Cancer Risk in Heart or Lung Transplant Recipients: A Comprehensive Analysis of 21 Prospective Cohorts

Fan Ge, Caichen Li, Xin Xu, Zhenyu Huo, Runchen Wang, Yaokai Wen, Haoxin Peng, Xiangrong Wu, Hengrui Liang, Guilin Peng, Run Li, Danxia Huang, Ying Chen, Shan Xiong, Ran Zhong, Bo Cheng, Jianfu Li, Jianxing He, Wenhua Liang.

Supplementary materials

Table of Cont	tents	
		Page
Table S1	Checklist of the PRISMA extension	3-5
Figure S1	Forest plot for all cancers in heart transplantation	6
Figure S2	Forest plots for different systems cancers in heart transplantation	7
Figure S3	Forest plot for all cancers in lung transplantation	8
Figure S4	Forest plots for different systems cancers in lung transplantation	9
Figure S5	Sensitivity analysis for cancers in heart transplantation.	10
Figure S6	Sensitivity analysis for cancers in lung transplantation.	11-12
Figure S7	Forest plots for cancers in heart transplant recipients at different ages	13
Figure S8	Forest plots for cancers in heart transplant recipients at different regions	14
Figure S9	Forest plots for cancers in lung transplant recipients at different ages	15
Figure S10	Forest plots for cancers in lung transplant recipients at different regions	16
Figure S11	Funnel plots for cancers in heart transplantation.	17
Figure S12	Funnel plots for cancers in lung transplantation.	18-19

Section/topic	#	Checklist item	Reported on page #		
TITLE					
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1		
ABSTRACT					
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	3		
INTRODUCTION					
Rationale	3	Describe the rationale for the review in the context of what is already known.	4-5		
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	4-5		
METHODS					
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	5		
Eligibility criteria	Eligibility criteria 6 Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.				
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	6		
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	5-6		
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5-6		
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6		
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	6-7		
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data	6		

		synthesis.	
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	6-7
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis.	6-7
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	8-10
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	6-7
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	Figure 1
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	7-8
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	8-9 and Supplementary Materials page 7
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	8-9 and Supplementary Materials page 6 and Table 2
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	8-9 and Supplementary Materials page 6, 8, Table 2, and Table 3
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	8-10 and Supplementary Materials page 7-9

Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	8-9, Figure 2, Table2, and Supplementary Materials page 7-8
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	10-13
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	10-13
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	10-13
FUNDING			
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	2

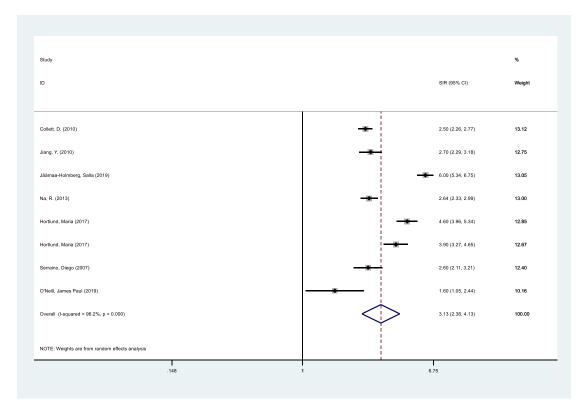
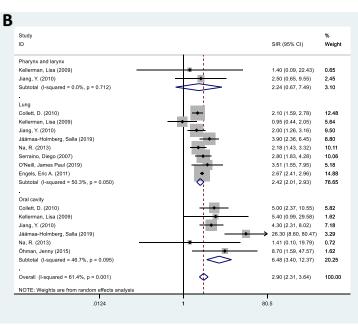
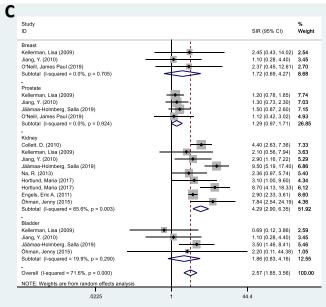




Figure S1: Forest plot for all cancers in heart transplantation.

Study ID	SIR (95% CI)	% Weight
Oesophagus		
Jäämaa-Holmberg, Salla (2019)	2.20 (0.20, 24.20)	1.30
Na, R. (2013)	1.54 (0.28, 8.33)	2.43
Subtotal (I-squared = 0.0%, p = 0.812)	1.73 (0.44, 6.89)	3.73
Liver		
Na, R. (2013)	1.85 (0.34, 10.20)	2.38
Serraino, Diego (2007)	2.90 (0.95, 8.82)	4.71
Engels, Eric A. (2011)	1.02 (0.57, 1.83)	9.83
Collett, D. (2010)	1.20 (0.25, 5.69)	2.79
Kellerman, Lisa (2009)	3.30 (0.61, 18.00)	2.41
Subtotal (I-squared = 0.0%, p = 0.421)	1.40 (0.89, 2.20)	22.12
Stomach		
Kellerman, Lisa (2009)	1.10 (0.08, 15.68)	1.07
Jäämaa-Holmberg, Salla (2019)	2.00 (0.33, 12.08)	2.18
Subtotal (I-squared = 0.0%, p = 0.715)	1.66 (0.37, 7.35)	3.25
Anus		
Collett, D. (2010)	7.50 (2.03, 27.75)	3.69
Krynitz, Britta (2013)	14.00 (1.01, 194.23)	1.09
Subtotal (I-squared = 0.0%, p = 0.677)	8.49 (2.63, 27.39)	4.79
Colorectum		
Collett, D. (2010)	1.10 (0.71, 1.71)	11.94
Kellerman, Lisa (2009)	1.00 (0.37, 2.70)	5.52
Jiang, Y. (2010)	0.60 (0.22, 1.64)	5.41
Jäämaa-Holmberg, Salla (2019)	3.70 (1.64, 8.33)	7.10
Na, R. (2013)	0.99 (0.57, 1.72)	10.29
O'Neill, James Paul (2019)	1.88 (0.61, 5.77)	4.65
Safaeian, M. (2016) 🔶	0.96 (0.80, 1.16)	15.70
Subtotal (I-squared = 51.7%, p = 0.053)	1.16 (0.84, 1.60)	60.62
Pancreas		
Kellerman, Lisa (2009)	0.96 (0.06, 15.63)	0.98
Jiang, Y. (2010)	3.10 (0.99, 9.74)	4.52
Subtotal (I-squared = 0.0%, p = 0.446)	2.62 (0.91, 7.55)	5.50
Overall (I-squared = 43.9%, p = 0.019)	1.48 (1.11, 1.96)	100.00
NOTE: Weights are from random effects analysis		

