Nab2 displays reduced co-transcriptional splicing
when depleted. Unexpectedly, these splicing defects are attributable to aberrant ‘‘intrusive’’ transcriptional
readthrough from upstream genes, as revealed by long-read sequencing. Transcripts that originate from the
intron-containing gene’s own transcription start site (TSS) are efficiently spliced, indicating no direct role of
Nab2 in splicing per se. This work highlights the coupling between transcription, splicing, and 30 end forma-
tion in the context of gene organization along chromosomes. We conclude that Nab2 is required for proper 30

end processing, which ensures gene-specific control of co-transcriptional RNA processing.
INTRODUCTION

When protein-coding genes are transcribed byRNA polymerase II

(RNA Pol II), the nascent RNA undergoes 50 end capping, splicing

within the transcript body, and 30 end cleavage before a mature

mRNA can be exported to the cytoplasm for translation. The ma-

jority of these processing events are co-transcriptional and closely

coordinated with transcription and chromatin regulation (Alpert

et al., 2017; Saldi et al., 2016; Tellier et al., 2020). For example,

cleavage at the 30 end initiates transcription termination. Intron-

exon architecture has a dramatic effect on the position of RNA

Pol II, general transcription factors, and active chromatin marks

such as H3K4me3 along the lengths of genes (Bieberstein et al.,

2012). Because of these findings, it is currently thought that coor-

dination of the transcription and chromatin landscape with RNA

processing steps is critical for execution of gene expression pro-

grams (Herzel et al., 2017; Moore and Proudfoot, 2009).

Previous work by our lab has identified coordination between

co-transcriptional splicing and 30 end cleavage in Schizosac-

charomyces pombe (Herzel et al., 2018). This discovery was

facilitated by long-read sequencing of nascent RNA, where

entire nascent transcripts are sequenced from the 50 end

(defined by the transcription start site [TSS]) to the 30 end

(defined as the position of RNA Pol II at the time of isolation).

This method identified a preponderance of ‘‘all or none’’ co-tran-

scriptional splicing, where nascent transcripts had all introns

spliced and displayed efficient 30 end formation or, alternatively,

had no introns spliced and displayed readthrough transcription

(Herzel et al., 2018). These findings suggest functional coupling
This is an open access article under the CC BY-N
between splicing (or retention) of multiple introns and 30 end
cleavage in vivo.

Previous work has indicated that cleavage and polyadenyla-

tion (poly(A)) factors help define the terminal exon so that impair-

ment of 30 end cleavage inhibits splicing (Cooke et al., 1999;

Fong and Bentley, 2001; Niwa and Berget, 1991; Rigo and Mar-

tinson, 2008). Conversely, mutations in the 30 splice site (SS) of

the last intron in pre-mRNA can inhibit splicing and poly(A) cleav-

age (Cooke et al., 1999; Davidson andWest, 2013; Martins et al.,

2011). However, these correlations between splicing and 30 end
cleavage are based on experiments that disrupt these processes

and monitor populations of RNA molecules, most often in vitro.

Thus, the existing evidence leaves open the question of whether

coordination between splicing and poly(A) cleavage occurs in

unperturbed cells and/or has a widespread role in normal gene

regulation. Moreover, a mechanistic understanding of how

splicing and cleavage are coordinated is lacking.

We set out to comprehensively determine which factors in

budding yeast provide channels of communication between

splicing, transcription, and other RNA processing events. To do

so, we took advantage of the co-transcriptional splicing kinetic

measurements from our previously published single-molecule

intron tracking (SMIT) approach (Oesterreich et al., 2016). These

data revealed an intriguingly high level of gene-specific variability

in co-transcriptional splicing, which we leveraged to identify reg-

ulatory factors. A machine learning model was trained to predict

splicing kinetic parameters using gene-to-gene variation in pub-

licly available cross-linking immunoprecipitation (CLIP) and chro-

matin immunoprecipitation (ChIP) datasets as well as gene
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Figure 1. Machine Learning Predicts cis- and

trans-Acting Factors Associated with Co-

transcriptional Splicing

(A) Observed and predicted saturation values are

correlated with the variance explained (R2) as indi-

cated for training (gray) and holdout (black) data.

(B) Feature groups used in the model are plotted

according to their regression coefficient (b) and

colored according to their cellular process (legend in

C). Yellow indicates a feature group with mixed pro-

cesses.

(C) Feature groups (gray box) are displayed above or

below (positive or negative regression coefficient,

respectively) the geneannotation (black) according to

the genetic position where those features were iden-

tified as significant. Regression coefficient values

(gray) are indicated to the right of the feature group.

(D) Normalized PAR-CLIP signals for Nab2 are

aligned to 50 SSs, 30 SSs, and poly(A) sites (PASs) of

all intron-containing genes in budding yeast (data

from Baejen et al., 2014).
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sequence and architecture. This unbiased approach led us to

further investigate candidate regulators. The SMIT data collected

in this study reveal the resilience of co-transcriptional splicing of

somegenesandheightened sensitivity of others to apanel of per-

turbations. In addition, long-read sequencing allowed us to iden-

tify readthrough transcription as the major defect caused by

depletion of the essential protein Nab2, which has been impli-

cated previously in nuclear export and splicing (Leung et al.,

2009; Schmid et al., 2015; Soucek et al., 2016; Tudeket al., 2018).

RESULTS

SMIT analyses of �40% of intron-containing genes in budding

yeast revealed that co-transcriptional splicing profiles are
2 Cell Reports 33, 108324, October 27, 2020
highly variable from gene to gene (Oester-

reich et al., 2016). These profiles were

defined by two key parameters that

describe co-transcriptional splicing ki-

netics: saturation value (the mean fraction

spliced near the end of the gene) and 1/2

max value (the RNA Pol II position where

half of the saturation value is reached)

(Figure S1A; STAR Methods). To obtain

mechanistic insights into gene-specific

variation, we trained a machine learning

model to predict saturation (Figure 1A)

and 1/2 max (Figures S1E and S1F) as fol-

lows. Each gene was characterized by 14

genetic and 398 epigenetic features

derived from the budding yeast genome

and publicly available genome-wide ex-

periments (e.g., ChIP and CLIP), associ-

ating each measured parameter with

gene positions, such as 50 and 30 SSs. Hi-
erarchical clustering of the features pro-

duced 100 feature groups that had similar

functions and positions along the gene
(Table S1; Figures S1B–S1D). For example, U1, U2, and U5

small nuclear ribonucleoprotein particle (snRNP) proteins

were all prominently detected at 30 SSs by ChIP (Görnemann

et al., 2005; Kotovic et al., 2003; Lacadie and Rosbash, 2005;

Lacadie et al., 2006; Tardiff and Rosbash, 2006); as expected,

high U1, U2, and U5 snRNP ChIP signals at 30 SSs comprise

one of the 100 feature groups identified by clustering. We

then determined the relative importance of each feature group

for the model’s prediction strength (Figure 1B; Table S2).

A Lasso regression model (Tibshirani, 1994) trained on 80% of

the data was able to predict the remaining 20% of saturation

values (Figure 1A). The model selected 21 non-genetic factors

along with eight genetic features (Table S2) that contribute

to prediction performance. Thirteen feature groups were
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associated positively with co-transcriptional splicing, and eight

were associated negatively (Figures 1B and 1C). Several identi-

fied feature groups agreed with previous reports; for example,

Npl3 and Gbp2, which have been implicated in transcription,

splicing, 30 end formation, mRNA export, and translation (Hack-

mann et al., 2014; Kress et al., 2008; Windgassen et al., 2004).

