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Supplementary Tables and Figures 

Table S1. Fly lines used in this study. 

Line Source 

Orco1 BDSC #23129 

GH146-GAL4 BDSC #30026 

GMR32E03-GAL4 BDSC #49716 

UAS-Kir2.1 BDSC #6596 

Orco-GAL4 BDSC #23292 

Or82a-GAL4 BDSC #23125 

Or45a-GAL4 BDSC #9975 

UAS-GCaMP6m; Orco::RFP This study (UAS-GCaMP6m, BDSC #42748; 

Orco::RFP, BDSC #63045) 

UAS-GluC1α-RNAi (TRiP HMC03585) BDSC #53356 

pLN1-GAL4 (split) This study (GMR21D06-AD, BDSC #70117; 

GMR50A06-DBD, BDSC #68988) 

pLN3-GAL4 (split; SS004499) J. Truman (GMR42E06-AD, BDSC #71054; 

GMR12C03-DBD, BDSC #70429) 

pLN4-GAL4 (split; SS001730) J. Truman (GMR21D06-AD, BDSC #70117; 

GMR12C03-DBD, BDSC #70429) 

UAS-mCD8::GFP; Orco::RFP BDSC #63045 

5-HT7–GAL4 M. Pankratz (58) 

UAS-gRNA–5-HT7; UAS-Cas9 This study (Rosbash lab) 

GMR60F02-GAL4 BDSC #48228 

UAS-Trh-RNAi (TRiP JF01863) BDSC #25842 

UAS-CsChrimson::mVenus BDSC #55136 

Trh-GAL4 BDSC #38389 

DDC-GAL4 BDSC #7009 

Trhc01440 BDSC #10531 

UAS-SerT BDSC #24464 

UAS-SerT-RNAi (TRiP HMJ30062) BDSC #62985 

5-HT1A–GAL4 M. Pankratz (59) 

UAS-gRNA–5-HT1A; UAS-Cas9 This study (Rosbash lab) 

y1 w67c23; P{CaryP}attP1 BDSC #8621 

w1118; snaSco It1/CyO; MKRS/TM6B BDSC #3703 

 

Table S2. Guide RNA sequences for CRISPR knockout. 

gRNA Sequence 

5-HT1A guide 1 TAGCGAACAGCATGAATGAC 

5-HT1A guide 2 TGTCATAGCGGCCATTATCC 

5-HT1A guide 3 ACGACCGCGACCCGTCGATG 

5-HT7 guide 1 CACAGAAACCACAGAACCCA 

5-HT7 guide 2 GCATCACCAGCAGCAATTT 

5-HT7 guide 3 GGATCTCTGTGTGGCTCTTC 



Table S3. Connection weights for circuit model. Includes synaptic and non-synaptic 

interactions (W, top five rows) and ORN/basal input to each neuron (xin and x0, respectively; 

bottom two rows). 

 

 pLN0 pLN1/4 uPN mPN CSD 

pLN0 0 −1 −w −w −w 

pLN1/4 −w 0 −w −1 0 

uPN 0 0 0 0 1 

mPN 0 0 0 0 0 

CSD −β −w {0, 2}  0 0 

ORN 1 1 1 w w 

basal 0 0 0 α 0 

 

Table S4. Summarized neural activities in the fed and food-deprived states. 

 

 pLN0 pLN1/4 uPN mPN CSD 

fed 1 0 1 1 1 

food-deprived 0 1 2 0 2 

 

  



 

Fig. S1. Food deprivation induces a change in olfactory decision making across odorants 

and is ORN dependent. (A) Odorant screening in fed larvae. Only menthol and geranyl acetate 

induced aversion, strongest attraction was elicited by ethyl acetate. All odors were tested at a 

dilution of 10−4, except menthol (10−3). (B) After food deprivation, larvae change their response 

to menthol (10−3) from avoidance to attraction (two-sample t-test, p < 0.001). Mutant larvae 

