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1. General considerations

All experiments with metal complexes and phosphine ligands were carried out
under an atmosphere of purified nitrogen in a Vacuum Atmosphere glovebox
equipped with a MO 40-2 inert gas purifier or using standard Schlenk techniques. All
solvents were reagent grade or better. All non-deuterated solvents were refluxed over
sodium/benzophenoneketyl and distilled under argon atmosphere. Deuterated solvents
were used as received. All solvents were degassed with argon and kept in the glove
box over 4A molecular sieves. All *H NMR, *C NMR or *P NMR spectra were
recorded on a Bruker AVANCE Ill 300MHz, 400MHz and AVANCE Il HD 500MHz
NMR spectrometer and reported in ppm (8). Chemical shifts were referenced to the
residual solvent peaks (CHCls, *H NMR at 7.26 ppm, *C NMR at 77.16 ppm;
dioxane, *H NMR at 3.71 ppm; TMS, *H NMR at 0.00 ppm;) or an external standard
of phosphoric acid (85% solution in D,0) at 0.0 ppm (**P NMR). NMR spectroscopy
abbreviations: br, broad; s, singlet; d, doublet; t, triplet; g, quartet; m, multiplet. GC
analysis was performed on HP 6890 series GC system with Hp-5 column and
SUPELCO 1-2382 column, flame ionization detector, and N, as carrier gas (Column:
HP-5, 30 m, 320 m, Inlets: 280 °C; Detector: FID 280 °C; Flow: 1 mL/min; Oven:50
°C, hold 8 min; 15 °C/min to 280 °C, hold 2 min.) GC-MS was carried out on HP
6890 / HP 5973 (MS detector) instruments equipped with a 30 m column (Restek
5MS, 0.32 mm internal diameter) with a 5% phenylmethylsilicone coating (0.25 mm)
and helium as carrier gas. IR spectra were recorded on Thermo Nicolet 6700 FT-IR.

Analytical TLC was performed on Merck silica gel 60 F254 plates. The TLC plates
were visualized by treatment with a potassium permanganate (KMnQ,) stain followed
by gentle heating. Complexes Ru-1', Ru-3?, Ru-4', Ru-5°, Ru-6°, Ru-7° were
prepared according to literature procedures. Known thioesters were prepared
according to dehydrogenative coupling of thiols and alcohols (la-1e),? direct
acylation of thiols (1h-1j, 11-10),° or thioesterification of carboxylic acids using DCC
as dehydrating reagent (1k).” Known thiocarbamate 4a-4c were prepared by the

reaction of isocyanate with thiols.®> Known thioamides 5a-5c were prepared according
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to the reported procedures.®*® 1f,” 1g” and 1p° are unreported compounds, which were

synthesized according to the reported procedure.

2. Proposed hydrogenation pathways
HS"
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*Aryl thioaldehyde is more stable than the linear alkyl one which promotes its generation.

Figure S1. Proposed hydrogenation pathway of thioamides.
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Figure S2. Proposed hydrogenative deoxygenation pathways of thioester 1i.
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3. Ester hydrogenation tests

As tested in dioxane, Ru-1 does not catalyze hydrogenation of common esters such
as hexyl and benzyl benzoate. However, Ru-1 catalyzes the hydrogenation of glycol-

derived esters such as its oligoesters and ethylene diacetate, as published (Fig S3).
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Figure S3. Hydrogenation of general esters.

We selected ethylene diacetate as example to test its hydrogenation in the current
system. The results show that in the absence of thiol and thioester, Ru-1 catalyzes its
hydrogenation, although in a low yield (12% yield of EtOH in 16 h). However, under
the conditions of hydrogenation of a thioester, no reaction was observed with ethylene
diacetate while full conversion of thioester 1a was still achieved (Fig S4). The result
indicates that that the presence of thiol in the system inhibits ester hydrogenation,
possibly by retarding coordination of the ester to the ruthenium center.

