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Fig. S1. Multi-modal STORM-PWS optical microscopy schematic. (A) The optical schematic 
of the combined STORM and PWS microscopy instrument. During PWS acquisition, broadband 
light from an LED is introduced onto the sample via a 50/50 beam splitter. The light is collected 
and sent to an EMCCD or sCMOS camera though a tunable spectral filter. During STORM 
acquisition, 637 nm monochromatic red laser light is introduced onto the sample via a dichroic 
filter set. Fluorescence light is collected and sent to an EMCCD camera. For PWS, multiple 
spectrally resolved images are acquired and analyzed to create a map of D. For STORM, multiple 
frames of fluorescence emission events are acquired and analyzed to reconstruct a super-resolution 
fluorescence image of labeled Pol-II. The reconstructed STORM image and calculated D map are 
finally combined into a single image. (B) Representative STORM-PWS images from differentiated 
BJ fibroblast cells, A2780.M248 (M248) ovarian cancer cells and HeLa cells. The intensity of red 
represents chromatin packing scaling measured by PWS, and green shows the locations of Pol-II 
molecules visualized by STORM. Scale bar: 3 µm. (C) While there is considerable variation 
between cell types, the nonmonotonic relationship between Pol-II density and local D is the same 
for all cell lines studied. (D) Distribution of distances between highly enriched Pol-II regions and 
PD boundaries. In all three cell lines, Pol-II tends to group near the edges of PDs.  



 
Fig. S2. Polymer density decays slower with radial distance for higher D polymers. 
Renderings of self-attracting homopolymers with (A) higher (D = 2.41) and (C) lower (D = 1.95) 
packing scaling. Analysis of average radial polymer density (i.e. mass contained in a sphere with 
increasing radius r) for the higher D polymer (B) exhibits a slower decay than for the lower D 
polymer (D). Polymer density was averaged from density scaling behavior surrounding 25 
randomly selected monomers.  



 



Fig. S3. Description of ChromSTEM PD analysis. Chromatin chain regime on the ring mass 
scaling curve and determining the packing domain radius (Rf) and D from ACF. The mass in the 
mass scaling curve, as shown in Fig. 2D is defined as the mass enclosed by a ring with radius r, 
also shown here in the blue line in (A). Alternatively, for the 1D case, the mass is the mass located 
on the ring with radius r, shown as the red line in (A). The ring mass scaling curve is indicative of 
a third regime besides fractal regime and uncorrelated supra-domain region. We performed a linear 
regression on the ring mass scaling curve to the first 6 nm range and defined the upper limit of this 
range to be the length scale where the ring mass scaling first exceeds 5% deviation from the linear 
regression, as shown in (B). The upper bound for the region is calculated to be 8.24 nm, consistent 
with the radius of the chromatin chain reported in the earlier ChromEMT work (8). However, as 
the nominal resolution is 2 nm, the chromatin chain region consists of only four data points on the 
ring mass scaling curve (three data points on log-log scale, as the first point  r= 0 is not defined), 
and only three data points on the mass scaling curve (two data points on log-log scale, the first 
point r = 0 is not defined), and thus insufficient to unequivocally demonstrate different between 
chromatin packing of the chromatin chain and the fractal domain. Three criteria are considered to 
calculate Rf from the mass-scaling (MS) curve for individual domains. (C) Linear regression was 
conducted for the mass scaling curve between 2 nm to 32 nm. The spatial separation where the 
linear regression has a 5% deviation from the experimental MS curve (dashed line) is defined as 
Rfit. (D) The local slope of the experimental MS curve was estimated by moving window linear 
regression (5 pixels per window). The spatial separation where the local slope reaches 2 (dashed 
line) is defined as Rspace_filling. (E) The local curvature of the experimental MS curve was again 
calculated by moving window linear regression on the local slope curve (5 pixels per window). 
The spatial separation where the absolute value of the local curvature exceeds 2 (dashed line) is 
defined as Rnon_linear . (F) Chromatin packing density radial profile. From the center to the domain 
boundary, the packing density of chromatin fibers decreases gradually. We define the spatial 
separation where the packing density reaches its minimum as Rmin_density. Furthermore, Rf is defined 
as the smallest value among Rfit, Rspace_filling, Rnon_linear, and Rmin_density. For cases where either Rfit, 
Rspace_filling, or Rnon_linear do not exist, we use infinity for that parameter. (G) Dependence of packing 
efficiency factor A describing the relationship between CVC and D on genomic size of PDs in kbp 
plotted on a semi-log scale. Genomic size in kbp was estimated by first determining Nf, the number 

of elementary units of size Rmin = 10nm in a given PD using the equation 𝑁! = 𝐶𝑉𝐶 ∗ ( "!
""#$

)
#
. 

