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1. Experimental procedures 24 

Source of inoculum. Lake Matano is a metal-rich, ancient ocean analog with an active Mn cycle 25 

(1, 2). Organic carbon in Lake Matano is mostly mineralized via methanogenesis (3). A 15-cm 26 

sediment core from 200 m water depth in Lake Matano, Sulawesi Island, Indonesia 27 

(02°26′27.1′′S, 121°15′12.3′′E; in situ sediment temperature ~27°C) was sampled in November 28 

2014 and sub-sampled at 2.5-cm increments. Sediments were sealed in gas-tight Mylar bags with 29 

no headspace (4) and stored at 4°C for ~1 year.  30 

 31 

Inoculation of enrichment cultures. Mylar bags containing sediment samples were opened in 32 

an anoxic chamber (97% N2 and 3% H2; Coy Laboratory Products, Grass Lake, MI, USA). 33 

Sediments from each 2.5 cm subsample were transferred to 160 mL serum bottles, diluted 1:2 34 

with minimal media, and pre-incubated for 45 days at 30°C in 100% N2 headspace to deplete 35 

endogenous organic carbon, electron donors, and electron acceptors. Sediments from the top 5 36 

cm were subsequently mixed together and transferred to defined medium at a 1:20 dilution 37 

(transfer 1, day 45) amended with Mn(III) and a headspace of CH4:N2 (50:50) or N2. Subsequent 38 

transfers were carried out in the same way (transfer 2, day 91; transfer 3, day 183; transfer 4, day 39 

230) for CH4 headspace cultures, with heat-killed and substrate controls generated each time 40 

using the newly transferred culture (10% v/v dilution). By day 210, enrichments appeared to be 41 

sediment-free, except for microparticles. The fifth transfer (day 245) inoculated using non-42 

labeled methane, was used entirely for metaproteomic analysis after visual confirmation of active 43 

Mn(III) reduction in the live enrichment bottles (see Figs. 1, S1).  Two 100 mL bottles were 44 

pooled together two obtain 200 mL duplicates for each treatment, centrifuged (10,000 x g, 30 45 
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min, 4°C) and supernatant-free pellets were stored at -80°C until protein extraction and 46 

metaproteomic sequencing. 47 

Defined medium consisted of modified artificial freshwater medium lacking nitrate and 48 

sulfate, developed based on the pore water composition of Lake Matano sediments as described 49 

in prior work (5). The medium contained 3 mM NaHCO3, 825 μM MgCl2, 550 μM CaCO3, 225 50 

μM NH4Cl, 5 μM Na2HPO4, 3.5 μM K2HPO4, and a trace metal solution (1 nM CuCl2, 1.5 nM 51 

Na2MoO4, 2.5 nM CoCl2, 23 nM MnCl2, 9 nM FeCl3, 4 nM ZnCl2, 0.091 μg/L vitamin B12, 52 

0.091 μg/L biotin, and 18.18 μg/L thiamine. Vitamins were filter-sterilized and added after 53 

autoclaving. Bottles were stoppered with sterile black bromobutyl stoppers (Geo-Microbial 54 

Technologies, Ochelata, OK, USA; pre-boiled in 0.1 N NaOH), and crimped with aluminum 55 

seals. An acetate-free 10 mM stock of Mn(III)-pyrophosphate was prepared using solid Mn2O3 56 

(99% purity, 325 mesh powder, Sigma Aldrich) instead of Mn(III)-acetate (6) and filter-57 

sterilized. Mn(III)-pyrophosphate was added at a final concentration of 1 mM. Bottles were 58 

purged with 99.9% N2 for 20 min, and were appropriate, CH4 was injected with a 50% headspace 59 

volume of CH4 at a 1:1 labeled to unlabeled ratio (99.9% CH4 and 99% 13CH4; Cambridge 60 

Isotope Laboratories, Tewksbury, MA, USA). Heat-killed controls were autoclaved prior to 61 

Mn(III) or CH4 addition. All treatments were duplicated, and bottles were incubated in the dark 62 

at 30°C.  63 

Substrate utilization. The benzidine method was used to measure Mn(III) consumption 64 