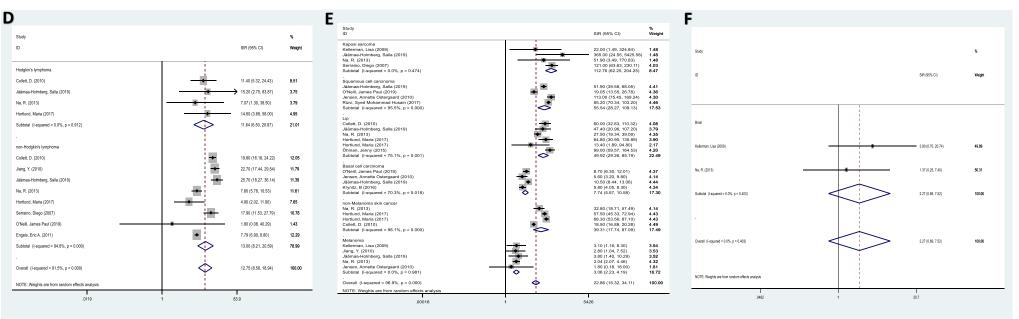
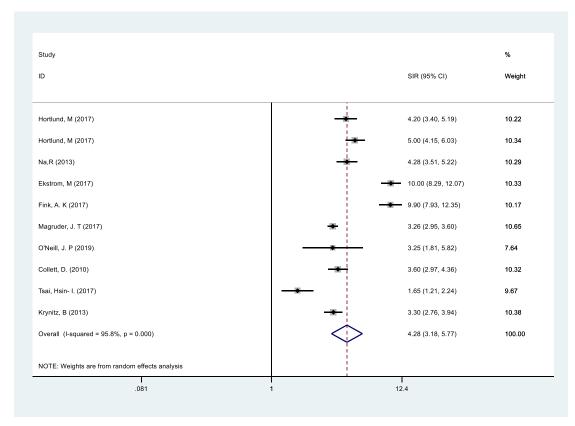
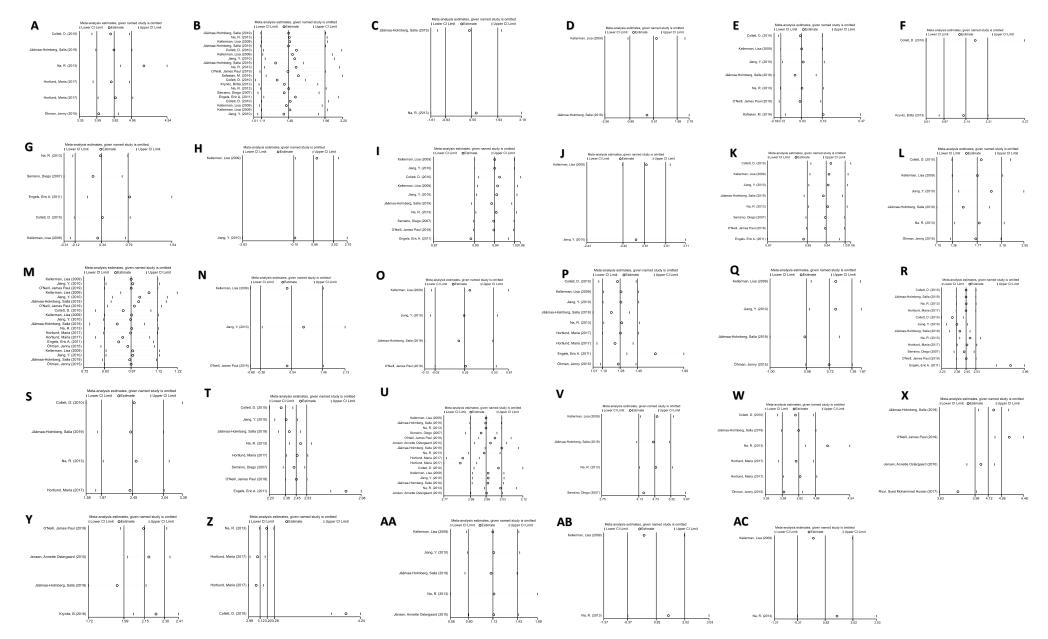
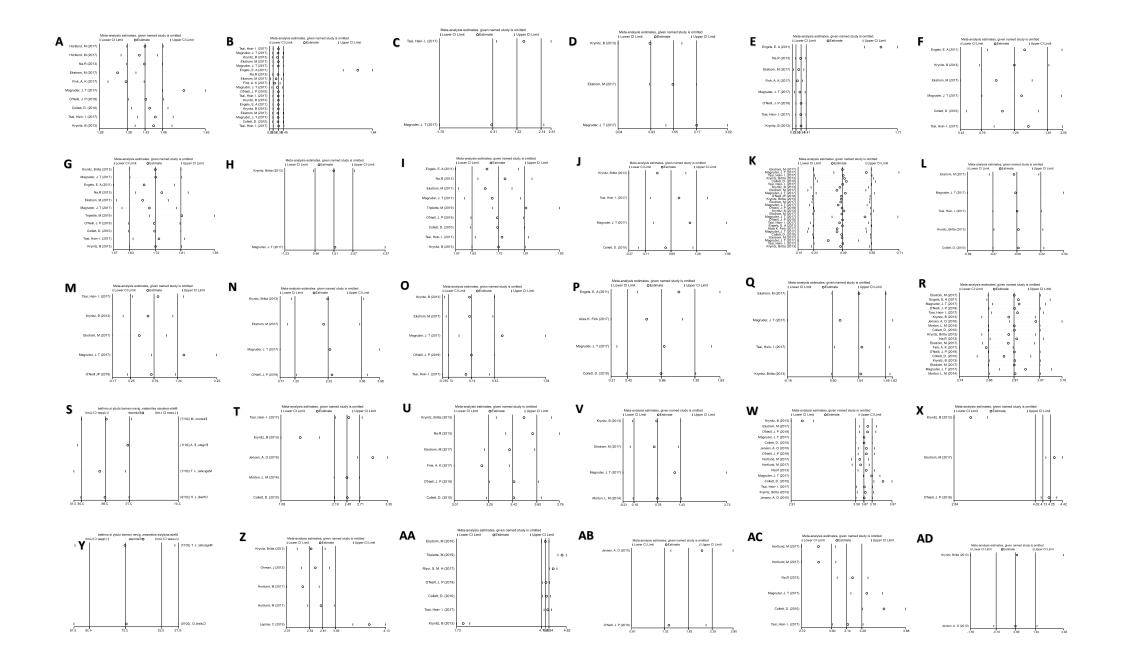


Figure S2: Forest plots for different systems cancers in heart transplantation. Digestive system (A), respiratory system (B), reproductive and urinary systems(C), lymphatic and hematological systems(D) integumentary system(E), and neurological (F)


Figure S3: Forest plot for all cancers in lung transplantation.