The number of base pairs within each elementary unit was then estimated to be 1.9 kbp calculated 
by dividing the estimated median genomic size of a PD  (352.6 kbp) by the calculated median Nf  
(187). There is a positive correlation between genomic size of each domain and packing efficiency 
factor. (H-I) Analysis of A for PDs binned into 10 equal quantiles based on Rf. (H) Dependence 
of  A on average genomic size of binned PDs shows a positive correlation between average 
genomic size of binned domains and A. (I) Relationship between average binned Rf  (in nm) and 
A.



 
Fig. S4. Estimating D from the projection of chromatin at varying thicknesses using mass 
scaling versus ACF analysis. For the mass scaling analysis, we created a series of projection 
images with incremental thickness by projecting the virtual 2D slices of the 3D tomograms of 
A549 chromatin masks, respectively. Mass scaling curves were calculated first. Then linear 
regression was performed within 11.6 nm to 50 nm. For the ACF analysis, a random media was 
generated with 6003 voxels, 5nm pixel size along each dimension and had a true fractal dimension 
of 2.3. The generated medium was 4 µm in each dimension to ensure the fractal range could be fit 
given the numerical limitations. Next, 2D projections of the 3D volume were averaged, and the 
slope of their ACF was fit to a power law.  All fits were performed within the same range from 50 
to 100nm.  For both analyses, the average D for each projection of varying sample thickness is 
plotted. For mass scaling analysis (left), the estimated D is 7.4% larger than the ground truth for a 
55 nm thick projection while the ACF analysis (right) gives only a 3% error in D for a comparable 
60 nm thick projection image of chromatin.    

  



 



Fig. S5. Measuring chromatin packing scaling and contact probability scaling alterations 
induced by dexamethasone (DXM) treatment in BJ differentiated fibroblast and A549 
cancer cells. (A-B) Contact probability scaling analysis as analyzed by moving-window linear 
regression (A) and classical linear regression (B) analyses for BJ cells treated with DXM for 0, 16, 
and 32 hours. For (A), we assume the linear regression fit used to calculate contact probability 
scaling follows a normal distribution 𝒩(𝜇$, 𝜎$) where mean contact probability scaling, 𝜇$, is the 
slope of the regression and standard deviation, 𝜎$is the root-mean-square error (RMSE) of the 
residuals. Contact probability scaling is significantly different between control, and 16-hour and 
32-hour DXM treated BJ cells (P < 0.001). (C-D) PWS analysis of BJ cells at 0, 16, and 32 hour 
time points for untreated cells (C) and DXM treated cells (D). (C) Chromatin packing scaling D 
measured in untreated live BJ cells shows no observable change in D over a 16-hour period and 
only a small decrease in D over a 32-hour period that is not statistically significant (P > 0.05). (D) 
Using double-sided student-t-test, P < 0.005 for DXM treated cells at 16 and 32 hour time points. 
(E-F) nano-ChIA platform characterization of A549 chromatin structure with and without DXM 
treatment. From left to right: TEM images of chromatin structure with ChromEM staining, scale 
bar: 1µm. PWS map of chromatin packing scaling, scale bar: 10 µm. Qualitatively, both 
ChromTEM and PWS images show that DXM treatment homogenizes chromatin packing. (G) Hi-
C contact map of human chromosome 1 rendered with 5kb resolution for the control and DXM 
treated A549 cells. (H) ACF analysis of ChromTEM images of A549 cells. The average ACF of 
the control group (blue) is significantly different from the average ACF of the treated group (red). 
The shaded regions represent standard errors. D was calculated inside the first fractal domain (50 
nm to 100nm) by performing a linear regression fit to the ACF in the log-log scale. (I) Contact 
probability analysis performed on whole-genome intrachromosomal Hi-C contact data. Contact 
probability scaling (s) was calculated from a linear regression fit (dotted line) of the contact 
probability curve in the log-log scale between genomic distance 104.4 and 105.5 bp. (J-L) Chromatin 
packing scaling alterations induced by DXM treatment measured using ACF analysis of TEM 
images and PWS and changes in contact probability scaling of Hi-C contact data. Across the 
platform, consistent changes were observed in chromatin packing scaling upon treatment. Using 
double-sided student-t-test, P = 0.051 for ChromTEM, P < 0.005 for PWS. (M) Comparing 
distributions of contact probability scaling for A549 cells calculated from analysis of Hi-C contact 
matrices. We assume the linear regression fit used to calculate contact probability scaling follows 
a normal distribution 𝒩(𝜇$, 𝜎$) where mean contact probability scaling, 𝜇$, is the slope of the 
regression and standard deviation, 𝜎$is the root-mean-square error (RMSE) of the residuals. 
Contact probability scaling is significantly different between control, and 12-hour DXM treated 
A549 cells (P < 0.001). (N) Chromatin packing scaling D measured in untreated live A549 cells 
at 0 and 12 hours shows no observable change in D at time points comparable to DXM treatment, 
which showed a statistically significant decrease in D after 12 hours of treatment (Fig. S5L).  