The alternative histone, H2A.Z, is normally enriched at active

promoters and promotes splicing of weak SSs (Neves et al.,

2017; Nissen et al., 2017); our model utilized elevated H2A.Z

ChIP signals at the poly(A) cleavage site (PAS) as a strong nega-

tive predictor of co-transcriptional splicing (b = �0.68) .

The presence of a conserved poly(A) binding protein, Nab2, at

50 and 30 SSs was the strongest positively correlated feature in

our model (b = 0.26) (Figure 1C). Alignment of the Nab2 PAR-

CLIP (photoactivatable-ribonucleoside-enhanced crosslinking

and immunoprecipitation) signal (Baejen et al., 2014) to the rele-

vant gene landmarks revealed enrichment of binding along the

intron and downstream of the PAS (Figure 1D), suggesting a po-

tential role in nascent RNA processing in addition to Nab2’s ca-

nonical poly(A) tail binding activity. Indeed, Nab2 truncation mu-

tants have been shown to display subtle splicing defects

(Soucek et al., 2016). Note that the model identified Nab2 (and

H2A.Z, see above) at unusual positions along genes that do

not agree with their canonical functions of poly(A) binding and

promoter definition, respectively. This can be attributed to the

model’s reliance on heterogeneity to identify patterns that corre-

late with co-transcriptional splicing levels. A signal that is nearly

ubiquitous across all intron-containing geneswould not be incor-

porated into the model.

We set out to determine whether we could experimentally

identify specific defects in co-transcriptional splicing kinetics

associated with depletion of these factors. To perform SMIT on

a genome-scale cohort of endogenous genes in the context of

factor perturbation, fresh genomic deletion strains were derived

for every non-essential factor identified by machine learning

(rtt103D, gbp2D, pub1D, npl3D, tho2D, and htz1D [H2A.Z]). In

addition, the top hit positively associated with co-transcriptional

splicing, the essential protein Nab2, was depleted from the nu-

cleus using a Nab2 Anchor-Away strain (Nab2-AA) (Haruki

et al., 2008; Schmid et al., 2015). The SMIT protocol was opti-

mized extensively to improve reproducibility and reduce the

length and number of independent steps in the protocol (Figures

S1G–S1K). Endogenous heterogeneity among co-transcrip-

tional splicing profiles is what enabled our study; therefore, we

expected heterogeneous gene-specific changes in response to

different perturbations. For some deletions, we were surprised

to observe that nearly all co-transcriptional splicing profiles

were indistinguishable from the wild type (WT) (Figure S2), indi-

cating that levels of co-transcriptional splicing were robustly

maintained when diverse nuclear pathways were perturbed.

The lack of effect on co-transcriptional splicing in the npl3D

mutant was unexpected, given the previously observed changes

in steady-state splicing levels (Kress et al., 2008); in this case, we

speculate that post-transcriptional effects of npl3 deletion, such

asRNA stability and/ormRNA export changes, could account for

differences in the prevalence of introns.

Depletion of Nab2 had the most substantial effect on co-tran-

scriptional splicing profiles. We performed SMIT at 0, 10, and
30 min of rapamycin treatment to trigger cytoplasmic sequestra-

tion of Nab2-AA; an isogenic control strain expressed endoge-

nous, untagged Nab2 (Control-AA). Nab2 depletion altered the

fraction co-transcriptionally spliced for most genes. Examples

in Figure S3A show the full range of gene-specific responses

to Nab2 depletion, including instances of reduced splicing,

improved splicing, and unchanged splicing. The Euclidean dis-

tances of the 10- and 30-min-treated samples from the 0-min

sample were used to quantify the difference between SMIT

splicing profiles (DSMIT). The distribution of DSMIT values

for Nab2-AA showed a significant change in splicing compared

with Control-AA at 10 min (p = 4.28e�05) and 30 min

(p = 0.0357) (Mann-WhitneyU test) (Figure 2B). Therewas no sig-

nificant difference between the 10- and 30-min control samples

(p = 0.4517). The observed changes in fraction spliced upon

Nab2-depletion were validated by RT-PCR (Figure 2C; Fig-

ure S3B). These data suggest that Nab2 is required for proper

co-transcriptional splicing of some but not all of the 53 yeast in-

trons analyzed by SMIT.

The mechanistic role of Nab2 in splicing regulation is un-

known. To independently determine the effects of Nab2 deple-

tion on co-transcriptional processing, we performed long-read

sequencing of nascent RNA in the Nab2-AA and Control-AA

strains after 10 min of rapamycin treatment, when splicing

disruption was already determined to be significant by SMIT

(Figure 2B). To capture full-length molecules, strand-switching

reverse transcription was used to add common sequences to

50 and 30 ends of nascent RNA. Global amplification of the result-

ing cDNA was followed by blunt ligation of Nanopore barcode

adapters, size selection, and sequencing on a minION flow cell

(Figure S4A). Approximately 7 million base-called reads

(12.7 Gb) were generated.

Unexpectedly, long-read sequencing revealed a role for Nab2

in 30 end cleavage of nascent RNA instead of a role in splicing.

Specifically, depletion of Nab2 led to a disruption in cleavage

and termination, resulting in transcriptional readthrough and

chimeric reads. Readthrough transcripts that extend past the

PAS were occasionally observed under control conditions and

were disproportionately unspliced, suggesting that crosstalk be-

tween co-transcriptional splicing and 30 end formation occurs in

WT budding yeast (Figure 3A, teal). This coupling between co-

transcriptional splicing and cleavage in S. cerevisiae has also

been observed previously in WT S. pombe (Herzel et al., 2018).

Upon Nab2 depletion, a slight decrease in splicing (Figure S4B)

and a large increase in readthrough transcription were observed

(Figures 3A and 3B; Figures S4C and S4D). Increased read-

through was observed for spliced and unspliced transcripts (Fig-

ure 3A, orange). After filtering for reads that begin near the anno-

tated TSS, the gene-specific fraction spliced was highly

correlated between Control-AA and Nab2-AA (Figure 3C; R2 =

0.85). Deviation from the linear fit (Figure 3C, gray) was within

the range seen between replicates (Figure S4E) and was likely

due to stochastic noise in lowly expressed genes that were

spliced inefficiently. We conclude that Nab2 depletion leads to

no change in splicing when transcription of the intron is initiated

at that gene’s TSS.

Further analysis identified a set of transcripts that initiates in

upstream genes and fails to cleave at the 30 end, reading through
Cell Reports 33, 108324, October 27, 2020 3
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Figure 2. Nab2 Depletion Variably Affects

Co-transcriptional Splicing Profiles

(A) Co-transcriptional splicing profiles for Control-

AA (left) and Nab2-AA (right) for three genes that

exemplify the range of variation seen. Data from 0,

10, and 30 min of rapamycin treatment are modeled

together (top legend) using a Loess smoothing

method (solid line) with a 95% confidence interval.

DSMIT values, indicated at the top left of each

profile, are calculated as the Euclidean distance

between the 0 and 10 min samples for the first

300 bp (bins = 60 bp). The PAS is indicated by a

vertical dashed line, if the data extend to the end of

the gene.