(Orco−/−) that lack functional ORNs do not show any significant response to the odor in the fed 

and food deprived state (one-sample t-test, p > 0.05) (N = 8). (C) Larvae show increased 

attraction to ethyl acetate (10−6) after food deprivation (two-sample t-test, p < 0.05). Mutant 

larvae (Orco−/−) that lack functional ORNs do not show any significant response to the odor in the 

fed and food deprived state (one-sample t-test, p > 0.05) (N = 6–8).  
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Fig. S2. GA behavior is stable across test parameters. (A) The switch in GA 10−4 response is 

present over all larval feeding stages (2–5 days A.E.L., two-sample t-test, p < 0.001). Larvae 

entering the wandering state show attraction already when fed (6 days A.E.L., two-sample t-test, p 

> 0.05) (N = 8–10). (B) For each GA dilution tested, except the lowest (two-sample t-test, p > 

0.05), behavior switches significantly between states (two-sample t-test, p < 0.05, strongest effect 

for 10−4: two-sample t-test, p < 0.001) (N = 6–14). (C) GA (10−4) avoidance switches to attraction 

after food deprivation (one-way ANOVA, p < 0.001). Fed larvae avoid GA (one sample t-test, p < 

0.001). After short food deprivation larvae lose GA avoidance (1 h, 3 h, 5 h, one sample t-test, p > 

0.05) or only slightly avoid it (2 h, one sample t-test, p < 0.05). After 7 hours of food deprivation, 

larvae show GA attraction (one sample t-test, p < 0.05) (N = 12–16). (D) ORN calcium responses 

to GA. Mean response change normalized to baseline. ORNs exhibit same responses to GA (10−8) 

in fed and food deprived state (two-sample t-test, p > 0.05) (N = 7). ORN-OR82a exhibits same 

GA (10−6) response in both states (two-sample t-test, p > 0.05) (N = 6). ORN-OR45a exhibits 

same GA response (10−6) in both states (two-sample t-test, p > 0.05) (N = 5). (E) GH146-GAL4 

labels uniglomerular projection neurons (uPN GAL4-line). Arrow indicates axonal projection. 

Asterisk indicates cell bodies. Calcium responses in uPNs to GA (10−6). Mean response change 

normalized to baseline. Following food deprivation, uPNs respond stronger to GA (Mann-

Whitney U-test, p < 0.05) (N = 7–9). (F) GMR32E03-GAL4 labels the cobra mPN. Arrow 

indicates axonal projection. Asterisk indicates cell body. Calcium response in cobra mPN to GA 

(10−6). Mean response change normalized to baseline. Following food deprivation, the cobra mPN 

is inhibited by GA (two-sample t-test, p < 0.05) (N = 8–9). Grey boxes indicate parameters used 

throughout the study. Data points in (A–C) represent pooled data from 5–15 min during testing 

(mean ± SEM). lAL = larval antennal lobe.   
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Fig. S3. Cobra mPN is inhibited by glutamate released from pLN1,4, but not pLN3. (A) 

Calcium response in the cobra mPN to GA (10−6). Mean response change normalized to baseline. 

Light colors: The cobra mPN is inhibited by GA in the food deprived state (two-sample t-test, p < 

0.01). Dark colors: Upon GluClα-receptor knockdown the cobra mPN shows same response in 

both states (Mann-Whitney U-test, p > 0.05) (N = 8). (B–D) Whole brain expression patterns of 

pLN 1, pLN3 and pLN 4 Split-GAL4 lines. Dashed line = larval brain outline. lAL = larval 

antennal lobe. (E–G) Expression patterns of pLN 1, pLN3 and pLN 4 Split-GAL4 lines in the 

lAL. Asterisks indicate cell bodies. lAL = larval antennal lobe. (H) Silencing pLN3 does not 

impair GA responses in both states (one-way ANOVA, p > 0.05) (N = 8–10) (I) Calcium response 

in pLN1 to GA (10−6). Mean response change normalized to baseline. The pLN1 does not respond 

to GA in the fed state but shows increased response after food deprivation (two-sample t-test, p < 

0.05) (N = 7).   
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Fig. S4. Serotonin from CSD excites uPNs. (A) 5-HT7-GAL4 expression pattern, including 

uPNs. Arrow indicates axonal projections. Asterisk indicates cell bodies. (B) Calcium response in 

uPNs to GA (10−6). Mean response change normalized to baseline. Light colors: uPNs show 

increased GA response after food-deprivation (two-sample t-test, p < 0.05). Dark colors: Upon 5-

HT7 receptor knockout in uPNs, they show same response in both states (two-sample t-test, p > 

0.05) (N = 6–7). (C) GMR60F02-GAL4 labels the CSD neuron. Asterisks indicates cell bodies. 