(7) throughout the transfer 4 enrichment. Methane (13CH4) oxidation was monitored by 65 

measuring 13C enrichment in dissolved inorganic carbon as described in (5). 66 

16S rRNA gene amplicon sequencing. To identify the dominant microbial community 67 

members, we analyzed the microbial community composition of samples taken at the end of each 68 
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enrichment period by sequencing 16S rRNA gene amplicons as described previously (5). Reads 69 

were analyzed using Mothur (8) following its MiSeq standard operating procedure 70 

(https://www.mothur.org/wiki/MiSeq_SOP, accessed November 2017). Merged reads were 71 

dereplicated and aligned to the ARB SILVA SSU database release 123 (July 23, 2015). 72 

Homopolymers longer than 8bp were filtered out. Reads were then clustered into OTUs at 97% 73 

similarity based on uncorrected pairwise distance matrices. OTUs were classified using the ARB 74 

SILVA SSU reference taxonomy database release 123. 75 

Metagenome (DNA) sequencing and assembly. Community DNA was processed using 76 

the Nextera XT DNA Sample Prep kit and sequenced using a paired-end Illumina MiSeq 600 kit. 77 

Raw reads were submitted to NCBI. The accessions for the study and samples in the submission 78 

are PRJNA489678, LakeMatanoMn3_Enrichment (SAMN10343573). The accession numbers 79 

for the N2 headspace experiment and run are LM_Mn(III)_2018 (SRX5007804) and 80 

LakeMatano_11_NoMethane_R1.fastq.gz (SRR8188020), and the accession numbers for the 81 

CH4 headspace experiment and run are LM_Mn(III)_CH4_2018 (SRX5007805) and  82 

LakeMatano_9_Methane_R1.fastq.gz (SRR8188019).  83 

Barcoded sequences were de-multiplexed, trimmed (length cutoff 100 bp), and filtered to 84 

remove low quality reads (average Phred score <25) using Trim Galore! 85 

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). Forward and reverse reads 86 

were assembled using SPAdes (9) with the ‘meta’ option. Metagenomic reads were deposited in 87 

NBCI. Contigs ≥ 500 nt were organized into MAGs based on tetranucleotide frequency and 88 

sequence coverage using MaxBin 2.0 (10). MAG completeness and contamination were 89 

estimated by lineage-specific marker genes using CheckM (11). We obtained one 90 

Betaproteobacteria metagenome-assembled genome (MAG; Rhodocyclales bacterium GT-UBC, 91 
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NCBI accession QXPY01000000) with 99.53% completeness, 0.02% contamination, 60.9% GC 92 

content, and 4,555 protein-coding genes. We provisionally classified Rhodocyclales bacterium 93 

GT-UBC as a new species within the Dechloromonas genus, which we named “Candidatus 94 

Dechloromonas occultata” sp. nov.; etymology: occultata; (L. fem. adj. ‘hidden’), based on its 95 

resistance to cultivation. We also obtained one Deltaproteobacteria MAG (Desulfuromonadales 96 

bacterium GT-UBC; NCBI accession RHLS01000000) with 99.36% completeness, 0.64% 97 

contamination, 59.9% GC content, 3,617 protein-coding genes, and 80% ANI to Geobacter 98 

sulfurreducens. We provisionally named Desulfuromonadales bacterium GT-UBC “Candidatus 99 

Geobacter occultata” sp. nov.  100 

Comparative genomic analysis. The “Ca. D. occultata” MAG was annotated using 101 

RAST. Metabolic pathways were identified in RAST (12-14), and manually checked for 102 

completeness in PATRIC (15), following pathways reported in KEGG 103 

(https://www.genome.jp/kegg/) and MetaCyc (https://metacyc.org/) and confirming potential 104 

new variants in the literature (references where appropriate throughout the manuscript). For 105 

incomplete pathways, the three other genomes of isolated Dechloromonas strains (D. aromatica, 106 