 
 



 
Fig. S6. Quantifying changes in chromatin structure upon treatment of cells with 
Actinomycin D. (A) BJ cells were continuously monitored with PWS for four hours after 
treatment with Act-D. (Left) Average nuclear D drops significantly over the first three hours and 
then appears to plateau. (Right) There is a significant initial drop in the projection of the PD 
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projection fraction. Notably, the PD projection fraction never drops below ~40% of its initial value. 
It also should be noted that, as Act-D inhibits all transcription processes, the treated cells 
eventually undergo apoptosis. (B) Vehicle control-treated BJ cells were monitored continuously 
with PWS over four hours (Left). Average nuclear D and (Right) projection of PD projection 
fraction do not change significantly (~3% for D and ~14% for PD projection fraction) over four 
hours compared to Act-D treated cells (Fig. 4G-4H and S6A). (C) A549 cells were continuously 
monitored with PWS over a ten-minute period after treatment with Act-D. (Left) Average nuclear 
D and (Right) PD volume fraction both decrease significantly over this time period. (D) Vehicle 
control-treated A549 cells were monitored continuously with PWS over ten minutes (Left) 
Average nuclear D and (Right) projection of PD projection fraction do not change significantly (< 
1% for D and ~4% for PD projection fraction) over ten minutes compared to Act-D treated cells 
(Fig. S6C). 

 
  



 
Fig. S7. Histogram calculations of D distribution for heritability analysis. (A) PWS D map of 
two HCT116 cells originating from the same progenitor cell imaged 5 hours after completion of 
cell division. (B&C) Histogram of D values derived from the two HCT116 cells shown in (a). (D) 
The average histogram representing the average D distribution of all cells imaged 5 hours after 
cell division. (E&F) Resulting histogram ratio after the histograms shown in (b) and (c), 
representing the D distributions of individual progeny cells, are divided by the average histogram 
of all cells at that time point distribution as shown in (D). This ratio of histograms represents the 
deviation of each cell’s D distribution from the population mean. (G) Distribution of Pearson 
correlation coefficients comparing the unnormalized histograms of related and unrelated progeny 
at all time points after cell division. Although unrelated cells have a relatively high correlation 
coefficient (r > 0.5), the D distribution of cells originating from the same progenitor is significantly 
more correlated. (H) Distribution of Pearson correlation coefficients calculated from the 
normalized ratio-histograms of related and unrelated progeny at all time points after cell division. 



As each cell’s histogram is normalized by the mean D distribution at that time point, unrelated 
cells are less correlated, while related progeny cells are significantly more correlated.  