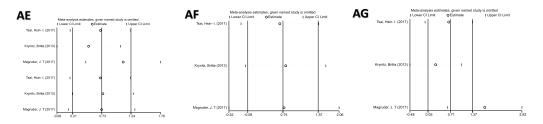

Α			B				C		
	Study	%		Study		%	Study ID	SIR (95% CI)	% Weight
-		SIR (95% CI) Weig	ht	ID	SIR (95% CI)	Weight	Breast Ekstrom, M (2017)	1.50 (0.49, 4.62)	4.03
	Oesophagus Tsai, Hsin- I. (2017)	1.31 (0.18, 9.42) 3.72		Pharynx and larynx			Magruder, J. T (2017) Tsai, Hsin- I. (2017)	0.93 (0.66, 1.31) 0.83 (0.12, 5.81)	6.84 2.12
	Magruder, J. T (2017) Subtotal (I-squared = 12.5%, p = 0.285)	4.41 (1.57, 12.35) 5.66 3.26 (1.16, 9.12) 9.38		Krynitz, Britta (2013)	4.80 (0.29, 78.87)	0.76	Krynitz, Britta (2013) Collett, D. (2010) Subtlotal (4-sequered = 23.8%, p = 0.263)	0.60 (0.45, 0.80) 0.80 (0.34, 1.90) 0.77 (0.58, 1.03)	6.96 4.94 24.89
	Liver			Magruder, J. T (2017) Subtotal (I-squared = 0.0%, p = 0.967)	4.50 (1.44, 14.09) 4.54 (1.58, 13.07)	3.54 4.30	Cervix		
	Engels, E. A (2011)	2.04 (0.67, 6.23) 5.47 3 70 (0.65, 21, 09) 4 16					Tsai, Hsin- I. (2017) Krynitz, B (2013) Ekstrom, M (2017)	1.33 (0.33, 5.34) 7.50 (1.37, 41.08) 6.40 (2.11, 19.38)	3.25 2.55 4.09
	Krynitz, B (2013) Ekstrom, M (2017)	17.70 (4.68, 67.01) 5.00		Lung I Engels, E. A (2011)	6.13 (5.20, 7.23)	12.32	Magruder, J. T (2017) O'Neill JP (2019)	1.01 (0.46, 2.24) 14.85 (0.71, 309.61)	5.21 1.05
	Magruder, J. T (2017) Collett, D. (2010)	2.81 (1.10, 7.19) 5.85 10.00 (2.68, 37.29) 5.04		Na,R (2013)	3.82 (2.61, 5.59)	10.03	Subtotal (I-squared = 64.5%, p = 0.024)	3.02 (1.07, 8.49)	16.14
	Tsai, Hsin- I. (2017) Subtotal (I-squared = 70.9%, p = 0.004)	0.21 (0.03, 1.48) 3.76 3.37 (1.23, 9.24) 29.27		Ekstrom, M (2017) Magruder, J. T (2017)	19.80 (12.13, 32.33 6.49 (5.01, 8.40)) 8.71 11.44	Vulva and vagina Krymitz, Brita (2013) Ekstrom, M (2017)	11.00 (0.77, 158.13) 21.70 (1.53, 308.15)	1.31 1.32
	Stomach			Triplette, M (2019)	4.80 (4.14, 5.56)	12.46	Magruder, J. T (2017) O'Neil, J. P (2019) Subtolar (-sequered = 0.0%, p = 0.883)	9.70 (2.33, 40.46) 4.11 (0.19, 87.88) 10.16 (3.50, 29.50)	3.16 1.03 6.81
	Krynitz, B (2013) Ekstrom, M (2017)	9.20 (3.79, 22.31) 5.96 - 6.40 (0.48, 85.26) 2.78		O'Neill, J. P (2019)	9.44 (3.06, 29.13) 5.90 (3.83, 9.10)	3.60 9.39	Subtotal (I-squared = 0.0%, p = 0.883) Prostate		6.81
	Magruder, J. T (2017)	2.20 (0.87, 5.54) 5.88		Tsai, Hsin- I. (2017)	2.92 (1.52, 5.61)	6.93	Krynitz, B (2013)	1.30 (0.66, 2.55) 1.90 (0.51, 7.05)	5.68 3.47
	Subtotal (I-squared = 58.8%, p = 0.088)	4.76 (1.58, 14.31) 14.62	2	Krynitz, B (2013) Subtotal (I-squared = 80.4%, p = 0.000)	5.40 (3.14, 9.30) 5.97 (4.66, 7.66)	8.09 82.97	Magruder, J. T (2017) O'Neil, J. P (2019) Tesis, Hein-1. (2017)	1.00 (0.72, 1.38) 1.12 (0.04, 27.89) 3.31 (1.07, 10.27)	6.88 0.95 4.01
	Colorectum Engels, E. A (2011)	1.24 (1.15, 1.34) 7.01			(, , , ,		Subtotal (I-squared = 15.8%, p = 0.314)	1.25 (0.87, 1.81)	20.99
	Na,R (2013) Ekstrom, M (2017)	2.58 (1.21, 5.50) 6.21 11.40 (6.38, 20.38) 6.52		Oral cavity Krynitz, Britta (2013)	7.50 (1.96, 28.72)	2.76	Kidney Engels, E. A (2011) Aliza K. Fink (2017)	1.49 (0.70, 3.19) 11.00 (2.94, 41.22)	5.33 3.44
	Fink, A. K (2017) Magruder, J. T (2017)	24.20 (14.09, 41.55) 6.58 2.10 (1.47, 3.01) 6.82		Tsai, Hsin- I. (2017)	0.87 (0.22, 3.46)	2.64	Magruder, J. T (2017) Collett, D. (2010)	2.28 (1.22, 4.26) 2.50 (0.46, 13.69)	5.87 2.55
	O'Neill, J.P (2019) Tsai, Hsin-1. (2017)	2.18 (0.11, 43.83) 2.30 1.99 (0.95, 4.17) 6.24		Magruder, J. T (2017)	1.32 (0.58, 3.00) 5.00 (0.91, 27.46)	5.46 1.87	Subtotal (I-squared = 54.7%, p = 0.085)	2.71 (1.30, 5.64)	17.19
	Krynitz, B (2013)	1.40 (0.37, 5.24) 5.03		Subtotal (I-squared = 58.4%, p = 0.065)	2.34 (0.88, 6.25)	12.74	Ekstrom, M (2017) Magruder, J. T (2017)	2.60 (0.22, 31.20) 3.16 (1.88, 5.31)	1.46 6.26
	Subtotal (I-squared = 96.0%, p = 0.000)	3.38 (1.45, 7.92) 46.7 3		Overall (I-squared = 76.5%, p = 0.000)	5.19 (4.04, 6.68)	100.00	Tsai, Hsin- I. (2017) Krynitz, Brita (2013) Subtotal (l-squared = 0.0%, p = 0.770)	1.12 (0.16, 7.89) 2.40 (0.81, 7.14) 2.84 (1.81, 4.44)	2.11 4.14 13.97
	Overall (I-squared = 92.1%, p = 0.000) NOTE: Weights are from random effects analysis	3.49 (2.00, 6.08) 100.0	00	NOTE: Weights are from random effects analysis	,		Overall (I-squared = 72.0%, p = 0.000)	1.96 (1.40, 2.74)	100.00
-		5.3			78.9		NOTE: Weights are from random effects analysis	1	
							.00323 1	310	
			E				-		
D	Study	%		Study ID	SIR (95% CI)	% Weight	F		
	ID	SIR (95% CI) Weig	ht	Skin cancer	83.00 (73.14, 94.18)		Study		%
	PTLD Ekstrom, M (2017)	19.00 (10.83, 33.33) 6.77		Krynitz, B (2013) Ekstrom, M (2017) O'Neiti, J. P (2019)	27.00 (20.50, 35.55) 9.96 (5.91, 16.79)	4.17 4.14 4.04	ID	SIR (95% CI)	Weight
	Engels, E. A (2011) Agrunder, J. T (2017)	18.73 (15.65, 22.41) 7.77 14.14 (9.26, 21.59) 7.22		Subtotal (I-squared = 98.1%, p = 0.000)	28.83 (9.44, 88.02)	12.35			
	O'Neill, J. P (2019)	10.54 (1.86, 59.85) 3.04		Magnuder, J. T (2017) Collett, D. (2010) Subtolal (Lequared = 0.0%, p = 0.971)	9.26 (0.48, 177.16) 10.00 (0.60, 166.87) 9.64 (1.26, 73.91)	2.04 2.14 4.17	Brain		
	Subtotal (I-squared = 0.0%, p = 0.607)	17.95 (15.33, 21.02) 24.8 (,	Basal cell carcinoma			Tsai, Hsin- I. (2017)	2.97 (0.42, 21.05)	8.22
	Hodgkin's lymphoma Tsai, Hsin- I. (2017)	8.55 (3.84, 19.02) 5.90		Jensen, A O (2010) O'Neill, J. P (2019) Subtotal (Lsquared = 44.1%, p = 0.181)	4.10 (1.83, 9.17) 8.39 (4.28, 16.45) 6.08 (3.02, 12.21)	3.87 3.96 7.83	Krynitz, Britta (2013)	1.70 (0.31, 9.46)	10.43
	Krynitz, B (2013) Jensen, A. O (2010)	24.00 (16.97, 33.94) 7.43 3.20 (1.97, 5.19) 7.03		Squamous cell carcinoma Ekstrom. M (2010)	65.00 (30.40, 138.97)	3.90	Magruder, J. T (2017)	2.08 (0.71, 6.08)	22.98
	Morton, L. M (2014)	13.50 (1.90, 96.01) 2.60 5.00 (0.30, 83.51) 1.52		Triplatta, M (2019) Rizvi, S. M. H (2017) O'Neill, J. P (2019)	8.10 (6.33, 10.36) 1.85 (1.20, 2.86) 32,71 (17.27, 61.96)	4.15 4.08	Subtotal (I-squared = 0.0%, p = 0.915)	2.11 (0.93, 4.83)	41.63