)‘i Ru-1 (1 mol%) j\ HO
O/\/O\H/Me Me” So- O+ ~">pH + EtOH
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0.5 mmol ° dioxane mixture 1 O O
N
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(e} Pro,P—RU—FP'Pr,
HexSH (2 mol%) \
Ph/\)J\SHeX + M )J\o/\/o Me Ph/\/\OH + Hex—SH D/ CcO
1a e g 20 bar Hy, 150 °C, 16 h 039 90% Ru-1
05 mmol 0.5 mmol ° dioxane ’ ’

no reaction

Figure S4. Ethylene diacetate hydrogenation experiments in the absence and presence
of thioester.

The current conditions are suitable for all of ester-thioester substrates although we
didn’t observe any hydrogenation of the ester group in 1d and 1p even in the absence

of catalytic amount of thiol.
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4. Condition Optimization

(0]
Ph SHex 2 h™ >""OH + Hex-SH
1a 2a 3a
X
. N\ . . N\ Ci
'Pro,P—Ru—~P'Pr, 'Pro,P—Ru—~P'Pr,
H Y H Y
CcO CcO
Ru-1 Ru-4
X X
» »
HN HN
‘BuyP—Ru—P'Bu, '‘Bu,P—Ru—NEt,
éoCl C|:OC|
Ru-5 Ru-7
T H, pressure  conversion yields
entry  catalyst ooy (pan) 1a (%)? 2a/3a (%)°
1 Ru-1 150 40 >99 92/85
2 Ru-3 150 40 96 88/91
3 Ru-4 150 40 19 14/15
4P Ru-5 150 40 34 24°/25
5 RuU-6 150 40 20 6°/14
6° Ru-7 150 40 21 18°/20
7 Ru-1 150 30 64 58/56
8 Ru-1 135 40 80 70/67
9 Ru-1 150 30 >99 93/90
10¢ Ru-1 150 20 >99 94/86
11¢ Ru-1 150 10 92 86/89
12¢ Ru-1 135 30 >99 88/87
13¢ Ru-1 135 20 >99 90/92
14¢ Ru-1 120 20 78 67/65

Conditions: 1a (0.33 mmol), catalyst (1.5 mol%), toluene (1 mL), 36 h.*Conversions/yields
were determined by GC using benzyl benzoate as internal standard. "3 mol% 'BuOK was
added. °Little ester was formed. ‘Dioxane (1 mL) as solvent.

S5



5. General experimental procedures

O
Ru-1 (1 mol%
R sHox B QMmO . R OH+ Hex—SH
1 20 bar 135 °C, 36 h, dioxane 2 3a

Representative procedure A:

In a N, glove box, Ru-1 (0.003 g, 0.005 mmol), thioester (0.5 mmol), and dioxane
(1 mL) were added to a 30 mL steel autoclave fitted with a Teflon sleeve. The
autoclave was taken out of the glove box and pressurized with 20 bar H; and heated at
135 °C for 36 h with stirring, after which the steel autoclave was cooled in cold water
bath for 30 min and the H, was vented off carefully in a hood. To the solution were
added 0.5 mmol internal standard (benzyl benzoate or 1,3,5-trimethoxybenzene) and
it was filtered through Celite, which was then rinsed with dioxane (2 mL). The
resulting solution was analyzed by GC-MS to determine the generated products. Then
0.1 mL of the solution was dissolved in CDCI; for determination of the yields of
products.

5 mmol scale hydrogenation of 1a: In a N; glove box, Ru-1 (0.006 g, 0.01 mmol),

thioester 1a (1.25 g, 5 mmol) and dioxane (3 mL) were added to a 30 mL steel
autoclave fitted with a Teflon sleeve. The autoclave was taken out of the glove box
and pressurized with 30 bar H, and heated at 150 °C for 2 h with stirring, after which
the steel autoclave was cooled in a cold water bath for 30 min and the H, was vented
off carefully in a hood. To the solution were added 5 mmol of benzyl benzoate and it
was filtered through Celite, which was then rinsed twice with dioxane (2>2 mL). The
resulting solution was analyzed by GC-MS indicating the complete conversion of the
thioester. Then 0.1 mL of the solution was dissolved in CDClj3 to determine the yields

of 2a (95%) and 3a (99%) by NMR.
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0 Ru-1 (1 mol%)
In(OTf)3 (3 mol%)
Ph)J\SHeX +Hy > Ph/\SHex + H,O
1i 40 bar dioxane, 150 °C, 36 h

Representative procedure B:

In a N2 glove box, Ru-1 (0.003 g, 0.005 mmol), In(OTf)3; (0.008 g, 0.015 mmol),
thioester 1i (0.111 g, 0.5 mmol), and dioxane (1 mL) were added to a 30 mL steel
autoclave fitted with a Teflon sleeve. The autoclave was taken out of the glove box
and pressurized with 40 bar H, and heated at 150 °C for 36 h with stirring, after which
the steel autoclave was cooled in a cold water bath for 30 min and the H, was vented
off carefully. To the solution were added 0.5 mmol internal standard
(1,3,5-trimethoxybenzene) and it was filtered through Celite, which was then rinsed
with dioxane (2 mL). The resulting solution was analyzed by GC-MS to determine the
generated product. Then 0.1 mL of the solution was dissolved in CDCI; for

determination of the yield of product.

Note:

*The generated thiol can be oxidized to disulfide upon exposure to air. Determination
of the yields of thiols should be done as soon as possible after the reaction, or the
generated disulfide should be taken into consideration. Control experiments show that
the disulfide can be hydrogenated to the corresponding thiol under the reaction
conditions.

*The integrals of NMR were corrected by auto linear correction in Mestnova
(measuring parameters: d1=10s, NS=12) and the peak of dioxane (3.71 ppm) is not
fully displayed.

*In some cases, the yields of products were determined by GC. The relative response
factors of each compound were determined by the average of three standard samples
following the reported procedure.*

*The dryness of the system has a great influence on the hydrogenation of 1i and
thioamides. The catalytic amount of base (2% 'BuOK) helps eliminate the harmful

effect of moisture.
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6. Table of reaction conditions of each substrate and failed examples

substrates conditions substrates conditions
(0]
o 135 OC Me S\/H\)J\ 150 OC
Ph/\)kSHeX la 20 bar H, r g7 on 10 40 bar H,
150 °C
srex 135°C 11
Hexsm 1b 20 bar H )J\S%OE 20 bar H;
2 NHAc 1p 2% HexSH
150 °C
Me_  .Me SHex 135 OC o o
w 1c 20 bar H Me)]\S/\‘)J\OH 40 bar H,
2 NHAC decomposition
150 °C H
o Stex /N SHex 135°C
Etow 1d 20 bar H, Ph 20 bar H,
2% HexSH o 4a
Me Me 150 OC |'|| o
Me>:\_)_>,SHeX 20 bar H, Py S 2(1)3b5 C|:_|
¢ le| 20 HexSH o 4b arz
H 150 °C
o 135°C '
WJ\ Hex’N\ﬂ/SHex 40 bar H,
SH
o 20 bar H, o  4c >80% conversion
0 135°C Me 135°C
MB)WSHeX 20 bar H, M /N\[(SHex 20 bar H,
0 19 | 1 equiv HexSH O No reaction
o} 150 °C 135°C
_O._ _SH
m:%SHex 40 bar H, Bn \[O]/ > 20 bar H,
Me 1h 66% conversion No reaction
0 [0}
§SH 150°C i 435b(;r(l:-|
ex o~ 2
1i 40 bar H oo e <10% products
150 °C
0 135 °C i
)’k - ph)J\N/\/Ph 40 bar H2
M SDod
= Shedeel] 20 bar H "% | Ru-l (1.5 mol)
0 . s 150 °C
SO | e | A, |
1K 2 \Osp Ru-1 (1.5 mol%)
135°C S 0
(e}
I [ N
>90% conversion H 5C 2
9 135°C N 150°C
e s s e 1 20 bar H =S 40 bar H,
2 H trace product
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7. Selected "H NMR spectra of crude mixtures
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Figure S5. 'H NMR (CDCls, 300 MHz) spectrum of the crude reaction mixture of
hydrogenation of 1a in 5 mmol scale.
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Figure S6. 'H NMR (CDCls, 500 MHz) spectrum of the crude reaction mixture of

hydrogenation of 1b.
510



dioxane

Me\r‘d/\\/\\//\\/OH
Me
‘/
T
Ph 0><Ph
\ FS. M
H0 ,h r's
A / M \J
S | . S
I T '|
o o w
(=) ~ <o
o w o
9.0 85 80 75 10 65 6.0 5.5 50 45 40 35 30 25 20 15 10 05 00 05