 
Fig. S8. ChromEM staining and segmentation analysis reveals DNA distribution inside A549 
cell nuclei. Draq5TM was used to label the double-strand DNA inside the nucleus. Upon excitation, 
the Draq5 molecule will release single oxygen, which reacts with the diaminobenzidine-
tetrahydrochloride (DAB) solutes to form electron-dense precipitates. The DAB precipitates are 
further enhanced by reduced osmium to create contrast for EM imaging.  As shown in the 
fluorescent images of A549 labeled by Draq5 (A) and bright-field optical images of the resin-
embedded cells, only cells with photo-oxidation show darker contrast (B). (C) The staining area 
has high precision, as indicated by a partially photo-oxidized cell. Within the nucleus, the boundary 
of the stained area follows the shape of the light spot. (D) In the automatic chromatin mask 
segmentation algorithm, three parameters, contrast mode, CLAHE block size, and thresholding 
algorithm, need to be optimized for best segmentation accuracy quantified by F1 score. In six 
independent analysis, we manually segmented the chromatin mask from the same tomogram. We 
averaged all the masks, and pixels with values greater than 0.2 were considered chromatin, while 
pixels with values smaller than 0.2 were considered not chromatin. The finalized manual 
segmentation was used as the ground truth. Either bright field (BF) or dark field (DF) can be used 
in contrast mode to initiate segmentation. We chose three block size (in pixels), 75, 100, and 120, 



for local contrast enhancement (CLAHE), and employed either Li’s or Otsu’s thresholding 
algorithm in FIJI. In combination, we experimented with 12 different sets of parameters. We 
calculated the F1 score for each set of parameters and determined the optimized parameters are 
DF as contrast mode, 120 pixels for CLAHE, and Otsu’s algorithm. 
  



Table S1. Descriptions and values of CPMC model parameters. 

FIXED 
PARAMETERS DESCRIPTION VALUE (𝝓 = 𝟎) 

𝒌𝒕𝒏𝒔 
Association rate constant for nonspecific TF-DNA 

binding 4.9x104 mM-1s-1 

𝒌𝒇𝒏𝒔 
Association rate constant for nonspecific Pol-II-DNA 

binding 3.6x104 mM-1s-1 

𝑲𝑫,𝑻𝑭
𝒏𝒔  Dissociation constant for nonspecific TF-DNA binding 1 mM 

𝑲𝑫,𝑹𝑵𝑨𝒑
𝒏𝒔  Dissociation constant for nonspecific Pol-II-DNA 

binding 1 mM 

𝒌𝒕 Association rate constant for TF-promoter binding 0.05x106 mM-1s-1 

𝒌𝒇 Association rate constant for Pol-II-Complex I binding 0.03x106 mM-1s-1 

𝒌𝒐 TF-promoter dissociation rate 1.0 s-1 

𝑲𝑫,𝑻𝑭 Dissociation rate for TF-promoter binding 1 nM 

𝑲𝑫,𝑹𝑵𝑨𝒑 Dissociation rate for Pol-II-promoter binding 1 nM 

𝒌𝒎 Transcription rate of Pol-II 0.001	s-1 

𝜸 Nuclear export rate of mRNA 8x10-4 s-1 

𝝂 mRNA degradation rate 3x10-4 s-1 

𝒓𝒎𝒊𝒏 Lower length scale of chromatin self-similarity 1 nm 

𝝈𝟐 
Variance of crowding density 𝜙 within a nucleus of 

average crowding density 𝜙56,7 𝜙56,7(1 − 𝜙56,7) 

L Average number of base pairs in each gene 6 Kbp 



 

 

Section S1. Descriptions of SI videos 

 

SI Video 1 – Single BJ cell treated with Dexamethasone measured with PWS for 32 hours. 
The average nuclear D of this cell is shown in Fig. S8. 

SI video 2 – HCT 116 cancer cells measured by PWS every 15 minutes during mitosis. Data 
collected from this cell is shown in Fig. 5. 

SI video 3 – HCT 116 cancer cells measured by PWS every 15 minutes during mitosis. Data 
collected from this cell is shown in Fig. 5. 

SI video 4 – Tomography reconstruction of an interphasic A549 cancer cell.  

SI video 5 – Volume rendering from tomography of the cell in SI video 4. 