	Subtotal (I-squared = 91.1%, p = 0.000)	8.83 (2.81, 27.69) 24.48	3	Collett, D. (2010)	1.10 (0.35, 3.42) 1.99 (0.95, 4.17)	3.98 3.62 3.92		2.11 (0.30, 4.00)	41.00
	non-Hodgkin's lymphoma Krynitz, Britta (2013)	24.00 (16.97, 33.94) 7.43		Krynitz, B (2013) Subtotal (I-squared = 99.4%, p = 0.000)	198.00 (174.51, 224.65) 10.65 (1.81, 62.54)	4.17 27.82	Thyroid		
	Na,R (2013) Ekstrom, M (2017)	16.80 (11.33, 24.91) 7.30 39.00 (21.78, 69.84) 6.70		Lip Kryniz, Britts (2013) Ohman, J (2015)	84.00 (39.12, 180.37) 46.00 (21.42, 98.78)	3.90 3.90 4.08		2.90 (0.41, 20.56)	
				Hortlund, M (2017)	34.10 (21.73, 53.51)	4.00	Tsai, Hsin- I. (2017)		8.22
	Fink, A. K (2017) O'Neill, J. P (2019)	61.80 (43.52, 87.75) 7.42 12.79 (2.26, 72.42) 3.04		Hortlund, M (2017)	71.00 (9.99, 504.43)	2.85			
			1	Laprise, C (2019) Subtotal (I-squared = 95.6%, p = 0.000)	34.10 (21.73, 53.51) 71.00 (9.99, 504.43) 3.07 (1.96, 4.81) 29.15 (7.10, 119.72)	4.08 2.85 4.08 18.81	Kryniz, Britla (2013)	7.60 (2.03, 28.50)	16.42
	O'Neill, J. P (2019) Collett, D. (2010) Subtotal (I-squared = 82.1%, p = 0.000)	12.79 (2.26, 72.42) 3.04 30.00 (20.99, 42.89) 7.40	1	Laprice, C (2019) Subtolal (I-squared = 95.6%, p = 0.000) TomoHallmone Mik Cancer Hothund, M (2017) TomoHallmone Mik Cancer	 71.00 (9.99, 504.43) 3.07 (1.96, 4.81) 29.15 (7.10, 119.72) 69.10 (50.05, 95.40) 58.50 (43.21, 79.21) 	2.85 4.08 18.81 4.12 4.13	Magruder, J. T (2017)	7.60 (2.03, 28.50)	33.73
	O'Neill, J. P (2019) Collett, D. (2010) Subtolal (I-squared = 82.1%, p = 0.000) Leukemia Krynitz, B (2013)	12.79 (2.26, 72.42) 3.04 30.00 (20.99, 42.89) 7.40 29.62 (19.07, 46.03) 39.3 2.80 (0.22, 35.42) 1.79		Lamine. (2019) Subted (Feared 18.9%, p = 0.000) no-Adatroma skin cancer Hertund, M (2017) Hertund, M (2017) Magnete, JT (2017) Caterio, D, 2010)	 71.00 (9.99, 504.43) 3.07 (1.96, 4.81) 20.15 (7.10, 119.72) 69.10 (50.05, 95.40) 58.50 (43.21, 79.21) 1.64 (0.61, 4.41) 2.19 (1.30, 3.69) 16.10 (15.16, 19.69) 	2.85 4.08 18.81 4.12 4.13 3.74 4.04 4.16		7.60 (2.03, 28.50)	
	O'Neill, J. P (2019) Collett, D. (2010) Subtotal (I-squared = 82.1%, p = 0.000) Leukemia Krynitz, B (2013) Ekstrom, M (2017)	12.79 (2.26, 72.42) 3.04 30.00 (20.99, 42.89) 7.40 29.62 (19.07, 46.03) 39.3° 2.80 (0.22, 35.42) 1.79 > 9.40 (0.58, 151.71) 1.55 1.89 (0.90, 3.98) 6.10		Lamine. (2019) Subted (Vecanet + 95.0%, p + 0.000) 	 71.00 (9.99, 504.43) 3.07 (1.96, 4.81) 29.15 (7.10, 119.72) 69.10 (50.05, 95.40) 58.50 (43.21, 79.21) 1.64 (0.61, 4.41) 2.19 (1.30, 3.69) 	2.85 4.08 18.81 4.12 4.13 3.74 4.04	Magruder, J. T (2017) Subtotal (I-squared = 65.5%, p = 0.055)	7.60 (2.03, 28.50) 1.15 (0.51, 2.61) 2.69 (0.75, 9.74)	33.73 58.37
	O'Neill, J. P (2019) Collett, D. (2010) Subtotal (I-squared = 82.1%, p = 0.000) Leukemia Krynitz, B (2013) Ekstrom, M (2017)	12.79 (2.26, 72.42) 3.04 30.00 (20.99, 42.89) 7.40 29.62 (19.07, 46.03) 39.33 2.80 (0.22, 35.42) 1.79 ▶ 9.40 (0.58, 151.71) 1.55		Lamine. (2019) Subtedia (Faceward + 89.5%, p = 0.000) non-Market Mill Scalar (Salar Salar Salaar Salar Sal	 71.00 (2.90, 504.43) 3.07 (1.80, 4.81) 29.15 (7.10, 119.72) 69.10 (30.05, 95.40) 68.50 (43.21, 79.21) 1.64 (0.81, 4.41) 2.10 (1.30, 3.80) 1.81.0 (1.31, 61.666) 2.86 (0.42, 21.17) 1.01.74 (2.76, 0.56) 2.40 (0.75, 7.65) 	2.85 4.08 18.81 4.12 4.13 3.74 4.04 4.16 2.3.05 23.05	Magruder, J. T (2017)	7.60 (2.03, 28.50)	33.73
	O'Neill, J. P (2019) Collett, D. (2010) Subtotal (I-squared = 82.1%, p = 0.000) Ekstrom, N (2017) Magruder, J. T (2017) Morton, L. M (2014) Subtotal (I-squared = 0.0%, p = 0.744) Overall (I-squared = 88.8%, p = 0.000)	$\begin{array}{cccc} 12.79 & (2.26, 72.42) & 3.04 \\ 30.00 & (20.99, 42.89) & 7.40 \\ 29.62 & (19.07, 46.03) & 39.37 \\ \hline & & & & & & \\ 2.80 & (0.22, 35.42) & 1.79 \\ \hline & & & & & & \\ 9.940 & (0.58, 151.71) & 1.55 \\ 1.89 & (0.90, 3.98) & 6.10 \\ 0.10 & (0.19, 22.62) & 1.98 \\ \hline \end{array}$	2	Lamine, C(2019) Subdetal (Hazared = 45 0%, p = 0.000) Inst-Malanama Min casear Hierthicel, M (2017) Hierthicel, M (2017) Magnede, J.T (2017) Content, D (2017) Subdetal (H-squared = 97.9%, p = 0.000) Malanama Kynnte, Binta (2013) Januari, A (2020) Januari, A (2020)	 71.00 (0.90, 504.43) 3.07 (1.80.4.81) 20.15 (7.10, 119.72) 60.10 (0.00, 505.40) 60.60 (0.51, 7721) 60.60 (0.51, 7721) 60.60 (0.51, 4.41) 10.10 (1.31.6, 10.60) 2.68 (0.42, 21.17) 10.72 (3.76, 30.59) 2.40 (0.75, 7.86) 2.40 (0.21, 31.44) 2.43 (0.45, 6.27) 	2.85 4.08 18.81 4.12 4.13 3.74 4.16 2.85 23.05 3.05 2.38 5.97	Magruder, J. T (2017) Subtotal (I-squared = 65.5%, p = 0.055)	7.60 (2.03, 28.50) 1.15 (0.51, 2.61) 2.69 (0.75, 9.74)	33.73 58.37
	O'Neill, J. P (2019) Collett, D. (2010) Subtotal (I-squared = 82.1%, p = 0.000) Ekstrom, N (2017) Magruder, J. T (2017) Morton, L. M (2014) Subtotal (I-squared = 0.0%, p = 0.744) Overall (I-squared = 88.8%, p = 0.000) NOTE: Weights are from random effects analysis	12.79 (2.26, 72.42) 3.04 30.00 (20.99, 42.89) 7.40 29.62 (19.07, 46.03) 39.3' 2.80 (0.22, 35.42) 1.79 9.940 (0.58, 151.71) 1.55 1.89 (0.90, 3.98) 6.10 2.10 (0.19, 22.62) 1.98 2.15 (1.10, 4.17) 11.42	2	Lamines, C (2019) Subtedia (Secured = 19:0%, p = 0.000) mon-Malanome akin cancer Herthuck, M (2017) Herthuck, M (2017) Magnato, J (2017) Taik, Harin (L. (2017) Bublecal (Secured = 97:5%, p = 0.000) Stoppedia (Secured = 97:5%, p = 0.000)	 71.00 (0.90, 504.43) 3.07 (158.481) 20.18 (7.10, 119.72) (9) 10 (60.05, 95.40) 96.70 (43.27, 79.21) 1.64 (0.61, 4.41) 2.19 (13.3, 3.69) 15.0 (13.16, 19.69) 2.40 (0.75, 7.65) 2.40 (0.75, 7.65) 	2.85 4.08 18.81 4.12 4.13 3.74 4.04 4.04 4.16 2.85 23.05 3.59 2.38	Magruder, J. T (2017) Subtotal (I-squared = 65.5%, p = 0.055) Overall (I-squared = 16.5%, p = 0.308)	7.60 (2.03, 28.50) 1.15 (0.51, 2.61) 2.69 (0.75, 9.74)	33.73 58.37