(B) Distribution of DSMIT values from the 0-min

time point for all samples with significance (Mann-

Whitney U test) as follows: *p % 0.05, **p % 0.01,

***p % 0.001, ****p % 0.0001.

(C) RT-PCR validation of splicing changes for two

pre-mRNAs from (A). Random hexamers were used

to reverse-transcribe nascent RNA, and intron-

spanning primers amplify unspliced (top) and

spliced (bottom) bands.
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into the intron-containing genes of interest, as exemplified in Fig-

ure 4A (and Figure S5), which again depicts YPL079W, this time

with all overlapping reads beginning no more than 100 bp down-

stream of the TSS. We classified these reads which initiate in up-

stream genes as ‘‘intrusive transcripts.’’ Although readthrough

transcripts and intrusive transcripts are generated by the same

phenomenon (failure to cleave), their relation to the intron-con-

taining gene differentiates them. Whether the failed cleavage
4 Cell Reports 33, 108324, October 27, 2020
event occurs before or after transcription

of the intron affects splicing efficiency (Fig-

ures 4B–4D). We quantified the reads from

Figure 4A in a table (Figure 4B) that shows

that intrusive and readthrough reads are

primarily unspliced. Across the entire

genome, readthrough transcripts were

frequently unspliced (only 33% and 31%

of Control-AA and Nab2-AA reads were

spliced, respectively), and the fraction of

spliced reads classified as intrusive was

reduced further (18% and 10%; Figure 4C,

left panel). The levels of readthrough and

intrusive transcripts doubled during Nab2

depletion (1.93 and 2.13, respectively;

Figure 4C, right panel), indicating that

increased readthrough was responsible

for the global splicing deficit observed in

this study by SMIT as well as in other

studies (Soucek et al., 2016).

To address whether Nab2’s role was

general or gene specific, we determined

the fraction spliced of all reads aligned to

a given gene or intrusive reads only (Fig-

ure 4D; Figure S6A). The majority of genes

exhibited lower levels of splicing for intru-

sive reads, revealing a general trend with
occasional outliers. Additionally, we determined how changes

in levels of intrusive reads relate to changes in fraction spliced

and found that the most populated quadrant was the bottom

right, with a positive change in intrusive transcripts and negative

change in splicing (Figure S6B). Some heterogeneity in the de-

gree of intrusive transcript induction and the splicing efficiency

of intrusive transcripts was apparent, and it remains unclear

why certain genes may not require Nab2 for 30 end cleavage.
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Figure 3. Long-Read Sequencing Reveals

Transcriptional Readthrough upon Nab2

Depletion

(A) Nanopore sequencing reads were sorted by 30

end position for YPL079W (gray) for Control-AA

(teal) and Nab2-AA (orange) samples. Reads were

filtered for overlap with the intron-containing gene

and must start no more than 100 bp downstream of

the annotated TSS. Unspliced reads are displayed

as a solid line in a darker color, and spliced reads are

shown in a lighter color, with a thin line representing

missing sequence information. All reads shown

arise from the Watson strand. Read count and

fraction spliced (percent) are shown.

(B) Coverage of reads downstream of the PAS was

normalized to the signal at the PAS.

(C) The fraction spliced per gene is calculated for

long reads that start within 50 bp of the annotated

TSS and is plotted for Control-AA and Nab2-AA.

The adjusted R2 value is displayed for the linear

regression fit (gray line) and 95%confidence interval

(gray ribbon).

Data from two biological replicates were first

analyzed separately and then combined for display

upon qualitative agreement between replicates.
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No significant linear trend was observed between induction of

readthrough or intrusive transcripts and gene expression (Fig-

ures S6C and S6D), although outlying genes with high levels of

readthrough and intrusive transcripts were all lowly expressed.

Ribosomal protein genes (RPGs) make up a large fraction

(32%) of intron-containing genes in yeast and often exhibit differ-

ential splicing and expression levels (Ares et al., 1999; Clark

et al., 2002; Pleiss et al., 2007). We found no difference in the in-

duction of readthrough or intrusive transcripts when comparing

RPGs with non-RPGs (Figures S6E and S6F). Genes that were

most sensitive to Nab2 depletion (Figure S6G) were more likely

to contain a non-consensus 50 SS (Figure S6I), suggesting that

SS strength contributes to intron recognition and removal from

intrusive transcripts. We conclude that Nab2 has an important

role in 30 end formation and that decreased splicing is a second-

ary effect of transcriptional readthrough.

DISCUSSION

Although pre-mRNA splicing is a standard step in the biogenesis

of eukaryoticmRNAs, the progress of that reaction is surprisingly

variable from gene to gene. Previous work in other laboratories

has contributed to our understanding of the factors that control

overall splicing levels in total or mRNA (Clark et al., 2002; Pleiss

et al., 2007). Here we discovered that readthrough transcription,

which results from failure of 30 end cleavage and leads to RNA

Pol II transcription into the next gene (Irniger et al., 1991), re-

presses splicing of downstream introns. If factors that affect

the efficiency of 30 end cleavage are perturbed, then classic

RNA analysis methods (RNA sequencing [RNA-seq], RT-PCR,
C

northern blotting, etc.) may detect a

splicing phenotype and suggest that the

factor directly affects splicing. We show,
using long-read sequencing, that splicing inhibition can instead

be a secondary effect of readthrough. We applied an additional

single-molecule RNA-seq strategy (SMIT) to generate gene-spe-

cific co-transcriptional splicing profiles on a global scale and

tested perturbations of genes identified by machine learning as

potential regulators. Nab2, the yeast homolog of ZC3H14 asso-

ciated with intellectual disability in flies and humans (Pak et al.,

2011), emerged as an important candidate. As predicted by

our algorithm, rapid (10–30 min) Nab2 depletion led to a reduc-

tion of co-transcriptional splicing in some but not all genes. Anal-

ysis by long-read sequencing of nascent RNA revealed that the

predominant co-transcriptional role of Nab2 is in 30 end cleav-

age. The demonstration that co-transcriptional splicing defects

are a consequence of readthrough transcription highlights the

importance of proper 30 end cleavage for maintaining gene-

autonomous transcription and splicing independent of genome

architecture, which can place neighboring genes dangerously

close together. Below we discuss this unexpected activity of

Nab2 in the context of coordinated transcription and RNA

processing.

Nab2 is an essential, predominantly nuclear protein that has

been implicated in multiple steps of mRNA expression. Initially

identified as an mRNA export factor (Green et al., 2002), Nab2

is known to interact with proteins that associate with nuclear

pores (Aibara et al., 2017; Soucek et al., 2016). Nab2’s role in

export and stability are likely related to its role in binding to

poly(A) tails (Batisse et al., 2009; Tuck and Tollervey, 2013; Vi-

phakone et al., 2008). Nab2 depletion leads to global loss of

poly(A)+ mRNA irrespective of whether the gene contains an

intron; this effect was attributable to the nuclear exosome,
ell Reports 33, 108324, October 27, 2020 5
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Figure 4. Intrusive Transcripts Generated

by Transcriptional Readthrough Are Poorly

Spliced

(A) Nanopore reads aligned to YPL079W (gray)

were filtered to start no more than 100 bp down-

stream of the TSS. Intrusive reads that began

more than 100 bp upstream of the TSS are dis-

played separately above reads that began near

the TSS. Reads that do not span the entire intron

of YPL079W are colored gray and were not

included in spliced/unspliced values in (B). Reads

are colored a darker shade of teal (Control-AA) or

orange (Nab2-AA) when the YPL079W intron is

unspliced. All reads shown arise from the Watson

strand.

(B) Read counts (n =) are displayed for each

category diagrammed in (C). The number of

spliced and unspliced reads is also indicated

alongside the fraction spliced (percent).

(C) Top: gene diagram (black) showing how

example reads (gray) are classified according to

readthrough status relative to the intron-contain-

ing gene. Left: colored bar plots showing the

fraction of reads that are spliced or unspliced in

each readthrough category. Right: grayscale bar

plots showing the fraction of reads for each da-

taset that belong to the three readthrough cate-

gories (see legend).