 
Section S2. ChromEM sample preparation, imaging, and tomography reconstruction 

 
ChromEM sample preparation 
For the EM experiments, all the cells were prepared by the ChromEM staining protocol (8). Hank’s 
balanced salt solution without calcium and magnesium was used to remove the medium in the cell 
culture. Two-step fixation using EM grade 2.5% glutaraldehyde and 2% paraformaldehyde in 
0.1M sodium cacodylate buffer (EMS) was performed: 1. Fixation at room temperature for 10 
minutes. 2. Continuous fixation on ice for 1 hour with a fresh fixative. The cells were kept cold 
from this step either on ice or on a cold stage, and the solution was chilled before use. After 

UNFIXED 
PARAMETERS DESCRIPTION 

VALUE 

 

𝒓𝒊𝒏𝟎  Radius of interaction volume for single base pair 15 nm 

𝑵𝒇 Genomic size of upper length scale of chromatin self-
similarity 10 Kbp 

𝝓𝒊𝒏,𝟎 
Average crowding density 

𝜙56,7 =	𝜙7 + (1 − 𝜙7	)𝜙9: 

𝜙7 = 32%	𝑣/𝑣 (from 
ChromEM) 

𝜙9: = 	10%	𝑣/𝑣 (mobile 
crowder estimate) 

𝜙56,7 = 	38.8%	𝑣/𝑣 

[𝑪]𝒕𝒐𝒕 Total concentration of transcription complexes [0.01nM, 0.1nM] 



fixation, the cells were thoroughly rinsed by 0.1M sodium cacodylate buffer, blocked with 
potassium cyanide (Sigma Aldrich) blocking buffer for 15 minutes, and stained with DRAQ5TM 
(Thermo Fisher) with 0.1% saponin (Sigma Aldrich) for 10 minutes. The excessive dye was 
washed away using a blocking buffer. The cells were bathed in 3-3’ diaminobenzidine 
tetrahydrochloride (DAB) solution (Sigma Aldrich) during photobleaching.  

A Nikon inverted microscope (Eclipse Ti-U with the perfect-focus system, Nikon) with Cy5 filter 
sets were employed for photo-bleaching while the cells were kept cold on a custom-made wet 
chamber with humidity and temperature control. 15 W Xenon lamp and the red filter was used as 
the source of epi-illumination. With 100x objective, each spot was photo-bleached for 7 min, and 
fresh DAB was added to the dish for every 30 minutes. After photo-bleaching, the excessive DAB 
was washed away by 0.1 M sodium cacodylate buffer, and the cells were stained with reduced 
osmium (2% osmium tetroxide and 1.5% potassium ferrocyanide, EMS) for 30 minutes on ice to 
further enhance contrast. Following heavy metal staining, the cells were rinsed by DI, serial 
ethanol dehydrated, and brought back to room temperature in 100% ethanol. The standard 
procedure of infiltration and embedding using DurcupanTM resin (EMS) was performed. The flat 
embedded cells were cured at 60oC for 48 hours. The precision of the staining was tested for the 
entire photo-bleached cells and partially photo-bleached cells (Fig. S8A-S8C). 

Two kinds of sections were made using an ultramicrotome (UC7, Leica). For the tomography, 100 
nm thick resin sections were cut and deposited onto a copper slot grid with carbon/formvar film 
(EMS). For investigating the chromatin structure difference with and without dexamethasone 
treatment, 50 nm thick resin sections were made and deposited onto copper 200 mesh grid with 
carbon/formvar film (EMS). The grids were plasma-cleaned by a plasma cleaner (Easi-Glow, TED 
PELLA) prior to use. No post staining was performed, but 10 nm colloidal gold particles were 
added to the 100 nm thick samples on both sides as fiducial markers for the tomography. 

 

Electron microscopy imaging and tomography reconstruction  

A 200 kV STEM (HD2300, HITACHI) was employed for tomography data collection. High angle 
annular dark-field (HAADF) imaging contrast was used in the tilt series. In order to reduce the 
missing wedge, tilting series from – 60o to 60o on two perpendicular axes were recorded manually, 
with 2o step size.  The pixel dwell time was kept small (~5 µs) to prevent severe beam damage 
during imaging. For the thin sections, a TEM (HT7700, HITACHI) was operated at 80 kV in the 
bright field to capture high contrast chromatin data.  

For the STEM HAADF tilt series, the images were aligned using IMOD with fiducial markers 
(50). 40 iterations of a penalized maximum likelihood (PML) algorithm with non-negativity 
constraints in TomoPy (51) was employed for tomography reconstruction for each axis. The two 
reconstructed tomogram sets were re-combined in IMOD to further suppress the artifacts 
introduced by the missing cone. A nominal voxel size of 2.9 nm was used in the tomography to 
resolve individual nucleosomes. The 3D volume rendering was conducted using Volume Viewer 
in FIJI (52). The DNA density was used to generate color-coded nucleosome configurations, with 
green color dictates the lowest density, and red dictates the highest density. The chromatin binary 



masks were employed to generate the surface of supranuclesomal structures. The videos of 
example tomography and volume rendering can be found in Movie S4, S5. 