1 {ppm)

Figure S7. '"H NMR (CDCls, 300 MHz) spectrum of the crude reaction mixture of
hydrogenation of 1c.
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Figure S8. 'H NMR (CDCls, 300 MHz) spectrum of the crude reaction mixture of
hydrogenation of 1d in the presence of 2% hexanethiol.
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Figure S9. 'H NMR (CDCls, 300 MHz) spectrum of the crude reaction mixture of
hydrogenation of 1e in the presence of 2% hexanethiol.
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Figure S10. 'H NMR (CDCls, 400 MHz) spectrum of the crude reaction mixture of
hydrogenation of 1f.
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Figure S11. *"H NMR (CDCls, 500 MHz) spectrum of the crude reaction mixture of
hydrogenation of 1g in the presence of one equivalent hexanethiol.
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Figure S12. 'H NMR (CDCls, 400 MHz) spectrum of the crude reaction mixture of
hydrogenation of 1h with the generation of little disulfide after exposure to air for two

days; the yield of hexanethiol was determined by GC immediately after the reaction.

S13



OMe

H H
MeO' OlMe
H
T
H H
FhXOH
\ HS. o~~~ Me
|
dioxane \
|‘ |
. \ I S
- T T
o 1- o
o a =)
3 - o
T T T T T T T T T T T T T T
8.5 8.0 1.5 7.0 6.5 6.0 5.5 50 4, 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

5 40
1 {ppm)

Figure S13. 'H NMR (CDCls, 500 MHz) spectrum of the crude reaction mixture of
hydrogenation of 1i.
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Figure S14. '"H NMR (CDCls, 400 MHz) spectrum of the crude reaction mixture of
hydrogenation of 1j with the generation of a little disulfide after exposure to air for
three days; the yield of ethanol was determined by GC.
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Figure S15. '"H NMR (CDCls, 300 MHz) spectrum of the crude reaction mixture of
hydrogenation of 1k, the yield of phenylpropanol was determined by GC.
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Figure S16. 'H NMR (CDCls, 400 MHz) spectrum of the crude reaction mixture of
hydrogenation of 1, the yield of thiophenol was further confirmed by GC (86%).
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Figure S17. 'H NMR (CDCls, 300 MHz) spectrum of the crude reaction mixture of
hydrogenation of 1m, the yield of ethanol was determined by GC.
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Figure S18. 'H NMR (CDCls, 300 MHz) spectrum of the crude reaction mixture of
hydrogenation of 1n, the yield of N-acetyl cysteamine was determined after removal

of solvent (See Figure S19).
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Figure S19. 'H NMR (CDCls, 300 MHz) spectrum of the crude reaction mixture of
hydrogenation of 1n after removal of solvent and ethanol.
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Figure S20. 'H NMR (CDCls, 400 MHz) spectrum of the crude reaction mixture of
hydrogenation of 10, the yield of ethanol was determined by GC.
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Figure S21. 'H NMR (CDCls, 400 MHz) spectrum of the crude reaction mixture of
hydrogenation of 1p.
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Figure S22. 'H NMR (CDCls, 300 MHz) spectrum of the crude reaction mixture of

hydrogenation of 4a.
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Figure S23. 'H NMR (CDCl;, 300 MHz) spectrum of formanilide with 0.1 mL
dioxane.
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Figure S24. '"H NMR (CDCls, 400 MHz) spectrum of the crude reaction mixture of