Figure S4: Forest plots for different systems cancers in lung transplantation. Digestive system (A), respiratory system (B), reproductive and urinary systems(C), lymphatic and hematological systems(D) integumentary system(E), and neurological (F).

Figure S5: Sensitivity analysis for cancers in heart transplantation. All cancer (A), digestive system (B), oesophagus (C), stomach (D), colorectum (E), anus (F), liver (G), pancreas (H), respiratory system (I), pharynx and larynx (J), lung(K), oral cavity (L), reproductive and urinary systems (M), breast (N), prostate (O), kidney (P), bladder (Q), lymphatic and hematological systems (R), Hodgkin's lymphoma (S), non-Hodgkin's lymphoma (T), integumentary system (U), Kaposi sarcoma (V), lip (W), squamous cell carcinoma (X), basal cell carcinoma (Y), non-melanoma skin cancer (Z), melanoma (AA), neurological (AB), and brain (AC).

Figure S6: Sensitivity analysis for cancers in lung transplantation. All cancer (A), digestive system (B), oesophagus (C), stomach (D), colorectum (E), liver (F), respiratory system (G), pharynx and larynx (H), lung(I), oral cavity (J), reproductive and urinary systems (K), breast (L), cervix (M), vulva and vagina (N), prostate (O), kidney (P), bladder (Q), lymphatic and hematological systems (R), PTLD (S), Hodgkin's lymphoma (T), non-Hodgkin's lymphoma (U), leukemia (V), integumentary system (W), skin cancer (X), Kaposi sarcoma (Y), lip (Z), squamous cell carcinoma (AA), basal cell carcinoma (AB), non-melanoma skin cancer (AC), melanoma (AD), neurological (AE), brain (AF), and thyroid (AG).