 

Section S3. Calculation of chromatin packing scaling (D) from spectral variance (𝛴%) 
measured by PWS 
 

Mathematical description of chromatin within the fractal regime by the autocorrelation 
function 

As suggested by the ChromSTEM experiment, chromatin is likely to form a fractal structure within 
packing domains (PDs). Within the fractal regime, the genomic size of the chromatin (𝑁!) scales 
up with its physical size	𝑅! following a power-law relationship (53). 

𝑁! =	 (
"!
&"#$

)
'
	                                                           [1] 

D is the chromatin packing density scaling (fractal dimension), 𝑙()* ~ 1 nm is the radius of the 
fundamental structural unit of chromatin, the nucleotide base pair, 𝑅! is the upper bound of the 
power-law regime which represents the radius of the PD.  Outside the upper bound, chromatin 
packs in an uncorrelated fashion and form supra-domains with a packing scaling of 3.  

The autocorrelation function (ACF) representing chromatin mass density within the fractal regime 
adopts a power-law function, with the same power exponent D.  However, a strict power-law 
function approaches infinity at the origin, a behavior that is not physical, as the smallest structural 
unit of chromatin are nucleotides which have a finite size. Additionally, the true ACF of a single 
PD gradually decays to zero.  Thus, a modified power-law ACF (𝐵+) was used to include a lower 
and upper length limit to the power-law regime, and allow for both continuity and differentiability 
for all length scales (54, 55), as shown in equation [2]:  
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where 𝑟 is the spatial separation, 𝛤(𝑥, 𝑎) is the upper incomplete gamma function, and 𝑙()* and 
	𝑙(-. characterize the lower and upper length scales of fractality, respectively. 𝐷, is the effective 
chromatin packing scaling, a model parameter that describes the shape of 𝐵+ and is related to D, 
the true chromatin packing scaling.  𝜎+% ';/#

&"<=
>;?@	/	&"#$

>;?@ is the normalization factor of this ACF 
model, such that 𝐵+(r = 0) is 𝜎+%, the variance of mass density.  We tested the validity of  𝐵+  to 
represent the ACF of chromatin mass density by fitting the model to experimentally derived ACFs 
from ChromTEM (50nm sections).  For both A549 and BJ cells, the modified ACFs match the 
experimental ACFs with marginal errors (median R2 of 0.985 over all samples for the fitting range 
of r between 50-200nm) (Fig. S9A), demonstrating the flexibility of this model. 

Because of the chosen model, 𝐵+ it is not purely power law up to 	𝑙(-. but rather to some distance 
smaller than 	𝑙(-..  To account for this, we calculate the input model parameter 𝑙(-. using the 
following formula to correct for the desired power-law maximum point, 𝑙234_6&: 
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In order to numerically establish the relationship between 𝐷, and D, for each 𝐷,, we generated 𝐵+ 
by computing 𝑙(-. from [3]: choosing physiological values of 𝑁!, setting 𝑙()* = 1𝑛𝑚, and 

starting with an estimate of  𝑙234_6& =	 𝑙()*𝑁!
9
';? .  Then, using linear regression, we fit 𝐵+ to 

𝑟'/#	within the range of &"<=@&"#$
9AA

	to 	&"<=@&"#$
9AA

+ 0.1 to compute D (Fig. S9B). Importantly, while 
𝐷, can range from 1 to 4, D can only physically take on values between 5/3 and 3 for a 
topologically unconstrained polymer in thermodynamic equilibrium. We notice that 𝐷, ≈ 𝐷 for 
all physiological values of D except for D approaching 3. 