(D) The fraction spliced is calculated for each gene

using all reads or only intrusive reads and plotted

for each condition. Values arising from less than

10 reads were removed. Reads that begin more

than 50 bp upstream of the annotated TSS are

defined as intrusive. The dashed line (gray) is y = x,

and the black line is a linear regression model fit to

the data with a 95% confidence interval. R2 for the

model is displayed on each plot (p < 2.2 3 10�16

for both).

Data from two biological replicates were com-

bined after confirming agreement between repli-

cates for each parameter.
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indicating that RNA binding by Nab2 or its role in export prevents

the observed mRNA decay (Schmid et al., 2015; Tudek et al.,

2018). Nab2 is thought to bind poly(A) tails; however, its RNA

binding preference is not limited to poly(A) because various an-

alyses have shown a preference for a run of As followed by G

in addition to tolerance for other nucleotides (Kim Guisbert

et al., 2005; Riordan et al., 2011). Indeed, CLIP experiments in

yeast revealed that Nab2 binds throughout the body of the tran-

script and that binding is especially high at 30 ends near the PAS

(Baejen et al., 2014). Moreover, a previous study showed

elevated nascent RNA density downstream of PASs upon

Nab2 depletion, suggesting effects on termination (Tudek

et al., 2018); dependency of HFF1 pre-mRNA 30 end cleavage

on Nab2 is consistent with our findings. Our long-read

sequencing data and analysis support our speculation that

Nab2 binding near PASs could have a widespread role in stimu-

lating 30 end cleavage, preventing transcriptional readthrough

and formation of unspliced chimeric transcripts.

Although we ultimately found that Nab2’s role in splicing was

related to intrusive transcription from upstream genes, other in-

teractions predicted in our model (Figure 1C) could be gene

autonomous. Cleavage and poly(A) factors are known to

contribute to exon definition of terminal exons in metazoans

(Fong and Bentley, 2001; Li et al., 2001; Niwa and Berget,

1991; Rigo and Martinson, 2008). For example, Pcf11 is one of

few cleavage factors bound to RNA Pol II through the C-terminal

domain (CTD) along the entire gene body (Baejen et al., 2017; Li-

catalosi et al., 2002), and its presence near 30 SSs has been pre-

dicted to contribute positively to splicing. Other poly(A) cleavage

factors, like Rna15 and Yth1, were associated negatively. These

factors remain to be further investigated.

Our study demonstrates the power of long-read sequencing for

identifying coordinated transcription and RNA processing events.

Here chimeric readthrough transcripts create intron-containing

pre-mRNAs with first exons that are many thousands of nucleo-

tides long. This is unusual because the first exon in all species is

usually extremely short (<200 nt). This length distribution influ-

ences chromatin architecture and RNA Pol II in human cells (Bie-

berstein et al., 2012). An obvious suggestion is that pre-mRNA

substrates with very long first exons are spliced inefficiently; we

speculate that the nuclear cap-binding complex at the transcript’s

50 end, which typically promotes splicing (Carrocci and Neugeba-

uer, 2019),may be too far away from the intron to perform this role.

Indeed, cap-dependent splicing is inhibited when first exons are

lengthened (Lewis et al., 1996). Alternatively, the very long first

exon could be too highly packagedwith proteins and/or RNA sec-

ondary structure to allow SS recognition and splicing so far down-

stream. Intriguingly, we observed intrusive reads that are spliced

at an upstreamannotated intron but fail to splice at the second an-

notated intron they encounter (Figure 4A), indicating that these

reads are splicing competent and that failure to splice is specific

to the intron with a long first exon.

Broadly speaking, long-read sequencing is likely to transform

how we analyze and draw conclusions about the effects of mu-

tations that affect transcription and RNA processing in cells. This

work clearly illustrates an example where the actual substrates

of the splicing reaction are not those inferred by short-read

sequencing. This is also clear from the demonstration by long-
read sequencing of coordinated splicing among introns in the

same transcript (Drexler et al., 2020; Herzel et al., 2018; Tilgner

et al., 2018). Furthermore, the correlation between intron reten-

tion and transcriptional readthrough was first observed in

S. pombe using long-read sequencing (Herzel et al., 2018); the

data presented here in WT budding yeast show that this relation-

ship is evolutionarily conserved. Many studies from yeast to hu-

mans have perturbed the abundance of regulatory factors and

used short-read RNA-seq to quantify the abundance of RNA iso-

forms. This study reveals that the mechanisms underlying those

results may be less straightforward than initially assumed. For

example, an RNA-seq approach using fragmentation would

observe a large increase in intron retention for YPL079Wwithout

revealing that these transcripts originate from the upstream gene

(Figure 4A). Finally, our findings underscore the importance of 30

end formation and transcription termination in ensuring the inde-

pendent expression of genes. In renal clear cell carcinoma cells,

transcriptional readthrough generates aberrant exons, resulting

in giant fusion transcripts originating from neighboring genes

(Grosso et al., 2015). A high proportion of human diseases are

associated with mutations in trans-acting splicing factors or

cis-acting splicing-regulatory elements in genes (Manning and

Cooper, 2017), making it important to further investigate the

mechanisms underlying splicing changes as well as the down-

stream consequences of splicing inhibition.
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Chemicals, Peptides, and Recombinant Proteins

Rapamycin Calbiochem 553211

G418 Thermofisher 11811023

Phusion High-Fidelity DNA Polymerase NEB M0530S

Advantage 2 PCR kit Clontech 639201

SuperScript III Reverse Transcriptase Invitrogen 18080051

SMARTer PCR cDNA synthesis kit Clontech 634925

Random Hexamer Primers ThermoFisher SO142

Terminator 50-Phosphate-dependent Exonuclease Lucigen TER51020

T4 RNA ligase II (truncated K227Q) NEB M0351

TurboDNase Invitrogen AM2238

Blunt TA/Ligase Master Mix NEB M0367

NEBNext Ultra II repair/dA-tailing module NEB E7546

Critical Commercial Assays

AMPure XP beads Agencourt A63880

Zirconia beads Biosepc 11079110

Dynabeads mRNA DIRIECT Micro Purification Kit ThermoFisher 61021

RNA Clean & Concentrator kit Zymo Research R1017

MinElute PCR purification kit QIAGEN 28004

PCR barcoding kit Oxford Nanopore Technologies SQK-PBK004

Deposited Data

Raw image data This study, Mendeley data http://dx.doi.org/10.17632/dddf2vhjyg.1

Raw and processed SMIT data This study GSE156133

Raw and processed nanopore data This study GSE156133

Nab2 PAR-CLIP data Baejen et al., 2014 GSM1442550

SMIT data Oesterreich et al., 2016 GSE70907

Machine learning features, see Table S3 N/A N/A

Experimental Models: Organisms/Strains

Nab2-AA and Control-AA Schmid et al., 2015 N/A

S. cerevisiae: Strain background: BY4741 N/A

S. cerevisiae: ORF deletions Saccharomyces Genome

Deletion Project

N/A

Oligonucleotides

Primers for cloning deletion strains, see Table S4 This study N/A

Primers for SMIT library amplification, see Table S4 This study N/A

Nascent RNA 30 end adaptor Oesterreich et al., 2016 N/A

Primers for RT-PCR validation of Nab2

SMIT, see Table S4

This study N/A

Software and Algorithms

R version 3.6.1 R foundation for Statistical

Computing

https://www.r-project.org/ ; RRID: SCR_001905

Prinseq-lite Schmieder and Edwards, 2011 http://prinseq.sourceforge.net/

Cutadapt Martin, 2011 https://cutadapt.readthedocs.io/en/stable/

Hisat2 (Kim et al., 2019) https://github.com/DaehwanKimLab/hisat2
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Bedtools Quinlan and Hall, 2010 https://bedtools.readthedocs.io/en/latest/