μ j j j manutation in the second in the secon			ES (95% CI)	% Weight	Study
			ES (95% CI)	weight	
	rs				
					All cancers
Second (Second - Second -					
Name of the state of					
на и и и и и и и и и и и и и и и и и и и					Subtotal (I-squared = 98.3%, p = 0.000)
Name Image: Name		~			· · · · · · · · · · · · · · · · · · ·
The constraints The constraints The constraints The constraints A Interference Interference Interference Interference	s cell carcinoma				Squamous cell carcinoma
Single - 1.402 -					Jäämaa-Holmberg, Salla (2019)
Instrume Instrum Instrume Instrume					Rizvi, Sved Mohammad Husain (2017)
And	I-squared = 97.7%, p = 0.000)		46.24 (8.08, 264.66)	5.77	
mm who are well who are wel		1 C			
Image: Control Image: Contro Image: Contro Image: Contro <t< td=""><td></td><td>-</td><td>5.00 (2.37, 10.55)</td><td>2.66</td><td>Oral cavity</td></t<>		-	5.00 (2.37, 10.55)	2.66	Oral cavity
Note: 1000,000,000,000,000,000,000,000,000,00					
American (1998) American (1998) American (1998) American (1998) American (1998) American (1998)	anny (2015)		8.70 (1.59, 47.57)		
Unite Jamps Jamps Jamps On Manuta Base 11, 11 Base 11, 11 Descent 11, 12, 12, 00, 00, 11 Unite Base 11, 11 Descent 11, 12, 12, 00, 00, 11 Descent 11, 12, 12, 00, 00, 11 Unite Base 11, 11 Descent 11, 12, 12, 00, 00, 11 Descent 11, 12, 12, 00, 00, 11 Unite Base 11, 11 Descent 11, 12, 12, 12, 00, 00, 11 Descent 11, 12, 12, 12, 12, 12, 12, 12, 12, 12,					
mm total strate total strate total strate mm total strate total strate total st		T			
1) - </td <td></td> <td></td> <td></td> <td></td> <td>Subtotal (I-squared = 74.1%, p = 0.021)</td>					Subtotal (I-squared = 74.1%, p = 0.021)
Name of the state is the st					
Numin Numin <th< td=""><td></td><td></td><td></td><td></td><td>Colorectal</td></th<>					Colorectal
Number of Party - 1-2001 Jacky - 1/2010 Jacky - 1/2010 Jacky - 1/2010 N 1-2001 2-2001 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
ه، الالجالي الجالي		T			
h H	aqua uu - o.u.u, p - o.000)	Ψ !	0.00 (0.00, 1.17)	10.04	
Automic 1.4 dot 1.41 1.7 Automic 1.4 dot 1.41 1.4 Automic 1.4 dot 1.41 2.4 Automic 2.4					
دلماتان 12.857.161 17 12.857.161 17 12.857.161 17 12.857.161 12.857 10.9	3)		1.85 (0.34, 10.20)	1.85	Subtotal (I-squared = 76.7%, p = 0.014)
میست ۲۰۰۰ میست ۲۰۰۰۰ میست ۲۰۰۰۰ میست ۲۰۰۰۰ میست ۲۰۰۰۰	A. (2011)				
	2010)		1.20 (0.25, 5.69)	1.97	Liver
Subticul	squared = 0.0%, p = 0.806)	\Leftrightarrow	1.10 (0.65, 1.85)	6.59	
No. J. 2. (0.1.4.7.0) 2.4 2. (0.1.4.7.0) 3.1 2.4 3.1<(0.1.4.7.0)					
Image: State 12, 20, 20, 20, 20, 20, 20, 20, 20, 20, 2					
Markan (1990) And (1970) 24 Markan (1990) Markan (1990)					
A. (1) ¹ 3 ar (1, 1, 2a) 3 ar (1, 1, 2a) 1 ar (1, 2a) 1 ar (2a)					
المراكبة		ŏ .			
wighting 2016 11.4 4.30 13 Subbial (4squared = 73.5%, p = 0.008) cripting 40 cpt.37.30 24 cripting 40 cpt.37.30 24 cripting 200 01.4 4.30		Ť 1			Jäämaa-Holmberg, Salla (2019)
wing 2000) 220 (01.4.30) 120		1			
Diff 4 4 6 20 - 20 j 2 4 6 20					
cp(0) 30 32 de 07, 520 34 33 de 07, 524 35 de 07, 524 35 de 07, 524 34 34 de 07, 524 35 de 07, 524 35 de 07, 524 34 35 de 07, 524 35 de 07, 524 35 de 07, 524 34 36 de 07, 524 35 de 07, 524 35 de 07, 524 34 37 de 07, 524 36 de 07, 524 34 34 38 de 07, 524 36 de 07, 524 34 34 39 de 07, 524 34 34 34 34 39 de 07, 524 34 36, 524 34 34 34 39 de 07, 524 34 36, 35, 324 34 <td>-squared = .%, p = .)</td> <td></td> <td>2.20 (0.11, 44.38)</td> <td>1.03</td> <td>Kitney</td>	-squared = .%, p = .)		2.20 (0.11, 44.38)	1.03	Kitney
(2010) 340 (20.7.30) 274 (313) 340 (20.7.30) 254 (314) 340 (20.8.40) 254 (316) 374 (20.8.40) 254 (317) 374 (20.8.40) 254 (316) 374 (20.8.40) 254 (317) 374 (20.8.40) 254 (318) 264 254 (316) 264 (20.8.40) 264 (316) 264 (20.8.40) 264 (316) 264 (20.8.40) 264 (316) 264 (20.8.40) 264 (316) 264 (20.8.40) 264 (316) 164 (20.8.40) 264 (316) 164 (20.8.40) 264 (316) 164 (20.8.40) 264 (316) 164 (20.8.40) 264 (316) 164 (20.8.40) 264 (316) 164 (20.8.40) 264 (316) 164 (20.8.40) 264 (316) 164 (20.8.40) 264 (316) 164 (20.8.40) 264 (316) 164 (20.8.40) 264					
13) 2.36 @7.5%) 5.6 Marg (27) 3.46 @7.5%) 5.6 Marg (27) 5.96 @7.5%) 5.26 Marg (27) 5.96 @7.5%) 5.26 Marg (27) 5.97 @7.5%) 5.26 Marg (27) 5.97 @7.5%) 5.26 Marg (27) 5.96 5.96 (1.5%) Marg (27) 5.96 5.96 (1.5%) Marg (27) 5.96 5.96 (1.5%) Marg (27) 5.96 (1.5%) 5.96 (1.5%) Marg (27) 5.9	(2040)				
base (307) a) if et (00, 80 (0) 2.34 Substant (-squared = 71, 55, p = 0, 0.30) c, (207) 226 (23, 361) 2.34 Substant (-squared = 71, 55, p = 0, 0.30) ragged > 24, 24, 34, 10 234 Substant (-squared = 71, 55, p = 0, 0.30) ragged > 24, 24, 34, 10 234 Substant (-squared = 71, 55, p = 0, 0.30) ragged > 24, 24, 34, 10 234 Substant (-squared = 71, 55, p = 0, 0.30) ragged > 24, 24, 34, 10 234 Substant (-squared = 71, 55, p = 0, 0.30) ragged > 24, 24, 34, 10 234 Substant (-squared = 71, 55, p = 0, 0.30) ragged > 24, 24, 34, 10 234 Substant (-squared = 71, 55, p = 0, 0.30) ragged > 24, 24, 34, 10 24 Substant (-squared = 71, 55, p = 0, 0.30) ragged > 24, 74, 10, 12, 13 24 Substant (-squared = 71, 55, p = 0, 0.30) ragged > 24, 74, 10, 12, 13 24 Substant (-squared = 71, 55, p = 0, 0.30) ragged > 24, 74, 10, 12, 13 24 Substant (-squared = 71, 55, p = 0, 0.30) ragged > 24, 74, 10, 12, 13 24 Substant (-squared = 46, 55, p = 0, 154) ragged > 24, 74, 10, 12, 13 24 Substant (-squared = 0, 55, p = 0, 0.31) ragged >					
Num (2017) A 264 (1, 11, 23.) 264 (2, 21.) Subbal (1, squard = 7, 15.%, p = 0.030) my (2015) 24, 24, 24.99 235 Bladder my (2015) 74, (24, 24.99) 236 Bladder my (2017) 190 (10.16, 24.27) 2.44 Subbal (1, squard = 7, 15.%, p = 0.030) ris (mpthoma 74, (24, 24.99) 2.56 Subbal (1, squard = 7, 15.%, p = 0.030) ris (mpthoma 74, (24, 24.99) 2.56 Subbal (1, squard = 7, 15.%, p = 0.030) ris (mpthoma 74, (24, 24.97) 2.44 Subbal (1, squard = 7, 15.%, p = 0.030) ris (mpthoma 74, (24, 24.97) 2.44 Subbal (1, squard = 7, 15.%, p = 0.030) ris (mpthoma 74, (24, 24.97) 2.44 Subbal (1, squard = 7, 15.%, p = 0.154) ris (mpthoma 2.44 2.26 Jiang, Y, (2010) Jiang, Y, (2010) ris (mpthoma 2.26 2.26 Jiang, Y, (2010)			2.36 (0.97, 5.74) 3.10/1.00, 9.60)	2.55	
ch. (2011) 200 (23), 301) 244 sequence = 0.2 Kh, p = 0.037) 407 (23), 417) 158 sequence = 0.2 Kh, p = 0.037) 1900 (66, 62, 422) 244 y = ymptamia 1900 (66, 62, 423) 284 y = ymptamia 294 294 y = ymptamia <t< td=""><td></td><td></td><td></td><td></td><td>Subtotal (I-squared = 71.5%, p = 0.030)</td></t<>					Subtotal (I-squared = 71.5%, p = 0.030)
mp (2016) 24, 24, 24, 16) 25 spacer = 0 26, 70, 06, 12 36 spacer = 0 26, 70, 06, 12 26 spacer = 0 26, 70, 06, 12 264 spacer = 0 26, 70, 746, 12 264 spacer = 0 26, 70, 746, 12 276 spacer = 0 26, 70, 746, 12 278 spacer = 0 26, 75, 746, 12 283 spacer = 0 26, 75, 746, 12 283 spacer = 0 26, 75, 746, 12 283 spacer = 0 26, 7		-			
spanner = 9 % p. p - 0.037) 47 @ 70. 6.12) 9.68 Kallerman, Lisa (2009) Jang. Y. (2010) Sing (57) 244 7.69 (74. 10.53) 244 Jang. Y. (2010) Jang. Y. (201		· · · · ·	7.84 (2.54, 24.19)	2.35	Bladder
in partona in partona <td></td> <td></td> <td>4.07 (2.70, 6.12)</td> <td>15.65</td> <td></td>			4.07 (2.70, 6.12)	15.65	
Number Description Nature Telescope (2019) Nature Telescope (2019) Jain Subtrait Jain Subtrait<		-			
mining control mining contro mining control mining					
aise (2017) aise (202, 11.60) 2.58 1.400, 004, 0.4039) 2.94 A. (2011) 7.79, 600, 68.60) 2.94 aise (2014) 2.94 aise (2017) 2.94 aise (2017) 2.94 aise (2017) 2.93 aise (2017) 2.94 aise (2016) 2.94 aise (2017) 2.94		•	19.80 (16.18, 24.22)		
as Pau (2019) 140 (006, 40.28) 0.99 77.96 (006, 80.00) 2.96 as do (3.10) 2.96 30 (201) 2.90 (0.17, 57.40) 2.96 9) 2.90 (0.17, 57.40) 2.96 9) 3.00 (201, 15.90) 2.96 9) 5.00 (0.17, 157.40) 2.96 9) 5.00 (0.17, 157.40) 2.96 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10		· •			Subtotal (I-squared = 46.6%, p = 0.154)
A (001) 7.9 (600, 8.00) 2.94 Inon-Hodg/ins lymphoma Inon-Hodg/ins lymphoma mater construction 8.46 (6.04, 156.66) 12.35 Inon-Hodg/ins lymphoma Inon-Hodg/ins lymphoma mater construction 3.84 (6.04, 156.66) 12.35 Inon-Hodg/ins lymphoma Inon-Hodg/ins lymphoma mater construction 3.84 (6.04, 156.66) 12.35 Inon-Hodg/ins lymphoma Inon-Hodg/ins lymphoma mater construction 3.84 (6.04, 156.66) 12.35 Inon-Hodg/ins lymphoma Inon-Hodg/ins lymphoma mater construction 3.84 (6.04, 156.66) 12.35 Inon-Hodg/ins lymphoma Inon-Hodg/ins lymphoma mater construction 3.84 (6.04, 156.66) 12.35 Inon-Hodg/ins lymphoma Inon-Hodg/ins lymphoma mater construction 1.45 (156.83) 2.94 2.94 1.96 Inon-Hodg/ins lymphoma Inon-Hodg/ins lymphoma mater construction 1.85 (156.83) 2.94 2.94 1.96 Inon-Hodg/ins lymphoma Inon-Hodg/ins lymphoma <td></td> <td></td> <td></td> <td></td> <td></td>					
Note State St					non-Hodgkin's lymphoma
mail add (67, 15, 74, 61) 276 3) 52.00 (16, 71, 57, 40) 278 5) 55.00 (45.3, 72.40) 233 100 15.00 (16, 50, 27.0) 16.00 101 15.00 (16, 50, 27.0) 16.00 101 15.00 (16, 50, 27.0) 16.00 101 16.00 16.00 101 16.00 16.00 101 16.00 16.00 101 16.00 16.00 101 16.00 16.00 101 16.00 16.00 101 16.00 16.00 101 16.00 16.00 102 16.00 16.00 103 16.00 16.00 100 16.00 16.00 100 16.00 16.00 100 16.00 16.00 100 16.00 16.00 100 16.00 16.00 100 16.00 16.00 100 16.00 16.00 100 16.00 16.00 100 16.00 16.00 100 16.00 16.00 100 16.00 10.00 100 10.00 100<					
a kin carder 22.00 (16.71, 57.49) 279 pr (2077) 75.00 (45.31, 72.40) 233 pr (2077) 263 234 pr (2077) 263 234 pr (2077) 263 234 pr (2077) 263 264 pr (2077) 263 264 pr (2077) 263 264 pr (2077) 263 264 pr (2077) 264 264 pr (2077) 263 264 pr (2077) 263 264 pr (10.77,46700) 264 264 pr (10.77,46700) 101 264 pr (10.77,46700) 141 264 pr (10.77,46700) 141 264 pr (10.74,6700)	quaree - ee.e.a, p - e.0007	\sim	6.68 (0.04, 10.00)	12.30	
1) 3240 (18.71, 17.49) 2.79 Subtrial (1-squared = 0.0%, p = 0.5/2) 100 755 (453.724) 2.83 101 16.80 (18.8, 12.93) 2.94 1010 16.80 (18.8, 12.93) 2.94 1010 16.90 (19.1) 2.94 1010 16.90 (19.1) 16.90 (19.1) 1010 304 (207, 14.47) 2.94 1010 304 (207, 14.47) 2.94 1010 14.40 (18.19.69) 14.1 1010 304 (207, 14.47) 14.1 1010 304 (207, 14.47) 14.1 1010 14.40 (18.19.69) 14.1 1010 304 (207, 14.47) 14.1 1010 304 (207, 14.47) 14.1 1010 304 (207, 14.47) 14.1 1010 14.40 (18.19.69) 14.1 1010 304 (207, 14.47) 14.1 1010 304 (207, 14.47) 14.1 1010 14.1 10.0 1010 14.1 10.0 1010 14.1 10.0 1010 14.1 10.0 1010 14.1 10.0 1010 14.1 10.0 1010 14.1 10.0 1010 14.1 <td>ma skin cancer</td> <td></td> <td></td> <td></td> <td></td>	ma skin cancer				
ris (307) 750 (453, 72.40) 2.93 ris (307) ris (307) 2.93 ris (307) ris (30, 84, 71.30) 2.94 ris (307) 1.50 Kellerman, Lisa (2009) ris (307, 74, 67.00) 1.51 ris (307, 74, 67.00) 1.51 <td></td> <td></td> <td></td> <td>2.79</td> <td>Subtotal (I-squared = 0.0%, p = 0.5/2)</td>				2.79	Subtotal (I-squared = 0.0%, p = 0.5/2)
310) 18.50 (198, 5220) 298 Kellerman, Lisa (2009) Jaing, Y. (2010) Jaing, Y. (2010) Jaing, Y. (2010) Jaing, Y. (2010) Jaing, Y. (2010) other Odergand (2010) 304 (207, 446) 2.88 Subtotal (I-squared = 0.0%, p = 0.910) under 0.48, y, p = 0.000) 304 (207, 446) 2.84 Overall (I-squared = 98.0%, p = 0.900) under 0.48, y, p = 0.000) 474 (9.25, 692) 100.00 NOTE: Weights are from random effects analysis	aria (2017)		57.50 (45.33, 72.94)	2.93	
spagewed = 98, 1%, p = 0.000) spagewed = 93, 1%, 274, 67, 699 11.81 Line (Local) (Arr, 134) Line (Local) (Arr,					
)) 304(207,146) 28 Jamas-Holmberg, Salla (2019) Jämas-Holmberg, Salla (2019))) 180 (0.15, 1860) 14 -), p = 0.660) 180 (0.15, 1860) 14 -), p = 0.660) 0 1/4 - (Jamas-Holmberg, Salla (2019) - - (Jam		•			Kellerman, Lisa (2009)
))))))))))))))	quared = 98.1%, p = 0.000)		39.31 (17.74, 87.09)	11.61	
3) 304 (207, 446) 288 Subtolal (l-squared = 0.0%, p = 0.910) 41 1 30 (1.8, 18, 100) 1.41 guard = 0.80, p = 0.000) 474 (12.8, 692) 100.00 guard = 0.80, p = 0.000) 474 (12.8, 692) 100.00					
Index Index Index Index Overall (I-squared = 98.0%, p = 0.000) Index squared = 0.000, p = 0.0000 474 (a.25, 6.92) 100.0 NOTE: Weights are from random effects analysis Index	2				
spanna = 0.0%, p. = 0.000) 3.00 (20, 4.37) 4.29 Overall (I-squared = 98.0%, p = 0.000) Image: Constraint of the standard of the sta					
naver de la SE, p = 0.000) A 74 (3.25, 6.62) 100.00 NOTE: Weights are from random effects analysis					
	adamen - 0.0 %, k - 0.000)		300 (200, 4337)	4.20	Overall (I-squared = 98.0%, p = 0.000)
	quared = 98.8%, p = 0.000)		4.74 (3.25, 6.92)	100.00	NOTE: Weights are from random effects analysis
		Ţ			Hore: Horgeo are non random eneus anarysis
	or one norm removant and CBS attrativals				.00917 1