 

Calculating chromatin packing scaling D from PWS signal Σ% 
Within the nucleus, chromatin is the major contributor to PWS signal as most other 
macromolecules and physicochemical elements (i.e. ions) that also comprise the nuclear 
environment are below the length-scale sensitivity of PWS, which is 20-300nm, as the size of 
proteins is usually on the order of a few nanometers (56). In order to establish a direct relationship 
between the chromatin packing scaling D from PWS spectral variance 𝛴%, we first express 𝛴%as a 
function of the effective chromatin packing scaling 𝐷,, then numerically convert to D.  Next, we 
utilize the relationship between spectral variance and the spatial ACF: 𝛴% ∝ I𝐵+(𝑟) ⊗ 𝑇(𝑟)L|1BA, 
denoted by the convolution (⊗) between the ACF and a smoothing function (T) characterized by 
the microscope’s NA and the source spectrum (57), evaluated at r = 0. It is clear that 𝛴% is linearly 
related to the ACF, and a linear decomposition of the ACF would result in a linear addition of 𝛴%.  

Employing the Laplace transform, we expanded the modified power-law 
ACF	𝐵+(𝑟, 𝐷, , 𝑙()*, 	𝑙(-.	) to a sum of  weighted exponential functions, each with a characteristic 
decay length within the fractal regime [4]. 

 𝐵+(𝑟) = ∫ 𝑃(𝑙C , 𝐷,)𝑒/1/&G 	𝑑𝑙C
&"<=
&"#$

 [4] 

Here, 𝑒/1/&G is a series of exponential basis functions with varying 𝑙C, the characteristic length that 
modulates the speed of decay.  P contains the weights for each exponential basis in the form of a 
continuous probability distribution function. P can be obtained by the normalized inverse Laplace 
transform.  Putting equation [4] into the following form: 𝐵+(𝑟) = ∫ 𝑓(𝑡)	𝑒/1E𝑑𝑡F

A , allows the 
calculation of P using the inverse Laplace through a simple change of variable, as shown in 
equation [5].  Furthermore, P must be normalized to sum to unity within the fractal regime: 

 𝑃(𝑙C , 𝐷,) =
𝑓 (9

E
) 𝑡%⁄

∫ 𝑓 (9
E
) 𝑡%⁄ 𝑑𝑡9 &"<=⁄

9 &"#$⁄

U 	= 	𝑙C
';/H	 ';/#

(&"<=
>;?@	/	&"#$

>;?@)
 [5] 

 



Governed by the unitarity of the Fourier transform from spectral to spatial variance (Parseval's 
theorem), we can rewrite equation [4] in the spectral space while maintaining the same weighting 
function P.  From [4], replacing 𝐵+(𝑟) with 𝛴%(𝐷,) and 𝑒/1/&G with 𝛴I%(𝑙C), the spectral variance 
measured from an exponential ACF, we obtain the relationship between PWS signal 𝛴% and the 
effective chromatin packing scaling  𝐷,:    

 𝛴%(𝐷,) = ∫ 𝑃(𝑙C , 𝐷,)	𝛴I%(𝑙C)		𝑑𝑙C
&"<=
&"#$

 [6] 

Considering the experimental setup of a PWS microscopy (Materials and Methods: PWS imaging), 
𝛴I%(𝑙C) has a closed-form solution for an exponential basis function with a characteristic length 𝑙C 	:  

 𝛴I%(𝑙C) = 	
%"HJ$I

H

K
&G@LJM7NH

[9@	LH&GH(H@7NH)](9@HLH&GH)
	 [7] 

In [7], R is the product of the forward and reverse Fresnel transmission and reflection coefficients 
at the cell/glass interface, normalized by the reflectance coefficient of the reference (glass/media) 

interface: H	*$KGALKM	*NA<MM(*NA<MM	/	*$KGALKM)
(	*NA<MM	@	*$KGALKM)@

(*NA<MM	@	*"LO#<)H

(*NA<MM	/	*"LO#<)H
, k is the center wavelength in vacuum, 

NA is the collection numerical aperture in air, L is the effective thickness of the sample, determined 
by the minimum of either the optical cell thickness or the depth of field (DOF), and 𝜎*% is the 
variance of refractive index (RI) fluctuations within the nucleus .  