hydrogenation of 4c after removal of solvent and hexanethiol, the yield of hexanethiol
was determined by GC.
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Figure $25. 'H NMR (CDCls, 500 MHz) spectrum of the crude reaction mixture of
hydrogenation of 5¢ after removal of solvent.
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Figure $26. 'H NMR (CDCls, 300 MHz) spectrum of the crude reaction mixture of
hydrogenation of 1i (condition B).
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8. Selected GC-MS and GC traces
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Figure S27. GC-MS chromatogram of crude reaction mixture: Scheme 4, 1d.
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Figure S28. GC-MS chromatogram of crude reaction mixture: Scheme 5, 1n.
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Figure S29. GC-MS chromatogram of crude reaction mixture: Scheme 4, 1e.
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Figure S30. GC-MS chromatogram of substrate 1e.
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Figure S31. GC-MS chromatogram of crude reaction mixture: 1i in the presence of
3% In(OTf)s.
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Figure S32. GC-MS chromatogram of crude reaction mixture: Scheme 5, 1p.
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Figure S33. GC-MS chromatogram of crude reaction mixture: Scheme 6, 4a.
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Figure S34. GC-MS chromatogram of crude reaction mixture: Scheme 6, 5¢
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Figure S35. GC chromatogram of authentic sample: hexanethiol and benzyl benzoate,
relative response factor = 2.61
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Figure S36. GC chromatogram of authentic sample: 3-phenylpropan-1-ol and benzyl
benzoate, relative response factor = 1.49
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Figure S37. GC chromatogram of authentic sample: S-hexyl 3-phenylpropanethioate
and benzyl benzoate, relative response factor = 0.91
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Figure S38. GC chromatogram of crude reaction mixture: Table 1, entry 7.
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Figure S39. GC chromatogram of authentic sample: ethanol and benzyl benzoate,
relative response factor = 11.72
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Figure S40. GC chromatogram of crude reaction mixture: Scheme 5, 1j
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Figure S41. GC chromatogram of authentic sample: thiophenol

1,3,5-trimethoxy-benzene, relative response factor = 1.21
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Figure S42. GC chromatogram of crude reaction mixture: Scheme 6, 4b
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Figure S43. GC chromatogram of authentic sample: benzyl thiol and benzyl benzoate,
relative response factor = 2.39
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Figure S44. GC chromatogram of authentic sample: 2-phenylethanamine and benzyl
benzoate, relative response factor = 2.27
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Figure S45. GC chromatogram of crude reaction mixture: Scheme 6, 5a
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Figure S46. GC chromatogram of authentic sample:
relative response factor = 6.28
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Figure S47. GC chromatogram of crude reaction mixture: Scheme 6, 5b.
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9. Selected isolated compounds

Following the general procedures of hydrogenation, the resulting reaction mixture
was directly filtered through Celite without the addition of an internal standard. The
Celite was then rinsed with CHCI; (2>2 mL) and the solution and washings were
combined. The solvent and volatiles were removed under vacuum, resulting in quite
pure product(s) (see Figure S19 and Figure S49). The isolated yields were obtained
after further purification by flash column chromatography
Ph™ >""OH
3-Phenylpropan-1-ol: By hydrogenation of 1a using the general procedure A. Eluent:
hexane/EtOAc = 2/1, viv. 92% yield. *H NMR (500 MHz, CDCls) § 7.26 — 7.01 (m,
5H), 3.54 (t, J = 6.5 Hz, 2H), 2.69 — 2.53 (m, 2H), 2.21 (s, 1H), 1.88 — 1.70 (m, 2H).
13C NMR (126 MHz, CDCl3) § 141.9, 128.4, 128.4, 125.9, 62.1, 34.2, 32.1.

Ph™ 87 >""Me

Benzyl(hexyl)sulfane: By hydrogenation of 1i using the general procedure B. Eluent:
hexane/EtOAc = 30/1. 91% yield. *H NMR (400 MHz, CDCl3) § 7.40 — 7.18 (m, 5H),
3.72 (s, 2H), 2.43 (t, J = 7.5 Hz, 2H), 1.57 (dt, J = 14.9, 7.3 Hz, 2H), 1.42 — 1.23 (m,
6H), 0.90 (t, J = 6.9 Hz, 3H). '*C NMR (101 MHz, CDCls) & 138.7, 128.8, 128.4,
126.9, 36.3, 31.5, 31.4, 29.2, 28.6, 22.6, 14.1.

