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Figure S1. Raw data of SEAP production and transcription factor expression used to 
calculate normalized SEAP production in Figure 1 a. For varying amounts of tetO, 
SEAP production was measured via enzymatic activity (left) and transcription factor 
expression was measured via eYFP fluorescence and flow cytometry (middle). SEAP 
production was then normalized to transcription factor expression (right). b) Expression 
of SEAP (left), eYFP (middle) and normalized SEAP values (right) for temporal 
dynamics. eYFP expression was measured after 48 h, this measurement was used to 
normalize the SEAP measurements. AU, arbitrary units. 
 

 

 

 



 
 

 

 

Figure S2. Distribution of OptoTF constructs in cells. Expression vectors for OptoTF- 

and three Opto+IDR were transfected into HEK-293 cells and cultivated under blue 

light (465 nm, 5 µmol m-2 s-1) for 24 h prior to analysis by fluorescence microscopy. a) 

Percentage of cells with visible droplets (bottom line) as well as the number of visible 

droplets per cell. 1000 cells were analyzed. b)  Integrated fluorescence intensity of 

droplets in cells. Median values: horizontal line; mean values: black squares; boxes: 

50% of the population; whiskers: 90% of the population. RFU, relative fluorescent units. 
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Figure S3. Liquid properties of OptoTF+FUS droplets. a) Fusion event of two droplets. 
OptoTF+FUS was transfected into HEK-293 cells. 24 h after transfection, HEK-293 
cells were illuminated for 3 min with blue light (465 nm, 5 µmol m-2 s-1) followed by live 
cell imaging of eYFP flurescence at 70 s intervals via confocal microscopy. Yellow 
arrowheads indicate droplets in close proximity that combine into single, larger 
droplets, indicated by blue arrowheads. b) Representative FRAP recovery curves of 
experiment depicted in Figure 2 c. FRAP was performed after 10 min (red) or 24 h 
(orange) blue light illumination. c) Representative images of droplet bleaching. Scale 
bar, 1 µm. d) Intensity of the droplets before bleaching. Both groups were compared 
by a two-tailed Welch’s t test. AU, arbitrary units. 
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Figure S4. Localization of DropletTFs on reporter DNA. a) Mode of function of the 
localization assay: the DNA upstream the promoter region is stained by binding of LacI-
mCherry to lacO multimers. Yellow fluorescent OptoTF+FUS forms a coacervate at the 
multimeric tetO binding site. (Co-) localization of fluorescence is analyzed via confocal 
fluorescence microscopy. b) Left: Localization of mCherry-lacI and OptoTF+FUS on a 
genomic lacO256 - tetO96 array. U2OS cells were transfected with mCherry-lacI, 
OptoTF+FUS, and CIBn-TetR. 24 h after transfection, cells were illuminated for 24 h 
with blue light (465 nm, 5 µmol m-2 s-1) prior to analysis by fluorescence microscopy. 
Right: Localization of mCherry-lacI and OptoTF+FUS on transiently transfected 
reporter plasmids harboring lacO256 - tetO6. HEK-293 cells were transfected with 
mCherry-lacI, OptoTF+FUS, CIBn-TetR, and reporter lacO256_tetO6_SEAP. 24 h after 
transfection, cells were illuminated for 24 h with blue light (465 nm, 5 µmol m-2 s-1) prior 
to analysis by confocal fluorescence microscopy. 
 
 
 



 
 

 
 

 
 
Figure S5. Effects of FUS insertion into OptoTF constructs fluorescently labeled with 
mCherry and exchange of the transactivation-domain. HEK-293 cells were co-
transfected with the indicated constructs, a TetR-CIBn construct, and a tetO7-based 
SEAP reporter. Cells were cultivated in the dark or under blue light (465 nm, 5 µmol m-

2 s-1) for 48 h prior to quantifying SEAP production. a) FUSn between Cry2-mCherry 
and VP16. b) FUSn at the N-terminus of Cry2-mCherry-VP16. c) Exchange of the VP16 
TAD with the E2F4 TAD. 
  