D. denitrificans, and D. agitata) in PATRIC were searched for missing proteins. Central 107 

metabolic and secondary pathways were compared among Dechloromonas spp. and other metal-108 

cycling species using the RAST subsystems option, searching for specific annotated proteins 109 

with RAST, and within PATRIC using the Compare Region Viewer and its heatmap options. 110 

Proteins of interest were characterized in silico based on conserved domains and homology 111 

searches with BLAST and NCBI tools. Localization of proteins was predicted using PSORTb 112 

model ECSVM (16). The synteny of gene clusters containing functional genes of interest were 113 

analyzed using Simple Synteny (https://www.dveltri.com/simplesynteny/cfinder.html, last 114 
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accessed July 2018). Putative multiheme c-type cytochromes (≥3 Cxx(x)CH motifs) were 115 

identified using a previously reported Python script (https://github.com/bondlab/scripts, (17)). 116 

Phylogenetic analysis. The evolutionary history of functional genes was inferred using 117 

MEGA7 (18) with the Maximum Likelihood method based on the JTT matrix-based model (19). 118 

After all gaps were eliminated, initial tree(s) for the heuristic search were obtained automatically 119 

by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated 120 

using a JTT model, and then selecting the topology with superior log likelihood value. The trees 121 

were drawn to scale, with branch lengths measured in the number of substitutions per site and 122 

bootstrap values based on 500 replicates. The synteny of selected genes was determined using 123 

Simple Synteny (20). The evolutionary history of selected whole genomes of Proteobacteria was 124 

reconstructed using GToTree (21) with genomic NCBI IDs as input, retrieved manually. Single-125 

copy genes (SCGs) were identified from a set of 74 single-copy genes. GToTree uses 126 

concatenated alignments of identified SCGs to build the phylogenomic tree with FastTree. The 127 

final tree was viewed and edited in FigTree V1.4.4 (22). 128 

Protein digestion and desalting. To solubilize oxidized metal precipitants and 129 

precipitate proteins, 100 µL of 20% trichloroacetic acid (4°C) was added to each sample and 130 

incubated on ice for 1 hour. Bacterial cells and soluble proteins were pelleted at 10,000 x g (1 hr, 131 

4°C). Cells were then resuspended in 100 µL of 6 M urea in 50 mM NH4HCO3 and lysed using a 132 

sonicating probe (3 watts; 15s, 5 times), alternating in dry ice in ethanol to keep the sample cold.  133 

Sonication, digestion, and desalting proceeded as previously described (23). Briefly, after 134 

sonication and protein quantification using the Bradford assay (Bio-Rad, Hercules, CA), tris(2-135 

carboxyethyl)phosphine (TCEP) was added to reduce samples (1 hr, 37°C), and iodoacetamide 136 

was used as the alkylating agent (1hr, in dark, RT). NH4HCO3 and HPLC-grade methanol were 137 
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added to each sample to dilute the urea to allow the trypsin digestion to proceed. Trypsin was 138 

added in a 1:20 ratio and incubated overnight at RT. The digestion was stopped by adding small 139 

aliquots of 10% formic acid until a pH < 2 was achieved. Prior to desalting the peptides, samples 140 

were dried down and reconstituted in 5% acetonitrile with 0.1% trifluoroacetic acid. Desalting 141 

was carried out with MicroSpin C18 columns following the manufacturer’s instructions (The 142 

Nest Group). Peptides were dried and reconstituted in 5% ACN with 0.1% formic acid to achieve 143 

concentrations of 2 µg µL-1. 144 

LC-MS/MS. The mass spectrometry analysis was performed on a QExactive at the 145 

University of Washington Proteomics Resource (Seattle, WA). Samples were separated and 146 

introduced into the mass spectrometer (MS) by reverse-phase chromatography using a 147 