% Weight

4.44

4.44 8.88

4.41

4.43

8.84

3.20

4.23 3.81

11.23

3.93 3.91

4.09

11.93

3.20

3.20

4.12

4.33

4.30

12.76

3.59

4.00

4.24

3.18

3.53 4.03

10.74

4.41

4.38

8.79

3.93

3.93

3.92

11.79

100.00

11.83

ES (95% CI) 2.70 (2.29, 3.18)

6.00 (5.34, 6.75) 4.03 (1.84, 8.82)

51.90 (39.58, 68.05)

85.20 (70.34, 103.20)

67.14 (41.32, 109.09)

5.40 (0.99, 29.58)

4.30 (2.31, 8.02)

1.00 (0.37, 2.70) 0.60 (0.22, 1.64)

3.70 (1.64, 8.33)

1.35 (0.44, 4.12)

3.30 (0.61, 18.00)

3.30 (0.61, 18.00)

0.95 (0.44, 2.05)

2.00 (1.26, 3.16)

3.90 (2.36, 6.45)

2.04 (1.00, 4.17)

2.10 (0.56, 7.94)

2.90 (1.16, 7.22)

9.50 (5.19, 17.40)

4.32 (1.61, 11.60)

0.69 (0.12, 3.86)

1.10 (0.28, 4.40)

3.50 (1.46, 8.41) 1.69 (0.61, 4.65)

22.70 (17.44, 29.54)

25.70 (18.27, 36.14)

23.78 (19.30, 29.29)

3.10 (1.16, 8.30)

2.80 (1.04, 7.52)

3.80 (1.40, 10.29)

3.20 (1.81, 5.67)

4.56 (2.57, 8.08)

26.30 (8.60, 80.47) 8.37 (2.43, 28.91)

Α

Figure S7: Forest plots for cancers in heart transplant recipients at different ages. Younger than 50 years (A), and older than 50 years (B).

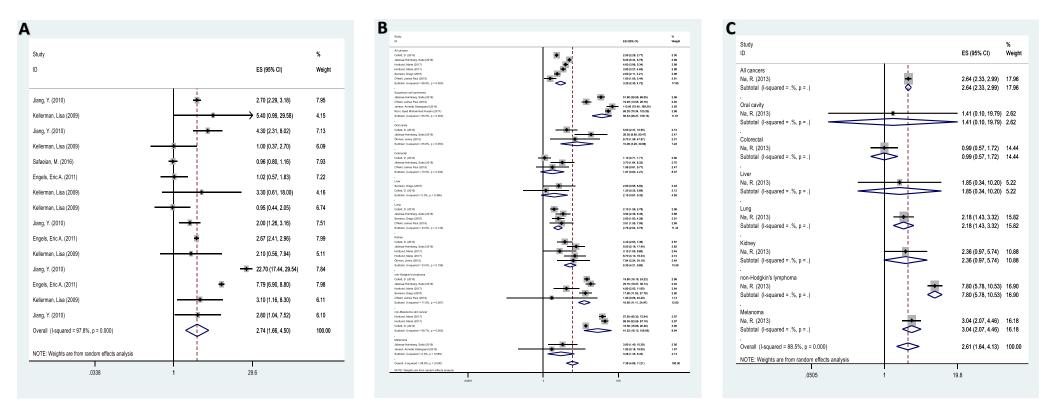


Figure S8: Forest plots for cancers in heart transplant recipients at different regions. South American (A), European (B), and Oceania (C).

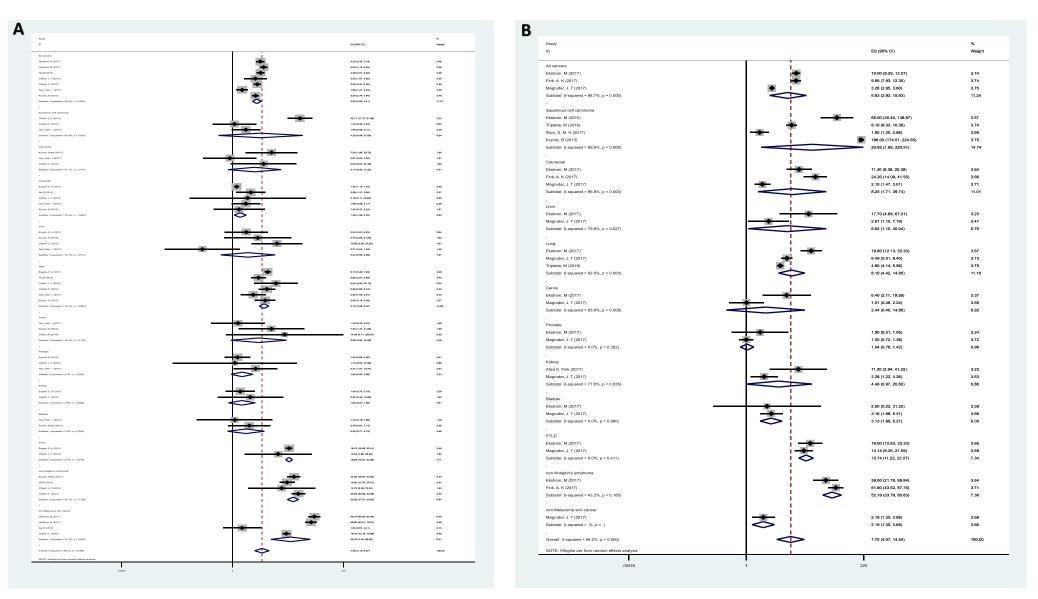
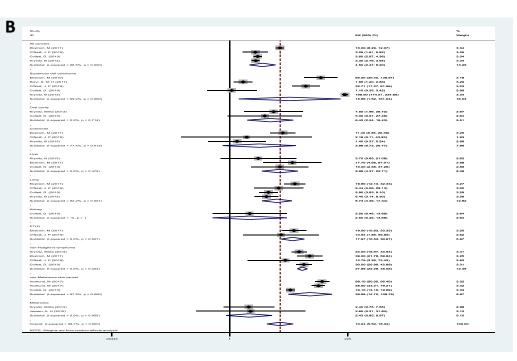



Figure S9: Forest plots for cancers in lung transplant recipients at different ages. Younger than 50 years (A), and older than 50 years (B).

udy D	ES (95% CI)	% Weight
I cancers	-	
ortlund, M (2017)	4.20 (3.40, 5.19)	5.29
ortlund, M (2017)	5.00 (4.15, 6.03)	5.31
nk, A. K (2017)	9.90 (7.93, 12.35)	5.29
agruder, J. T (2017)	3.26 (2.95, 3.60)	5.34
ubtotal (I-squared = 96.5%, p = 0.000)	5.07 (3.21, 8.02)	21.23
quamous cell carcinoma		
iplette, M (2019)	8.10 (6.33, 10.36)	5.27
ubtotal (I-squared = .%, p = .)	8.10 (6.33, 10.36)	5.27
olorectal		
ngels, E. A (2011)	1.24 (1.15, 1.34)	5.35
nk, A. K (2017)	24.20 (14.09, 41.55)	4,97
agruder, J. T (2017)	2.10 (1.47, 3.01)	5.18
ubtotal (I-squared = 98.3%, p = 0.000)	3.88 (0.98, 15.41)	15.50
ver	i	4.02
ngels, E. A (2011)	2.04 (0.67, 6.23)	
agruder, J. T (2017)	2.81 (1.10, 7.19)	4.33
ubtotal (I-squared = 0.0%, p = 0.667)	2.46 (1.20, 5.05)	8.35
ung		
ngels, E. A (2011)	6.13 (5.20, 7.23)	5.32
agruder, J. T (2017)	6.49 (5.01, 8.40)	5.26
iplette, M (2019)	4.80 (4.14, 5.56)	5.33
ubtotal (I-squared = 69.4%, p = 0.038)	5.67 (4.68, 6.87)	15.91
	Î I	
idney	1.49 (0.70, 3.19)	4.64
ngels, E. A (2011)		4.64
liza K. Fink (2017)	11.00 (2.94, 41.22)	
agruder, J. T (2017)	2.28 (1.22, 4.26)	4.85
ubtotal (I-squared = 69.8%, p = 0.036)	2.84 (1.16, 6.97)	13.14
TLD		
ngels, E. A (2011)	18.73 (15.65, 22.41)	5.31
agruder, J. T (2017)	14.14 (9.26, 21.59)	5.11
ubtotal (I-squared = 30.3%, p = 0.231)	17.42 (13.69, 22.17)	10.42
on-Hodgkin's lymphoma	- I	
nk, A, K (2017)	61.80 (43.52, 87.75)	5,19
nk, A. K (2017) ubtotal (I-squared = .%, p = .)	61.80 (43.52, 87.75)	5.19
abiotal (I-squared = .%, p = .)	61.80 (43.52, 87.75)	0.19
on-Melanoma skin cancer		
agruder, J. T (2017)	2.19 (1.30, 3.69)	4.99
ubtotal (I-squared = .%, p = .)	2.19 (1.30, 3.69)	4.99
verall (I-squared = 98.8%, p = 0.000)	5.51 (3.52, 8.61)	100.00
OTE: Weights are from random effects analysis		