Samtools (Li et al., 2009) http://samtools.sourceforge.net/

Qcat Oxford Nanopore Technologies https://github.com/nanoporetech/qcat

Guppy (v3.3.0) Oxford Nanopore Technologies N/A

Minimap2 Li, 2018 https://github.com/lh3/minimap2

Fastx Toolkit N/A http://hannonlab.cshl.edu/fastx_toolkit/

Ggplot2 https://ggplot2.tidyverse.org/ RRID:SCR_014601

R stats N/A https://www.rdocumentation.org/packages/

stats/versions/3.6.2

DescTools N/A https://www.rdocumentation.org/packages/

DescTools/versions/0.99.37

Caret Kuhn, 2008 http://caret.r-forge.r-project.org/

Plyr N/A https://www.rdocumentation.org/packages/

plyr/versions/1.8.6

Reshape2 N/A https://www.rdocumentation.org/packages/

reshape2/versions/1.4.4

IGV Robinson et al., 2011 RRID:SCR_011793

Other

MinION Flow Cell Oxford Nanopore Technologies FLO-MIN106
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Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Karla

Neugebauer (karla.neugebauer@yale.edu), Department of Molecular Biophysics and Biochemistry, Yale University, New Haven

CT 06520.

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
SMIT processing code is available on GitHub: https://github.com/carrillo/SMITproject. All other code including machine learning

modeling is available at https://github.com/NeugebauerLab/Alpert2020_Nab2. The accession number for the SMIT and long-read

sequencing data reported in this paper is GEO:GSE156133. Original data have been deposited to to Mendeley Data: http://dx.

doi.org/10.17632/dddf2vhjyg.1.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Yeast strains and treatment
For a list of all strains please refer to Table S5. Yeast cells were grown in YPAD medium at 30�C and shaking at 200 rpm. For SMIT

experiments, 50 mL cultures were grown overnight to an OD600 = 0.6-0.8 (logarithmic growth phase). Cells were pelleted at 1100x g

for 5 minutes at 4�C. Pellets were washed once with ice-cold 1x PBS and then transferred to an eppendorf tube for a second wash

before being snap frozen in liquid nitrogen and stored at�80�C. For Nab2-AA and Control-AA strains (obtained from Torben Jensen;

Schmid et al., 2015), rapamycin (Calbiochem) was added at 1 mg/ml final concentration to exponentially growing cells for 10 and

30 minutes of incubation. The same concentration of rapamycin was added to 1x PBS for all washing steps until cells were snap

frozen.

METHOD DETAILS

Feature engineering and machine learning
To identify features correlating with saturation values of co-transcriptional splicing and kineticmeasurements, we characterized each

gene by 412 features (Table S1). These can be broadly divided into genetic and epigenetic features. We define genetic features as
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features, which can be derived directly from the genome sequence and its annotation. These features include splice sequence

strength encoded by its Levenshtein distance to the consensus of 50 SS, branch point sequence (BPS), 30 SS, as well as character-

istics of exons and introns. Genetic features were derived from annotation files using custom software (https://github.com/

NeugebauerLab/Alpert2020_Nab2). We define epigenetic features as features, which cannot be directly inferred from the genome

annotation. These features include genome-wide abundance levels of RNA and DNA binding factors as well as profiles of nucleo-

some organization. These abundance profiles were derived from publicly available datasets (Table S3). Datasets include CLIP,

ChIP and MNase digestion experiments analyzed by deep sequencing or microarrays. For microarray data analysis, probe positions

were converted from sacCer2 to sacCer3 with the liftOver tool (Hinrichs et al., 2006) and the data were converted into genome

coverage tracks (pileup-format) with custom scripts. For deep sequencing analysis reads weremapped to the genome using tophat2

and genome-wide profiles generated using samtools (Li et al., 2009). To represent differential factor abundance over gene regions,

we characterize each factor at three well-defined regions per gene: the 50 SS, 30 SS and PAS. The mean abundance in windows both

50 nt up- and downstream were determined for each factor. Thus, each gene was characterized by 6 position specific mean abun-

dance values per factor. Engineering for epigenetic features was performed by custom software (https://github.com/

NeugebauerLab/Alpert2020_Nab2).

Clustering of Features
Many featureswere highly correlated: uniform factor abundance across geneswill lead to highly correlated feature values for different

gene positions of the same factor. Alternatively, factors acting in the same complex or biological process may follow similar gene

profiles, thereby leading to a correlation between factors. This correlation represents redundancy in the data, which can lead to un-

desired effects for machine learning. We therefore reduced dimensionality of the data by grouping correlated features and represent

these feature-groups by a single representative meta-feature. Hierarchical clustering of all features was performed, using squared

Pearson-correlation as a similarity measurement, to identify groups of correlated features. The hierarchical cluster can be repre-

sented by a dendrogram. Cutting the dendrogram at different heights divides the input data into a defined number of clusters or

feature groups. This can be understood as compression of the data. A cluster-count of 412 represents uncompressed data, whereas

a cluster-count of 1 would represent maximal compressing, by averaging over all dimensions (features). How can we find a feature

group count which reduces correlation, but does not lose too much information due to compression? Such a set of input features is

expected to lead to a good prediction performance inmachine learning.We trained lasso regressionmodels (see below) on iteratively

compressed input data, represented by decreasing cluster count. For each iteration we determined the predictive performance of the

compressed features by cross-validation. We further hypothesize that correlation clustering should reflect functional clustering.

Functional clustering includes the identification of correlated gene position of one factor and correlated gene position values between

factors of the same biological function (see above). Tomeasure functional clustering each feature was characterized by gene position

(50 SS, 30 SS, PAS). We determined howmany features in each cluster belong to each position class and quantified the extent of mix-

ing by calculating the Shannon entropy of the position-frequency distribution for each cluster. Separation of positions reducesmixing

and thus the Shannon entropy. A perfect separation of positions between clusters would lead to a value of 0. For all cluster counts (1

to 412) we determined themean Shannon entropy over all clusters. Analogous analysis was performed for i) experiment type, ii) factor

identity and iii) function.

Machine learning – Lasso regression
Machine learning was used to train combinations of features and their relative contribution to optimally predict a target value (i.e., co-

transcriptional splicing saturation and RNA Pol II position at 50% of the saturation level). Saturation values were defined as the mean

fraction spliced of the four bins (30 bp each) immediately preceding the PAS. For genes where data does not extend to this region, the

terminal four bins were used. Only bins with R 10 reads were considered. Features are numerical or categorical characteristics of

genes or feature groups (see clustering of features). While other machine learning models, like neural networks performed slightly

better (data not shown), we used a regularized linear regression model due to its interpretability regarding i) importance and ii) direc-

tion of correlation. We divided the available data over all genes into training data (80%) and hold-out data (20%). Preprocessing of

input features was not performed prior to training but included into the cross-validation during model selection. Input features were

Yeo-Johnson transformed (Yeo and Johnson, 2000), scaled and centered (m = 0, sd = 1). Saturation values were logit transformed to

map probabilities on the real axis. Model selection was performed by 5-fold cross-validation repeated 3 times on shuffled training

data. Categorical features were one-hot encoded. Model performance was measured by root mean squared error. Machine learning

was performed using caret (Kuhn, 2008) and code can be downloaded (https://github.com/NeugebauerLab/Alpert2020_Nab2).