Manufactured PicoTip fused silica capillary column (30 cm long, 75 µm i.d.) packed with C18 148 

particles (Dr. Maisch ReproSil-Pur; C18-Aq, 120 Å, 3 µm) fitted with a 3 cm long, 100 µm i.d. 149 

precolumn (Dr. Maisch ReproSil-Pur; C18-Aq, 120 Å, 3 µm). Peptides were eluted using an 150 

acidified (formic acid, 0.1% v/v) water-acetonitrile gradient (5–35% acetonitrile in 90 min) and 151 

mass spectrometry was performed on a Thermo Fisher (San Jose, CA) QExactive (QE). The top 152 

20 most intense ions were selected for MS2 acquisition from precursor ion scans of 400–153 

1200 m z−1. Centroid full MS resolution data was collected at 70,000 with AGC target of 1E6 154 

and centroid MS2 data was collected at resolution of 35,000 with AGC target of 5E4. Dynamic 155 

exclusion was set to 15 seconds and +2, +3, +4 ions were selected for MS2 using data dependent 156 

acquisition mode (DDA). Quality control (QC) peptide mixtures were analyzed every fifth 157 

injection to monitor chromatography and MS sensitivity. Skyline was used to determine that QC 158 

standards did not deviate >10% through all analyses (24). The mass spectrometry data were 159 

deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset 160 
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identifier PXD011642.  161 

Protein identification and data analyses. Peptide identifications from mass 162 

spectrometry data were completed using Comet (25). The protein database used for correlating 163 

spectra with protein identifications was generated from the metagenome by Prokka (26), and 164 

from each individual bin using RAST (13) and included the MAGs to improve peptide spectra 165 

correlations (15). This was then combined with 50 common contaminants and the QC peptides. 166 

Comet parameters included: reverse concatenated sequence database search, trypsin enzyme 167 

specificity, cysteine modification of 57 Da (resulting from the iodoacetamide) and modifications 168 

on methionine of 15.999 Da (oxidation). Concatenated target–decoy database searches were 169 

completed and minimum protein and peptide thresholds were set at P > 0.95 on ProteinProphet 170 

and P > 0.99 on PeptideProphet (27). Protein identifications from the whole-cell lysates were 171 

accepted by ProteinProphet if the above mentioned thresholds were passed, two or more peptides 172 

were identified (PeptideProphet), and at least one terminus was tryptic (27). Calculated false 173 

discovery rates (FDR) were <0.01. Resulting data files were combined and normalized spectral 174 

abundances were calculated in QPROT with Abacus (28). Abacus parameters include initial 175 

probability threshold of 0.5 on peptides, and a minimum protein probability of 0.8. Abacus 176 

provides consistent protein inferences across biological and technical replicates. Abacus spectral 177 

abundance outputs were analyzed with QSpec, a statistical framework within QPROT, to 178 

determine log fold changes between treatments. Log fold change in protein abundances 179 

calculated using QSpec were accepted if >0.5 and Zstatistic score >2.0 (increased abundance 180 

across all replicates) or <-0.5 and Zstatistic score <-2.0 (decreased abundance across all 181 

replicates) (28). Peptide counts were normalized to total peptide counts for each treatment. 182 

Averages of normalized technical replicates were used to compare treatments with and without 183 
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methane. A two-tailed paired t-test was carried out using Excel to test the null hypothesis of no 184 

differential expression among treatments and determine the p-value associated with each change.  185 

Cultivation attempts. Isolation strategies were designed considering the metabolic potential of 186 

“Ca. D. occultata” but failed to isolate the targeted organism. Samples from highly enriched 187 

cultures were inoculated with acetate for denitrification or microaerobic Fe(II) oxidation. For 188 

Fe(II) oxidation, samples were inoculated into two-layered FeS vs. O2 gradient tubes (29), with 1 189 

mM acetate in the top layer. There was no Fe(II) oxidation in Mn(III)-amended treatments. With 190 

O2 addition, visual evidence for Fe(II) oxidation was observed, and a Comamonas spp. with 191 

closest hits to environmental sequences from lake sediment was isolated. With acetate and 192 

Mn(III), a Comamonas aquatica strain was isolated. 193 

  194 
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1. Supplemental Tables 195 
 196 
Table S1. Average nucleotide identity of Dechloromonas species. Numbers in the table 197 
indicate percentage of whole genome nucleotide identity. 198 