Α

%

Weight

23.02

23.02

18.00

18.00

21.82

21.82

21.71

21.71

15.44

15.44

100.00

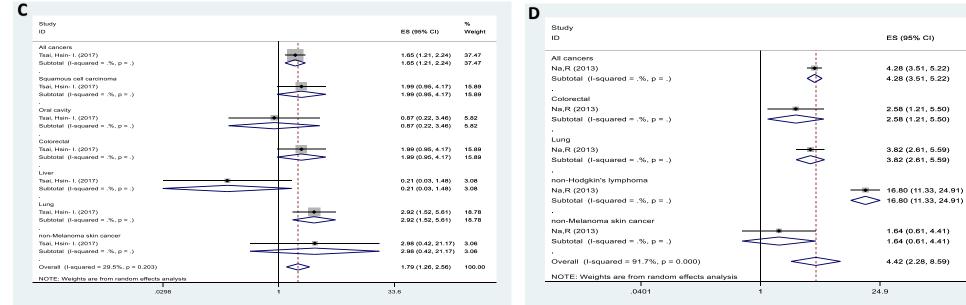
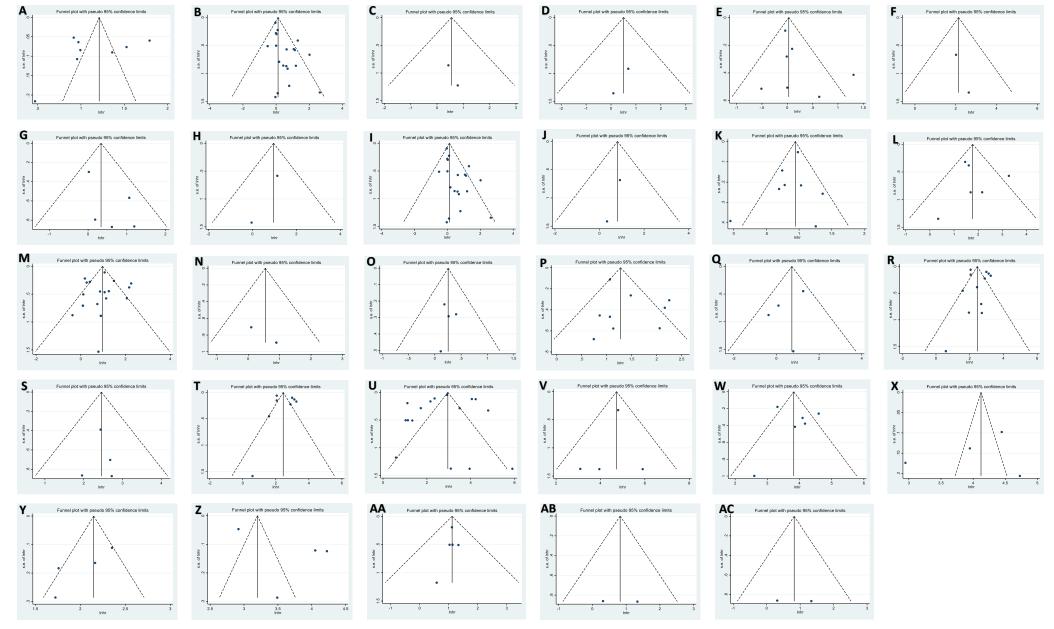
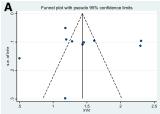
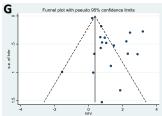





Figure S10: Forest plots for cancers in lung transplant recipients at different regions. South American (A), European (B), Asian (C) and Oceania (D).

Figure S11: Sensitivity analysis for cancers in heart transplantation. All cancer (A), digestive system (B), oesophagus (C), stomach (D), colorectum (E), anus (F), liver (G), pancreas (H), respiratory system (I), pharynx and larynx (J), lung(K), oral cavity (L), reproductive and urinary systems (M), breast (N), prostate (O), kidney (P), bladder (Q), lymphatic and hematological systems (R), Hodgkin's lymphoma (S), non-Hodgkin's lymphoma (T), integumentary system (U), Kaposi sarcoma (V), lip (W), squamous cell carcinoma (X), basal cell carcinoma (Y), non-melanoma skin cancer (Z), melanoma (AA), neurological (AB), and brain (AC).

Funnel plot with pseudo 95% confidence limits

ō

2

Inhr

Funnel plot with pseudo 95% confidence limits

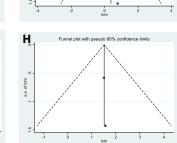
3 Inhr

4

2

M

ŗ

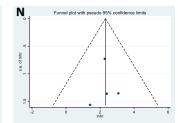

s.e. of

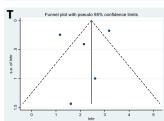
S

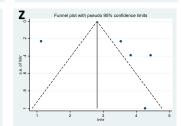
s.e. of Inhr 4

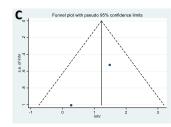
Y

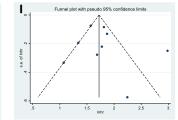
0.0

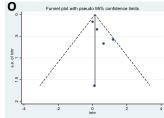

Funnel plot with pseudo 95% confidence limits

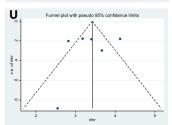

. .

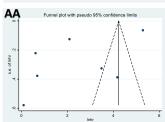

. .

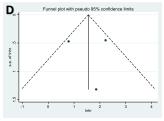

•

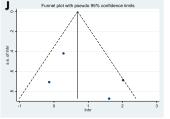

В

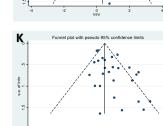


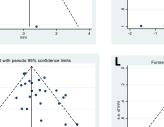




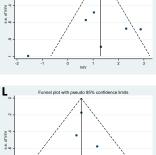








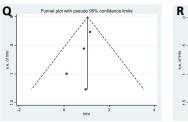
Funnel plot with pseudo 95% confidence limits


Ε

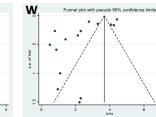
s.e. of Inhr

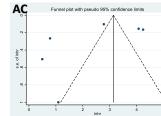
. .

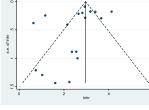
F

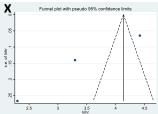


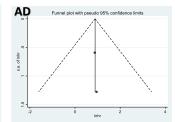
.

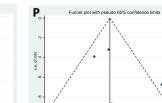

, Ó

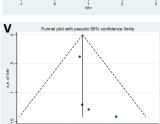

Funnel plot with pseudo 95% confidence limits


Funnel plot with pseudo 95% confidence limits




0 John





ò

-2

AB

s.e. of Inhr .2

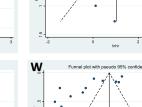
Inhr

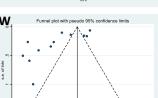
Funnel plot with pseudo 95% confidence limits

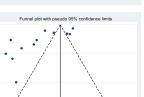
.

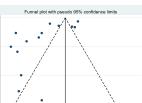
2.5

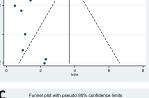
2 Inhr

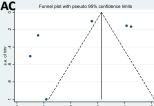

ò


1.5




2


ż



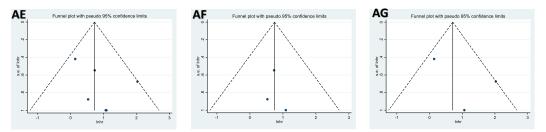


Figure S12: Sensitivity analysis for cancers in lung transplantation. All cancer (A), digestive system (B), oesophagus (C), stomach (D), colorectum (E), liver (F), respiratory system (G), pharynx and larynx (H), lung(I), oral cavity (J), reproductive and urinary systems (K), breast (L), cervix (M), vulva and vagina (N), prostate (O), kidney (P), bladder (Q), lymphatic and hematological systems (R), PTLD (S), Hodgkin's lymphoma (T), non-Hodgkin's lymphoma (U), leukemia (V), integumentary system (W), skin cancer (X), Kaposi sarcoma (Y), lip (Z), squamous cell carcinoma (AA), basal cell carcinoma (AB), non-melanoma skin cancer (AC), melanoma (AD), neurological (AE), brain (AF), and thyroid (AG).