Construction of deletion strains
Saccharomyces Genome Deletion Collection strains (Giaever et al., 2002; Winzeler et al., 1999) were the generous gifts of Dr. March

Hochstrasser and were used for the gene locus amplification and transformation. Each locus was substituted with the KanMX gene

which confers resistance to geneticin or G418, which was used as a selection marker. Deletions were made fresh to limit compen-

satory mutations (Teng et al., 2013). Genomic DNA was isolated from each deletion strain from 2 mL of saturated overnight yeast

culture in YPAD. Cells were resuspended in lysis buffer (final 10 mM Tris-HCl, 1 mM EDTA, 100 mM NaCl, 1% SDS, 2% Triton

X-100) with equal volume Phenol:Chloroform pH 8 and zirconia beads (BioSpec) for vortexing. After centrifugation, the aqueous layer
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was collected for ethanol precipitation. Amplification of the KanMX cassette was performed using primers with added homology

arms for the genomic locus of choice (Table S4). Purified, linear PCR product was used as the linear insert for transformation.

Budding yeast transformation
Yeast cells were grown in 50 mL YPAD medium at 30�C and shaking at 200 rpm to an OD600 = 0.5 (logarithmic growth phase). Cells

were pelleted and washed with sterile water before resuspension in 0.1 M LiAc, 10 mM Tris-HCl, 1 mM EDTA, pH 7.4. One mg linear

PCRproduct was added to cells with 10 mL single-stranded carrier DNA (salmon spermDNA, Invitrogen). LiAc-TE-PEG buffer (1/10 of

10x TE, 1/10 of 1 M LiAc, 8/10 of 50% PEG 4000) was added to 6x the volume of the cell mixture. Sample was incubated 30 min at

room temp. while rotating on wheel. 70 mL of 100% DMSO (prewarmed) was added before heat shocking the samples for 15 min at

42�C. Cells were pelleted at 1,100x g for 5 min at room temperature, resuspended in 300 mL YPAD and incubated on a rotating wheel

at room temperature for four hours. Cells were then plated on YPAD plates containing 350 ug/ml G418. After �48 hours, single col-

onies were picked for culture growth and strain validation by Sanger sequencing. All primers can be found in Table S4.

Nascent RNA isolation from chromatin
All steps were performed at 4�C if not stated otherwise. This protocol was modified slightly from Carrillo Oesterreich et al. (2010).

Frozen cell pellets were resuspended in 1 mL buffer 1(20 mM HEPES pH 8.0, 60 mM KCl, 15 mM NaCl, 5 mM MgCl2, 1 mM

CaCl2, 0.8% Triton X-100, 0.25 M sucrose, 1 mM DTT, 0.2 mM PMSF, 2.5 mM spermidine, 0.5 mM spermine). Cells were lysed

by vortexing with zirconia beads (BioSpec) for 5 3 60 s pulses of beads with 60 s pauses on ice between each pulse. Beads

were separated from lysate using a custom bead filter setup at 500x g for 5 min. Supernatant was transferred into a fresh eppendorf

tube and centrifuged at 2,000x g for 15 min. The pellet was resuspended in 1 mL of buffer 2 (20 mM HEPES pH 7.6, 450 mM NaCl,

7.5 mM MgCl2, 20 mM EDTA, 10% glycerol, 1% NP-40, 2 M urea, 0.5 M sucrose, 1 mM DTT, 0.2 mM PMSF) and centrifuged for

15min at 20,000x g. Each of these centrifugations were performed twice with clean buffer. Finally, pellets were resuspended in buffer

P (50 mM sodium acetate, 50 mMNaCl, 1% SDS) and phenol:chloroform:IAA (pH 6.0) and incubated at 37�C for 1 hour with shaking

(1150 rpm). Samples were spun at 13,000 rpm for 3 min at room temperature and the aqueous phase was transferred to a clean tube

with 3M sodium acetate pH 5.3 and 100% ice cold ethanol. Samples were incubated overnight at�80�C and then spun for 30 min at

20,000x g. The pellet was washed with 1 mL 75% ice cold ethanol and briefly spun again. Pellets were dried at room temperature for

5 minutes and then resuspended in 80 ml water. DNA was removed using two rounds of TurboDNase (Ambion) digestion. RNA sam-

pleswere then depleted three times of polyA+RNA by incubation with oligo(dT)-coated beads fromDynabeadsmRNADIRECTMicro

Purification Kit (ThermoFisher), each time keeping the supernatant and discarding the beads. For long-read sequencing, ribosomal

RNA was removed by up to three digestions with Terminator 50-Phosphate-Dependent Exonuclease (Lucigen). Samples were

cleaned between each step with RNA Clean & Concentrator Kit (Zymo Research).

30 end adaptor ligation
600 ng DNase-treated, polyA-depleted nascent RNA was combined with 50 pmol 30 end adaptor (/5rApp/NNNNNCTGTAGGCAC

CATCAAT/3ddC/, Integrated DNA Technologies) and denatured at 65�C for 5 min followed by 4�C for 1 min. Buffer (50 mM Tris-

HCl, 10 mM MgCl2, 1 mM DTT, pH 7.5, 25% PEG 8000), 40 U RNaseOUT, and 200 U T4 RNA ligase II (truncated K227Q) (NEB)

were added to the denatured RNA and incubated for 12 hours at 16�C. Samples were cleaned with RNA Clean & Concentrator

Kit (Zymo Research).

Single Molecule Intron Tracking
Adaptor-ligated nascent RNA served as template for reverse transcription using SuperScript III Reverse Transcriptase (Invitrogen)

according to the manufacturer’s protocol with a custom SMIT RT primer. Two PCRs were used to first capture the splicing status

and 30 end position, and then to add the Illumina sequencing adapters. In the first PCR, cDNA samples were amplified with Phusion

High-Fidelity polymerase (NEB) with all 62 gene-specific forward primers pooled (1 mM each final) together with an adaptor-specific

reverse primer. Samples were cleaned with MinElute PCR purification kit (QIAGEN), and input into the second PCR. Each reaction

consisted of 15 cycles (30 cycles total). All primers can be found in Table S4. Samples were submitted to the Yale Center for Genome

Analysis (YCGA) for gel-based size selection (250 bp – 1000 bp) and sequencing on Illumina HiSeq 2500 (High-Output Mode V4,

paired-end, 2x75 bp read length). Up to 6 different samples were pooled per lane (�50MIO reads/ sample).

SMIT data processing
Fastq files were filtered for read quality with the FASTX toolkit (RRID:SCR_005534) (fastq_quality_filter -Q 33 -q 20 -p 90). 30 end
adaptor sequence along with Illumina adaptor sequence was trimmed from R1 reads with cutadapt (Martin, 2011) (-g CATT

GATGGTGCCTACAG -a AGATCGGAAGAGCACACGTCTGAACTCCAGTCACGACCTCATCTCGTATGCCGTCTTCTGCTTG -n 2 -O

18 -m 23 -e 0.11 –match-read-wildcards –discard-untrimmed). Adaptor sequences were also trimmed from R2 reads (-a CTGTAGG

CACCATCAATG -a AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATT -n 2 -m 28 -M < read
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length-21 > -e 0.11 –match-read-wildcards). PCR duplicates were removed with Prinseq (Schmieder and Edwards, 2011), followed

by removal of a 5 nt random sequences with the FASTX toolkit (fastx_trimmer -Q 33 -f 6). Reads were mapped with paired-end,

splicing-sensitive parameters using HISAT2 (Kim et al., 2019) to the S. cerevisiae genome (sacCer3). Scripts are available at

https://github.com/carrillo/SMITproject. Custom scripts were written in R to extract splicing status and 30 end position for plotting.