 199 

  200 

Dechloromonas 
sp. UBA6271

Dechloromonas 
denitrificans 

ATCC BAA-841

Dechloromonas 
aromatica RCB

Dechloromonas 
sp. GT-UBC1

Dechloromonas 
agitata  is5

Dechloromonas 
sp. UBA5022

Dechloromonas sp. UBA6271 100.00
Dechloromonas denitrificans ATCC BAA-841 80.46 100.00
Dechloromonas aromatica RCB 80.58 82.14 100.00
Dechloromonas sp. strain GT-UBC1 79.65 82.36 80.92 100.00
Dechloromonas agitata  is5 79.28 81.42 81.59 80.80 100.00
Dechloromonas  sp. UBA5022 81.42 82.74 81.90 81.37 81.11 100.00
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Table S2. List of multiheme cytochromes encoded by “Candidatus Dechloromonas 201 
occultata”. Those in bold indicate expressed proteins (see Table 1).   202 
 203 

NCBI ID  Predicted function Heme-binding 
motifs 

Protein 
length (aa) 

RIX41009 NapC-like 4 207 
RIX43626 NapC-like 4 198 
RIX48944 MtoA-2 10 320 
RIX49874 MtoA-1 10 331 
RIX49876 Hypothetical protein 3 127 
RIX49688 OccA 3 327 
RIX49689 OccB 3 343 
RIX49878 OccD  3 175 
RIX49691 OccF 4 289 
RIX49694 OccI 3 139 
RIX49879 OccJ 4 338 
RIX49695 OccL 3 194 
RIX49881 OccM 3 87 
RIX49697 OccP 11 922 
RIX49727 Hypothetical protein 5 695 

 204 
  205 
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Table S3. Genomes containing MtoA, OccP, NapA, NirS, NorB, or cNosZ homologs in 206 
Alpha-, Beta-, and Gammaproteobacteria. “Ecosystem Type” refers to the source of inoculum 207 
for pure cultures or the source of environmental DNA for assembled genome of uncultured 208 
organisms. Spreadsheet is attached as supplemental file.  209 
  210 
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Table S4. Expression levels for “Ca. D. occultata” proteins during Mn(III) reduction with 211 
and without CH4. Peptide counts are normalized to total “Ca. D. occultata” proteins x 10,000. 212 
Blank cells indicate proteins with <5 normalized peptide counts. Gray boxes indicate membrane 213 
proteins with that may be underrepresented by proteomic analyses. SP: signal peptide 214 
(Y:present/N:absent); TMH: numbers of transmembrane helices; # CxxCH: number of heme-215 
binding motifs; P-sort: predicted cellular location. P: periplasm, C: cytoplasm; OM: outer 216 
membrane; IM: inner membrane, E: extracellular; U: unknown. Spreadsheet is attached as 217 
supplemental figure. 218 
  219 
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2. Supplemental Figures 220 

 221 

Figure S1. Taxonomic succession in enrichment culture. Relative abundance of taxa enriched 222 

from samples from Lake Matano sediments over a 335-day period, based on ~200 bp 16S rRNA 223 

gene amplicon sequences. Only live treatments with CH4 and Mn(III) were transferred. (U) 224 

indicates unclassified taxa. 225 

 226 
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 227 

Figure S2. Methane oxidation after the fourth transfer of enrichment cultures. This graph 228 

shows the concentration of methane-derived dissolved inorganic carbon (DIC) in sediment 229 

enrichments amended with 13CH4, calculated based on isotopic enrichment values and total DIC 230 

based on (30). Errors bars represent standard deviation of duplicate measurements.  231 

  232 
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 233 
Figure S3. Phylogeny of “Candidatus Dechloromonas occultata” MAG. The phylogenic 234 

placement of the “Ca. D. occultata” MAG was compared to genomes of Alphaproteobacteria, 235 

Betaproteobacteria and Gammaproteobacteria, with occP and/or mtoA homologs (Table S3). 236 