Next, we estimated the RI of the nucleus 𝑛*QC&IQ$ from the densities of these nuclear components 
through the Gladstone-Dale equation:  

 𝑛*QC&IQ$(𝜙) = 𝑛A + 	𝛼𝜌CR1S(-E)*𝜙 + 	𝛼𝜌TU𝜙TU  [8] 

where 𝑛A is the RI of water in the wavelength range used; 𝛼 = 	0.18	 C(
@

V
 is the RI increment and 

is constant for all macromolecules that contribute to the spectral signal (58); 𝜌CR1S(-E)* and 𝜌TU  
are  the densities of chromatin and MCs, 𝜙 is the chromatin volume concentration (CVC), and 
𝜙TU  is the crowding density of MCs.  As most of the MCs we consider are proteins and nucleic 
acids, we used 𝜌TU  = 1.25 V

C(@, the average density of pure, dehydrated proteins (59). We further 

estimated 𝜌CR1S(-E)*	to be 0.555 V
C(@ by approximating the weight and total volume occupied by 

a single nucleosome and its linker DNA. We inputted a series of 𝜙 between 0.12 and 0.55, within 
the physiological range of chromatin volume concentration reported by ChromEMT for interphasic 
nuclei (8). Finally, we estimate 𝜙TU 	= 	𝜙TU"<=(1 − 𝜙), where 𝜙TU"<= = 0.05 and is the 
maximum concentration occupied by MCs, and thus 𝜙TU  is proportional to the volume unoccupied 
by chromatin.  

We estimated the standard deviation of RI fluctuations 𝜎* by assuming 𝜙 follows a binomial 
distribution:  

 𝜎* =	Z	𝜙(1 − 		𝜙)	[	𝑛*QC&IQ$(𝜙 = 1) 	−	𝑛*QC&IQ$(𝜙 = 0)	] [9] 



We numerically calculated  a series of 𝛴(𝐷,) for varying 𝐷, by inputting physiologically relevant 
values for 𝜙 and 𝑁!, and computing 𝑛*QC&IQ$, and 𝜎* from equations [8], [9] , respectively.  Next, 
we input these values into equations [5] and [7] to compute 𝑃 and 	𝛴I% as inputs to equation [6].  
Importantly, the relationship between 𝛴 and 𝐷, can be accurately represented by a linear 
approximation. For physiologically relevant values (𝜙 = 0.32, 𝑁! = 1.0Mbp), we obtain  

𝛴(𝐷,) 	≈ 𝐴(𝐷, − 𝐷A),   [10] 

with fitted values of A = 0.13, 𝐷A = 1.46, and corresponding R2 = 0.999, although this model does 
not change significantly for other physiologically relevant values of 𝑁! and 𝜙. 

Finally, we scanned through an exhaustive range of possible D values and inputted the system 
incident NA of 0.55 and collection NA of 1.49 to generate a numerical relationship describing 𝛴(𝐷) 
as a function of 𝜙 and 𝑁!.  The range of 𝑁! values displayed encapsulates the extreme values for 
packing domain size measured by ChromSTEM, which we have shown exhibits fractal behavior.  
For calculations performed in calculating D from 𝛴 in the main text, we used 𝜙 = 0.32 and 𝑁! = 
1.0Mbp.  As evident in Fig. S9C, the inversion, allowing for the calculation of D given 
experimentally measured 𝛴, is possible due to the monotonicity of the relationship.  We also notice 
the relationship between 𝛴 and D is relatively consistent, even considering the extreme limits of 
physiologically relevant 𝜙 and 𝑁!. 

 
Fig. S9. Calculating D from 𝜮. (A) Comparing 𝐵+(r) to representative experimental ACF of 
chromatin density calculated from ChromTEM data for A549 and BJ cells. For these four 
examples, the normalized model, shown as solid lines, fits the experimental data with only a small 
margin of error. (B) The numerically computed relationship between D and 𝐷, for the modified 
power-law 𝐵+ defined in equation [1]. (C) Surface plot showing 𝛴 vs D and 𝜙 for a fixed 𝑁! of 
1.0Mbp and under varying physiologically relevant conditions and fixed D = 2.6 for 𝑁!  (denoted 



by the black line and expanded in inset). (D) Surface plot showing 𝛴 vs D and 𝑁! for 𝜙 of 0.32, 
and for varying physiologically relevant values of  𝜙 for a fixed D = 2.6 (denoted by the black line 
and expanded in inset). (E) 2D plot of 𝛴 vs D for fixed 𝜙 and varying 𝑁!. Blue and red lines are 
plotted at the extreme ranges of physiologically relevant values for 𝑁!, while green shows mapping 
used in the conversion of PWS signal 𝛴 to reported D values for this work. 
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