Insert length bias correction was performed as described previously (Oesterreich et al., 2016). The DSMIT parameter was calculated

as the Euclidean distance from the respective 0 min sample. Only the first 300 bp after the 30 SS were considered as those positions

have the highest density of data. Data were binned into 60 nt segments to minimize the impact of sequencing noise.

Long read sequencing library preparation
Full length cDNA was generated from the adaptor-ligated nascent RNA with strand-switching reverse transcription (SMARTer PCR

cDNA Synthesis Kit, Clontech), replacing the CDS Primer IIA with a custom primer complementary to the 30 end adaptor (see Table

S4). Double-stranded cDNA was amplified using the CDS Primer IIA for 12 cycles (Advantage 2 PCR kit, Clontech) and cleaned up

with AMPure XP beads (BeckmanCoulter). Purified product was then end-preppedwith theNEBNext Ultra II repair/dA-tailingmodule

(NEB) and ligated to Nanopore barcode adapters (Oxford Nanopore Technologies, PCR Barcoding Kit SQK-PBK004) with Blunt TA/

LigaseMasterMix (NEB). A second round of PCRusingNanopore barcode primers from theONT kit was performedwith Advantage 2

for 8 cycles. AMPure XP beads were used to clean up the sample between each reaction with a ratio of 2:1 (beads:sample) until the

final PCR where a ratio of 0.6:1 was used for size selection. Barcoded library was eluted in 10 mM Tris-HCl pH 8.0 with 50 mM NaCl

and samples were pooled for a total of 25 ng in 10 ul. Library was incubated with 1 ml RAP (ONT) for 5 min at room temp. A MinION

FLO-MIN106 flow cell was brought to room temperature from 4�C storage andwashedwith flow cell primingmix as described in ONT

protocol. The pooled library was combined with sequencing buffer and library beads as per the ONT protocol and loaded onto the

flow cell and immediately sequenced on the MinION device for 48 hours generating 12.66 gigabases of sequence data.

Genome assembly and annotation
For all experiments, S. cerevisiae genome version 3 (sacCer3) was used. For accurate representation of untranslated regions (UTRs),

experimentally derived UTR annotations (Nagalakshmi et al., 2008) were used to supplement the genome annotation.

Nanopore data processing and filtering
Raw fast5 files were basecalled with the high-accuracy model of Guppy 3.3.0 algorithm and demultiplexed with Qcat (https://github.

com/nanoporetech/qcat) which also removes nanopore adapters. Sequencing is performed from either end of the amplified DNA

product, so Cutadapt (Martin, 2011) was used to identify the location of the 30 end adaptor sequence CTGTAGGCACCATCAATG

on either strand and trim it. Primer IIA sequences from the SMARTer kit are removed from the opposite end of the sequence, and

finally the reverse complement is generated for reads which had 30 end adaptor on the 50 end of the molecule. Reads without 30

end adaptor are discarded as we cannot definitively determine whether they were associated with RNA Pol II. Reads which do

not have 50 IIA sequence may not accurately represent the true 50 end of the molecule and likely arise from falloff of the reverse tran-

scriptase, however, we retain these transcripts because the 30 end (Pol II position) of these molecules is still reliable and can be used

for certain analyses. Filters for read start position applied later in the processing pipeline will filter these reads out when necessary.

Trimmed reads were then mapped to the S. cerevisiae sacCer3 genome using Minimap2 (Li, 2018) and the flags -ax splice -k 10 -G

2000–secondary = no. Resulting sam files were converted to bam and bed files using SAMtools (Li et al., 2009) and Bedtools (https://

bedtools.readthedocs.io/en/latest/) for downstream analyses. A custom script was written to filter out mapped reads with soft-clip-

ped polyA stretches. Reads with soft-clipped bases shorter than 30 nt were discarded if a stretch of 6 A’s was identified while reads

with longer stretches of soft-clipped bases required 10 A’s to be removed. Finally, only reads overlapping intron-containing genes

were considered for analyses presented here, with a required 50 bp minimum overlap. For Figure 3C, reads were filtered to start

within 100 bp of the TSS (thereby excluding intrusive transcripts). For all other analyses, reads were filtered for start positions no

more than 100 bp downstream of the annotated TSS. Reads were classified into 3 groups to encapsulate their readthrough status.

‘‘readthrough transcripts’’ begin near the annotated TSS but terminate > 150 bp downstream of the annotated PAS, indicating that

readthrough occurred downstream. ‘‘Intrusive transcripts’’ overlap the gene of interest, but begin > 100 bp upstream of the TSS,

indicating that transcription from an upstream gene failed to terminate. If a read met both of these conditions (as would be the

case for a read which covers multiple gene bodies), it was assigned as an ‘‘intrusive transcript’’ relative to that gene. All other reads

fall into the ‘‘no readthrough’’ category. All data were visualized in IGV (Robinson et al., 2011) and exported to produce genome

browser figures.

RT-PCR
Nascent RNAwas purified from chromatin as described above and depleted of poly(A)+ RNA. Samples were reverse transcribed with

SuperScript III and random hexamers (Roche). For validation of splicing levels, intron-spanning primers amplified spliced and un-

spliced products which were visualized on an agarose gel. For validation of readthrough transcription, a forward primer in the

gene body was paired with reverse primers either in the gene body (control) or in the region downstream of the PAS (downstream

readthrough). Products were visualized on agarose gel using GelStar stain.
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QUANTIFICATION AND STATISTICAL ANALYSIS

TheMannWhitneyU test was applied to distributions of DSMIT parameter in Figure 2B as is appropriate for determining significance

between small datasets (n = 53 genes). Detailed information about the clustering andmodeling techniques in Figure 1 can be found in

the Clustering of features and Machine learning – Lasso regression sections of the STAR Methods.
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Figure S1. Related to Figure 1. Machine learning and optimizing SMIT for reproducibility and multiplexing. 
A. Example of a splicing profile with two parameters indicated, saturation value and ½ max. Saturation value is calculated 
as mean fraction spliced of the last four 30 bp bins before the PAS (or last available bins if data does not extend to PAS). 
The Pol II distance from 3′ SS corresponding to half of the saturation value is the ½ max value.  
B. Hierarchical clustering of input features (i.e. gene characteristics). Pair-wise correlation coefficients between features are 
represented in a heat map. Pearson correlation coefficients are color-coded, ranging from -1 (red) to +1 (white). Rows and 
columns are ordered by hierarchical clustering using squared Pearson correlation coefficient as a similarity measure. 
Clustering is represented by dendrograms. Dimensionality of the data is reduced by representing the data by feature-groups 
(i.e. clusters), generated by cutting the dendrogram at different heights.  
C. Prediction performance of lasso regression as a function of cluster-count used to represent the data. Root mean squared 
error (RMSE) plotted against number of clusters (Log2 space). RMSEs of 3-times repeated 5-fold cross validation are 
represented as box plots. RMSE values for data represented by 100 clusters is highlighted (red box).  
D. Separation of experiment type (grey), factor identity (blue), gene-position (purple) and biological function (teal) as a 
function of cluster-count used to represent the data. Separation is measured by averaging Shannon-entropy for each cluster 
and normalized to the Shannon-entropy observed for data-represented by only one cluster (root-node). Values for data 
represented by 100 clusters are highlighted (black line).   
E. Lasso regression model was trained to predict the ½ max parameter and results of observed ½ max values are plotted 
against predicted.  
F. Regression coefficients are plotted for all feature groups input into the model.  
G. Table describing the SMIT protocol variations (rows) that were tested. PCR cycle number was varied to test amplification 
bias. Gene-specific forward primers were either pooled into a single PCR reaction or each primer was input into a separate 
PCR reaction. Finally, a forward amplification step was tested which uses only the forward primers and synthesizes only 
the first strand of DNA. This step amplifies the sample in a linear fashion rather than exponential growth of traditional PCR. 
50 rounds of forward amplification PCR were optionally included prior to the first SMIT PCR.  
H. Average insert size per gene for the original protocol (variation 1) is plotted against the values for the comparable protocol 
with pooled primers (variation 2). Linear regression modeled (black line) with a 95% confidence interval (grey ribbon). 
I. Frequency of insert sizes are shown for protocol variations 5-9 which differ only in first PCR cycle number.  
J. Agarose gel shows final amplified SMIT library for Nab2-AA and Control-AA samples treated with rapamycin for 0-, 10-, 
or 30-minutes.  
K. Extensive replication was performed for a subset of genes to determine the reproducibility of SMIT. Vertical dashed line 
indicates position of the PAS. Data points are modeled using a Loess smoothing method and a 95% confidence interval. 
 