Environmental MAGs for uncultivated species are labeled with IDs. Genomes without occP on 237 

the phylogeny included Dechloromonas denitrificans (GCA_001551835.1), Dechloromonas 238 

agitata is5 (GCA_000519045.1), Dechloromonas UBA 5017 (GCA_002396525.1), 239 

Dechloromonas UBA 5021 (GCA_002396725.1), and Dechloromonas UBA 5022 240 

(GCA_002396465.1). The deltaproteobacterium Desulfovibrio vulgaris was used as the outgroup 241 

(GCA_000195755.1). Bootstrap values over 50 are shown. GenBank assembly accession numbers 242 

are given in Table S3.  243 
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 244 

Figure S4. Phylogeny of decaheme c-type cytochrome MtoA and synteny of Mto loci. 245 

Maximum likelihood phylogeny of the MtoA protein sequence from “Ca. D. occultata” in 246 

relationship to other MtoA homologs from Beta- and Gammaproteobacteria. Accession numbers 247 

are given in Table S3. Bootstrap support is based on 500 samples. Next to each branch is the 248 

genomic organization of mtoA and neighboring genes in each species, color-coded to represent 249 

function and predicted cellular locations. Species with duplicated clusters are annotated as “x2”. 250 

Inset: left, canonical Mto pathway; right: proposed alternative Mto pathway in “Ca. D. occultata” 251 

and other uncultured Betaproteobacteria; the labels A, B, C, D, X, and Y correspond to MtoA, 252 

MtoB, MtoC, MtoX and MtoY, respectively, with heme counts in parentheses. OM: outer 253 

membrane; IM: inner membrane. 254 

 255 
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 256 

 257 

Figure S5. Phylogeny of undecaheme c-type cytochrome OccP and synteny of Occ loci. The 258 

tree represents the evolutionary history of the OccP protein from “Ca. D. occultata” in relationship 259 

to other OccP homologs from Beta- and Gammaproteobacteria. Accession numbers are given in 260 

Table S3. Note that Gammaproteobacteria bacterium SG8-11 contains multiple copies of the occ 261 

operon, one of which is within the Burkholderiales clade. Branch lengths represent substitutions 262 

per site. Next to each branch is the genomic organization of OccP and neighboring genes in each 263 

strain, color-coded by function.  264 
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 266 

Figure S6. Shared features of the OccS conserved domain in selected Betaproteobacteria. 267 

Alignment of conserved cofactor-binding (heme a, a3, and CuB) histidines and select D and K 268 

proton channel ligands for members of the cytochrome c oxidase subunit I family compared to 269 

OccS. Numbering is for Paracoccus denitrificans.  270 
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 275 

Figure S7. Phylogeny of cytochrome-nitrous oxide reductase (cNosZ) genes and synteny of 276 

the synteny of cNosZ loci. The tree represents the evolutionary history of the cNosZ protein from 277 

“Ca. D. occultata” in relationship to other cNosZ homologs from Beta- and Gammaproteobacteria. 278 

Accession numbers are given in Table 2. Branch lengths represent substitutions per site. Next to 279 

each branch we show the genomic organization of cNosZ and neighboring genes in each strain, 280 

color-coded by function.  281 
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 282 
 283 
Figure S8. Abiotic reactions between Mn(III) and NH4+. Concentrations of NH4+ (circles) and 284 

N2O (triangles) from 0.2 mM NH4+ added to abiotic treatments with (1 mM; closed symbols) or 285 

without (open symbols) added Mn(III) pyrophosphate. Error bars represent standard error where 286 

n=3 (N2O) or n=2 (NH4+). 287 
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 289 

 290 

Figure S9. “Candidatus Dechloromonas occultata” genomic potential and gene expression 291 

during Mn(III) reduction. Key genes involved in central and secondary metabolism including 292 

carbon and nitrogen metabolism, energy generation, and environmental sensing are shown. 293 

Numbers correspond to proteins compiled in table S4. 294 
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 295 

Figure S10.  Comparison of carbon, nitrogen and respiratory metabolic pathways for the 296 

Dechloromonas genus based on three representative strains and “Ca. D. occultata”.    297 