0]

HS OEt
NHAc

N-acetyl L-cysteine ethyl ester: By hydrogenation of 1p using the general procedure
A in the presence of 2% HexSH at 150 °C. Eluent: hexane/EtOAc = 1/2. 98% yield.
[a]®p = +60.1 (¢ = 2.6, CHCl5, +60.4 for standard sample). *H NMR (400 MHz,
CDCl3) 6 6.77 (d, J = 6.6 Hz, 1H), 4.83 — 4.69 (m, 1H), 4.20 — 4.04 (m, 2H), 2.89 (dd,
J=8.9, 4.3 Hz, 2H), 1.97 (s, 3H), 1.35 (t, J = 8.9 Hz, 1H), 1.20 (t, J = 7.2 Hz, 3H).
BC NMR (101 MHz, CDCl3) 6 170.13, 170.09, 61.8, 53.6, 26.7, 22.8, 14.0.
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The circular dichroism (CD) spectrum in CHCI3 was carried out using a nitrogen-
purged Chirascan™-Plus spectrometer, (Applied Photophysics, UK). The spectrum
was carried out over a scan range of 450 to 180 nm, 2sec time per point, 1nm step size,
and a 1nm bandwidth. The CD spectra were scanned using a 0.2 cm path length
cuvette and the CHCI; spectrum subtracted. The standard sample was prepared

according to a reported method*? and measured under the same conditions.

o
o

Circular Dichroism (mdeg)
Circular Dichroism (mdeg)

240 260 280 300 320 340 240 260 280 300 320 340
Wavelength (nm) Wavelength (nm)

Figure S48. CD spectra (230-350 nm) of product of 1p (left) and standard sample

(right) in CHCls (0.027 M) at 25 <C.

H
N H

Ph” \[(

0]

N-Phenylformamide: By hydrogenation of 4a using the general procedure A. Eluent:
hexane/EtOAc = 2/1. 95% yield, behave as rotamers in CDCls. *H NMR (400 MHz,
CDCl3) 8 9.19 — 8.90 (m, 0.5H), 8.78 — 8.63 (m, 0.5H), 8.45 — 8.21 (m, 1H), 7.55 (d, J
= 7.9 Hz, 1H), 7.31 (dt, J = 15.1, 7.8 Hz, 2H), 7.21 — 7.07 (m, 2H). *C NMR (101
MHz, CDCl3) 6 163.1, 159.7, 137.1, 136.8, 129.7, 129.0, 125.2, 124.7, 120.2, 118.8.

Ph\/\N/\/Ph
H

Diphenethylamine: By hydrogenation of 5c¢ using the general procedure A under 40
bar H, at 150 °C. Eluent: DCM/MeOH = 10/1. 82% yield. *H NMR (300 MHz, CDCls)
§7.37 - 6.98 (m, 10H), 2.89 (t, J = 6.5 Hz, 4H), 2.79 (t, J = 6.5 Hz, 4H), 1.40 (s, 1H).
3¢ NMR (75 MHz, CDCl3) 6 140.0, 128.7, 128.4, 126.1, 51.0, 36.3.
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10. Synthetic procedures and characterization data of thioesters

DMAP

o DCC o
P *+  HexSH —————~ P§
R” “OH DCM R” “SHex
0°C-r.t.

To a stirred solution of the carboxylic acid (10 mmol) in dichloromethane (20 mL)
was added hexanethiol (1.4 mL, 10 mmol) and 4-dimethylaminopyridine (0.12 g, 1
mmol) at 0 <C. Then N,N-dicyclohexylcarbodiimide (2.06 g, 10 mmol) was added
portionwise. The resulting thick white slurry was stirred rigorously for 24 h, at which
point the reaction mixture was diluted with pentane (50 mL) and the resulting mixture
were filtered. The filtrate was concentrated under reduced pressure to give the crude
product which was purified by flash column chromatography (eluent: hexane/EtOAc
=50/1, vIv).

NN Hex

o]

S-Hexyl pent-4-enethioate (1f): 76% yield. Colorless oil. IR (KBr): 2927, 1691,
1641, 1467, 1412, 1039, 915 cm™. *H NMR (400 MHz, CDCl3) & 5.79 (ddt, J = 16.8,
10.2, 6.5 Hz, 1H), 5.09 — 4.93 (m, 2H), 2.86 (t, J = 7.3 Hz, 2H), 2.63 (dd, J = 8.2, 6.8
Hz, 2H), 2.40 (dt, J = 13.7, 6.8 Hz, 2H), 1.60 — 1.49 (m, 2H), 1.42 — 1.18 (m, 6H),
0.87 (t, J = 6.8 Hz, 3H). *C NMR (75 MHz, CDCl3) 5 198.9, 136.3, 115.8, 43.2, 31.4,
29.6, 29.6, 28.9, 28.6, 22.6, 14.1. GC-EI-MS m/z calcd. for C1;H20S [M]*: 200.1,
found: 200.0.