(D) Silencing neurons labeled by Trh-GAL4 does not affect GA response (one-way ANOVA, p > 

0.05) (N = 6–10). Silencing neurons labeled by DDC-GAL4 does not affect GA response (one-

way ANOVA, p > 0.05) (N = 6–14). (E) Mutant larvae (Trh−/−) unable to synthesize serotonin 

exhibit GA avoidance in fed state (Mann-Whitney U-test, p > 0.05), however do not switch to GA 

attraction after food deprivation (two-sample t-test, p < 0.01) (N = 6–8). (F) Calcium response in 

CSD to GA (10−8). Mean response change normalized to baseline. CSD responds stronger to GA 

upon food-deprivation (two-sample t-test, p < 0.05) (N = 8–10). (G) Overexpression of the 

serotonin transporter in CSD using UAS-SerT only affects food-deprived GA attraction (one-way 

ANOVA, p < 0.01) (N = 8). RNAi-knockdown of SerT in CSD only impairs fed GA avoidance 

(one-way ANOVA, p < 0.01) (N = 8–10). lAL = larval antennal lobe.  
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Fig. S5. CSD activation affects locomotion parameters differently than food deprivation. (A) 

Activation of the CSD neuron by expressing UAS-CsChrimson in fed larvae mimics the food 

deprived GA response behavior. (B) Locomotion parameters of larvae. Food deprived larvae 

show increased run length due to increased run speed and run duration. Artificial activation of 

CSD only induces an increase in run duration. 
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Fig. S6. pLN1/4 receive glutamatergic and serotonergic inhibition in the fed state. (A) 

Knockdown of the GluClα-receptor in pLN1 only impairs fed GA avoidance (one-way ANOVA, 

p < 0.001) (N = 8–12). (B) Knockdown of the GluClα-receptor in pLN4 only impairs fed GA 

avoidance (one-way ANOVA, p < 0.001) (N = 7–8). (C) Expression pattern of 5-HT1A-GAL4, 

labelling two local lAL neurons. Asterisk indicates cell bodies. lAL = larval antennal lobe. (D) 

Knockdown of the 5-HT1A receptor in pLNs only impairs fed GA avoidance (one-way ANOVA, 

p < 0.001) (N = 6–16). (E) In the fed state, pLN1/4 are inhibited by a glutamatergic neuron 

(presumably pLN0) and the serotonergic CSD neuron, overall reducing inhibition onto cobra 

mPN.   
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Fig. S7. State dependent olfactory behavior in response to the odorant menthol requires the 

same neural circuit as for GA. (A) Silencing uPNs (GH146-GAL4) only abolishes attraction to 

menthol in food-deprived larvae (one-way ANOVA, p < 0.001) (N = 4–6). (B) Food deprivation 

increases uPN responses to menthol (two-sample t-test, p < 0.05) (N = 7–9). (C) Silencing cobra 

mPN (GMR32E03-GAL4) only abolishes menthol avoidance in the fed state (one-way ANOVA, p 

< 0.01) (N = 6). (D) Food deprivation decreases mPN response to menthol (two-sample t-test, p < 

0.05) (N = 8–9). (E) Silencing 5-HT7-GAL4 labelled neurons abolishes attraction to menthol in 

the food-deprived state (one-way ANOVA, p < 0.01) (N = 8–10). (F) Silencing CSD 

(GMR60F02-GAL4) only abolishes attraction to menthol after food-deprivation (one-way 

ANOVA, p < 0.01) (N = 8–10). (G) Knockdown of serotonin synthesis in CSD only abolishes 

attraction to menthol after food-deprivation (one-way ANOVA, p < 0.01) (N = 8). 
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