Key enzymesCarbon oxidation
TCA cycle 2-oxoglutarate dehydrogenase 
Anaplerotic metabolism
PEP synthesis Pyruvate:Oxaloacetate transcarboxylase domain protein

Phosphoenolpyruvate synthase / Pyruvate phosphate dikinase
Phosphoenolpyruvate synthase and carboxylase (EC 2.7.9.2)
Phosphoenolpyruvate carboxylase (EC 4.1.1.31)
Pyruvate, water dikinase
Acetate carboxylase

Succinyl-CoA:3-ketoacid-coenzyme A transferase subunit A (EC 2.8.3.5)
Malyl-coA lyase

Carbon fixation (Calvin-Benson cycle) Ribulose bisphosphate carboxylase (EC 4.1.1.39)

Respiration/Fermentation electron donors 
Pyruvate Pyruvate dehydrogenase (EC 1.2.4.1)

Pyruvate formate-lyase (EC 2.3.1.54)
Lactate L-lactate permease and dehydrogenase
Acetate Acetate permease and kinase
Formate Formate dehydrogenase-O, iron-sulfur and major subunit (EC 1.2.1.2)

Formate dehydrogenase O αβγ (EC 1.2.1.2)
Hydrogenases Ni/Fe-hydrogenase HybBCDO (EC 1.12.99.6)

[NiFe] hydrogenase HypBCDEF
NAD-reducing [NiFe] hydrogenase HoxFUYH X(EC 1.12.1.2)
Hydrogen-sensing hydrogenase large subunit (HoxC/HupV)

Storage
Polypohsphate Polyphosphate kinase
Cyanophicin Cyanophicin synthase
Glycogen storage Glycogen synthase, ADP-glucose transglucosylase (EC 2.4.1.21)
Peptide fermentation Indolepyruvate oxidoreductase (EC 1.2.7.8)
h-TCA cycle Succinate dehydrogenase hydrophobic membrane anchor protein

Succinate-semialdehyde dehydrogenase [NAD(P)+] (EC 1.2.1.16)
Sulfur metabolism

Sulfur oxidation protein SoxYZ
Sulfur oxidation protein SoxABCXYZ
Sulfate permease

Adenylylsulfate kinase (EC 2.7.1.25)
Adenylyl-sulfate reductase [thioredoxin] (EC 1.8.4.10)
Anaerobic dimethyl sulfoxide reductase chain A (EC 1.8.5.3)

Secretion 
Type I Type I secretion system, outer membrane component LapEBC

Type I secretion outer membrane protein, TolC family
Type II General secretion pathway Pul/GspDEFGK

Secretion system PulGDEF
General secretion pathway GspDEFGK-like*
General secretion pathway GspDE

Type VI T6SS (ImpABCJFGH, ClpB, other related proteins)
T6SS VgrG protein

Nitrogen metabolism
Periplasmic nitrate reductase (EC 1.7.99.4)
Periplasmic nitrate reductase NapFGH
Respiratory nitrate reductase βγδ (EC 1.7.99.4)
Nitrite reductase [NAD(P)H] (EC 1.7.1.4)
Nitrite reductase (EC 1.7.2.1)

Nitric oxide reduction Nitric-oxide reductase (EC 1.7.99.7) and activation protein NorDQE
Nitrous oxide reduction Nitrous-oxide reductase (EC 1.7.99.6) and maturation proteins NosFYD

Fe-Mo Nitrogenase αβ and cluster NifQNXWEBH 
Nitrogen fixation Nitrogen fixation-related proteins

*D. occultata 's pathway shows 45% identity to that of D. aromatica and D. denitrificans . 

3-Hydroxypropanoate cycle (incomplete)
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 298 

Figure S11. Conserved features of sensor RIX42529 and betaproteobacterial homologs. 299 

Alignment of conserved heme-binding histidines for members of the PAS-O2 sensor family 300 

(FixL, EcDosP, and AxPDE-A1) and two predicted PAS sensors in “Ca. D. occultata” 301 

(RIX42532 and RIX42529).   302 
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