@)

S\
Me)w Hex

o]
S-Hexyl 4-oxopentanethioate (1g): 76% yield. Colorless oil. IR (KBr): 2928, 1725,
1688, 1411, 1367, 1162, 1072 cm™.*H NMR (300 MHz, CDCls3) & 2.91 — 2.67 (m,

6H), 2.14 (s, 3H), 1.60 — 1.43 (m, 2H), 1.38 — 1.15 (m, 6H), 0.84 (t, J = 6.5 Hz, 3H).
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B3C NMR (75 MHz, CDCl3) 6 206.1, 198.5, 38.1, 37.5, 31.3, 29.8, 29.5, 28.9, 28.5,

22.5, 14.0. GC-EI-MS m/z calcd. for C11H200,S [M]": 216.1, found: 216.1.

0 o) 0
HS/\)J\O/\Me .\ Ac,0 EtzN Me)J\S/\)J\O/\Me
NH,HCI DCM HN_ _Me
0°C-rt. g

o]

To a stirred solution of L-cysteine ethyl ester hydrochloride (1.86 g, 10 mmol) in
DCM (20 mL) was added EtzN (5.0 mL, 36 mmol) and Ac,O (2.1 mL, 22 mmol) at
0 <C. The resulting mixture was stirred at 0 <C for 10 min, after which it was warmed
up to 25 T and stirred overnight. Then the reaction was quenched with water (20 mL)
and extracted with dichloromethane (20 mL x 3). The combined organic extracts were
dried over anhydrous Na,SO,, filtered, and concentrated to give the crude product
which was purified by flash column chromatography (eluent: hexane/EtOAc = 1/2,
v/v). The resulting solid was further recrystallized in EtOAc/hexane to remove the

color, affording a pale white solid 1p in 72% vyield.

0] (0]

Me)ks/\‘)kO/\Me
HNTMe
(0]

N,S-diacetyl L-cysteine ethyl ester (1p): [a]®p = +63.3 (¢ = 2.6, CHCI5). IR (KBr):
3275, 2984, 1742, 1698, 1662, 1538, 1132, 742 cm™.*H NMR (300 MHz, CDCl3) &
6.35 (d, J = 6.5 Hz, 1H), 4.75 (m, 1H), 4.17 (g, J = 7.1 Hz, 2H), 3.47 — 3.20 (m, 2H),
2.32 (s, 3H), 1.98 (s, 3H), 1.26 (t, J = 7.1 Hz, 3H). *C NMR (126 MHz, CDCI3) &
195.1, 170.2, 170.0, 62.0, 52.1, 30.9, 30.5, 23.0, 14.1. GC-EI-MS m/z calcd. for
CgH1sNO,S [M]": 233.1, found: 233.1.
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11. Selected NMR spectra

from ligand
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Figure S49. 'H NMR (CDCls, 400 MHz) spectrum of 3-phenylpropan-1-ol without
further purification.
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Figure S50. 'H NMR (CDCls, 500 MHz) spectrum of 3-phenylpropan-1-ol after
purification.
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Figure S51. *C NMR (CDCls, 126 MHz) spectrum of 3-phenylpropan-1-ol after
purification.
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Figure S52. 'H NMR (CDCls, 400 MHz) spectrum of N-acetyl L-cysteine ethyl ester
after purification.
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Figure S53. **C NMR (CDCls, 100 MHz) spectrum of N-acetyl L-cysteine ethyl ester
after purification.
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Figure S54. *H NMR (CDCls, 400 MHz) spectrum of 1f.
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Figure S55. *C NMR (CDCls, 75 MHz) spectrum of 1f.
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Figure S56. "H NMR (CDCl3, 300 MHz) spectrum of 1g.
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Figure S57. *C NMR (CDCls, 75 MHz) spectrum of 1g.
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Figure S58. "H NMR (CDCl3, 300 MHz) spectrum of 1p.
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Figure S59. *C NMR (CDCls, 126 MHz) spectrum of 1p.
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