 
  



 

 
Figure S2. Related to Figure 1. Testing machine learning predictions by multiplexing SMIT. 
A. Schematic of SMIT experiment shows Pol II associated nascent RNA purified from chromatin of budding yeast (left), 
SMIT adapter ligation and library amplification (center) and model data (blue) with saturation value and ½ max parameters 
indicated (right).  
B. We sourced deletion strains from the Genome Deletion Project (Giaever et al., 2002; Winzeler et al., 1999), however this 
collection has been shown to harbor frequent secondary mutations (Teng et al., 2013). To ensure our samples didn’t harbor 
undetectable compensatory mutations, we amplified out the deletion cassette and retransformed into a stable background 
strain. Wildtype (blue) and npl3Δ (green) splicing profiles are compared for four example genes (left). Additional splicing 
profiles for YPR063C from the htz1Δ (yellow) and rtt103Δ (red) samples are shown as well (right). Data points are modeled 
using a Loess smoothing method and a 95% confidence interval. 
C. For each gene, the difference between the deletion strain and the wildtype SMIT values was calculated as the Euclidean 
distance of fraction spliced for the first 300 nt of each second exon (binned by 60 nt to minimize sequencing noise). The 
distribution of these ΔSMIT values are plotted for each strain where the middle bar represents the median and the edges of 
the box represent the first and third quartiles.   



 
Figure S3. Related to Figure 2. Gene-specific changes in co-transcriptional splicing upon Nab2 depletion as 
detected by SMIT and validated by RT-PCR.  
A. Splicing profiles are shown for a selection of genes during Nab2 depletion (red) and in the control (grey). Data points are 
modeled using a Loess smoothing method and a 95% confidence interval. 
 B. To validate the effect Nab2 has on each splicing profile, RT-PCR was performed on nascent RNA from Nab2-AA and 
Control-AA samples. RNA was reverse transcribed using random hexamers and intron-spanning primers then amplified 
both spliced (bottom) and unspliced (top) product which is visualized on 1% agarose (right). Arrows on the right indicate the 
effect of Nab2 depletion on splicing as shown in both splicing profiles and RT-PCR. Horizontal black line indicates no 
change, green arrows indicate an increase in splicing, red arrows indicate a decrease in splicing. 
  



 
Figure S4. Related to Figure 3. Long read sequencing of nascent RNA upon Nab2 depletion. 
A. Read length distribution for long read sequencing datasets for both Control-AA (teal) and Nab2-AA (orange).  
B. Count of spliced (black) and unspliced (grey) reads for each replicate are normalized to reach 100.  
C. The fraction of reads per gene which readthrough the polyA site of that gene are plotted as a distribution for both control 
(teal) and Nab2-AA (orange).  
D. RT-PCR was performed to validate the readthrough phenotype of Nab2-AA observed in the sequencing data. Nascent 
RNA was reverse transcribed with random hexamers and then amplified with a common forward primer (black) in the gene 
body and a reverse primer either in the gene body (green) or in the region downstream of the PAS (yellow). PCR products 
are visualized on agarose gels for gene body (left) and downstream readthrough (right) for 0-, 10-, and 30-minute time 
points of rapamycin treatment in Control-AA and Nab2-AA cells.  
E. Fraction spliced are calculated for reads which start within 50 bp of the TSS (excluding intrusive transcripts) and values 
are plotted for each replicate. Adjusted R2 values are shown for linear regression models (grey) and the 95% confidence 
interval.   



 



 
Figure S5. Related to Figure 4. Nab2 depletion induces pervasive readthrough transcription. 
Representative unfiltered long read data are shown for a segment of the genome (annotation above in grey) including the 
intronless genes. Reads are too numerous to show in their entirety, so a representative subset was chosen for display here 
using the default organization of Integrative Genomics Viewer (Robinson et al., 2011). Reads from two biological replicates 
are combined for Nab2-AA (orange) and Control-AA (teal). 
  



 

 
Figure S6. Related to Figure 4. Intrusive transcripts generated by failed cleavage events are unspliced.  
A. This plot uses the same analysis as in Figure 4D; however, a more stringent definition of intrusive transcripts was used 
where reads must overlap with the upstream gene. This stringent filtering exacerbates the relationship shown in Figure 4. 
Each datapoint is an individual gene with at least 10 reads intrusive reads. The plot for Control-AA is not shown because 
very few genes (< 5) met this criterion given the low levels of readthrough in wild type conditions.  



B. The change in fraction of intrusive transcripts (Nab2-AA - Control-AA) is plotted against the change in fraction spliced 
(Nab2-AA - Control-AA). Number of points in each quadrant are shown with positive delta values for intrusive transcripts 
shown in black and negative values shown in grey.   
C. Read count in the Control-AA sample was calculated to represent gene expression in these datasets (intrusive reads 
were removed from this value). The fold change (Nab2-AA / Control-AA) of readthrough reads is then plotted according to 
our expression values. The adjusted R2 of the linear regression fit is displayed along with the 95% confidence interval.  
D. The same expression values calculated for D where used for comparison against the fold change of intrusive reads.  
E. The distribution of fold change values for readthrough reads is shown for ribosomal protein genes (RPGs) and non-
RPGs. The difference between the two is not significant using the Mann-Whitney U test (n.s.). 
F. The distribution of fold change values for intrusive reads is shown for RPGs and non-RPGs. The difference between the 
two is not significant using the Mann-Whitney U test (n.s.). 
G. The right panel from Figure 4D is reproduced here with data points from the Nab2-AA nanopore dataset colored according 
to their designation into the categories listed: Unchanged (High splicing) (pink), Unchanged (Low splicing) (green), or 
Sensitive to Nab2-depletion (blue). A small number of poorly spliced genes were excluded from analysis because of their 
low read count. Dashed line represents y = x. Genes were categorized based on their distance from the y = x axis and 
whether their fraction spliced (all reads) was above or below 0.5.  
H. Intron length was compared for the genes in each category defined in H. Genes with shorter introns are shown to splice 
less efficiently (Carrillo Oesterreich et al., 2010), so the results here were expected. Significance (Mann-Whitney U test) as 
follows: p ≤ 0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***), p ≤ 0.0001 (****).  
I. The 5′SS for each gene in I was identified as being either the consensus sequence (‘GTATGT’) or a variant of this 
sequence (non-consensus). The percent non-consensus value is displayed alongside the 5′SS counts for each category 
defined in I.  
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