 
 

 

 
 
 
Figure S6. Investigation of the effect of FUSn on gene expression. a) OptoTF 
constructs tested. b) HEK-293 cells were co-transfected with the indicated constructs, 
a TetR-CIBn construct, and a tetO7-based SEAP reporter. Cells were cultivated in the 
dark or under blue light (465 nm, 5 µmol m-2 s-1) for 24 h prior to quantifying SEAP 
production.  
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Figure S7. Reversibility of OptoTF+FUS condensates. a, b) Reversibility of gene 
expression. OptoTF+FUS and CIBn-TetR were transfected into HEK-293 cells 
together with a tetO7-based SEAP reporter. 24 h after transfection, cells were 
illuminated with blue light (465 nm, 5 µmol m-2 s-1) for a) 6 h or b) 24 h before they were 
transferred into dark (t0 = 0 h). SEAP values were normalized to t0. AU, arbitrary units. 
c – f) Disassembly of OptoTF+FUS droplets. OptoTF+FUS, CIBn-TetR and a tetO7-
based SEAP reporter were transfected into HEK-293 cells. 24 h later, cells were 
illuminated for c, e) 10 min or d, f) 24 h with blue light (465 nm, 5 µmol m-2 s-1) before 
they were transferred into dark. Cells were fixed for microscopy at the indicated time 
points. Average number of droplets per cell with droplets was determined and t1/2 was 
calculated. Data was fitted to a one phase exponential decay using non-linear 
regression. 95% confidence intervals are for c) 5.0 to 9.1 min and for d) 34.7 to 108.4 
min. 
 

 
 
 



 
 

 
 

 
Figure S8. Raw data of SEAP production and transcription factor expression used to 
calculate normalized SEAP production in Figure 3 a) For varying numbers of tetO, 
SEAP production was measured via enzymatic activity (left) and transcription factor 
expression was measured via eYFP fluorescence and flow cytometry (middle). SEAP 
production was then normalized to transcription factor expression (right). b) Expression 
of SEAP (left), eYFP (middle) and normalized SEAP values (right) for temporal 
dynamics. eYFP expression was measured after 24 h and this measurement used to 
normalize all SEAP measurements. AU, arbitrary units. 
 
 



 
 

 
 
 
Figure S9. Combined data of Figure 1 c and Figure 3 b.  tetOn-based SEAP reporters 
(n = 1-6, 26) were co-transfected into HEK-293 cells with TF-, TF+FUS, OptoTF-, and 
OptoTF+FUS expression constructs. The stoichiometry of the expression vectors was 
adjusted so that TF- and TF+FUS as well as OptoTF- and OptoTF+FUS were produced 
at equal amounts per cell. SEAP production was quantified after 48 h. In parallel, TF 
expression levels were determined by flow cytometry of eYFP. To account for 
variations in TF expression, SEAP production values were normalized to YFP 
fluorescence values. The model fit is derived from the extended model including both 
datasets. The model fit to the data is represented by the curves while the shaded error 
bands are estimated with an error model with a constant and relative Gaussian error. 
AU, arbitrary units. 
 
  



 
 

 
 
 
Figure S10. Red light-responsive OptoTF system. a) Design of the constructs. 
Arabidopsis phytochrome B (PhyB, amino acids 1-651) is fused to VP16 or to FUSn-
VP16. This gene is expressed from a bicistronic construct together with TetR fused to 
the phytochrome interacting factor PIF6 (amino acids 1-100). b) Performance of the 
red light-responsive OptoTF system. The constructs indicated in a) were co-
transfected with a tetO7-based SEAP reporter into HEK-293 cells. Cells were cultivated 
for 24 h under red (660 nm, 10 µmol m-2 s-1) or far-red (740 nm, 100 µmol m-2 s-1) light 
prior to quantifying SEAP production. Experiments were conducted as described 
before.[1]  
  



 
 

 
Figure S11. Mouse illumination device. Mice are illuminated with a LED (50 W, 45 miL, 
460-470 nm, with the light angle 60°) which was obtained from Shenzhen Kiwi Lighting 
Co. Ltd. This integrated LED contains 50 small LED (1W) beads. The light intensity 
was measured at a wavelength of 465 nm using an optical power meter (Q8230; 
Advantest) according to the manufacturer’s operating specifications. (Photo Credit: 
Deqiang Kong, East China Normal University) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 

 

Illumination Intensity: 5 mW cm-2 
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 Illumination Intensity: 10 mW cm-2 
 

 
 
Figure S12. Raw data of luciferase expression shown in Figure 4 c. The reporter 
construct tetO7-Luciferase was co-transfected with CIBn-TetR and either OptoTF- or 
OptoTF+FUS constructs via the tail vein. Eight hours after plasmid injection, the mice 
were kept in the dark or exposed to blue light pulses for 11 h (460 nm LED; 2 min on, 
2 min off, alternating) at an intensity of 5 mW cm−2 or 10 mW cm−2 (for each light 
intensity and condition 4 mice were kept in the dark and 4 mice were kept under light). 
For in vivo bioluminescence imaging, each mouse was intraperitoneally injected with 
luciferin substrate under ether anaesthesia. Five minutes after luciferin injection, 
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bioluminescence radiance (p sec-1 cm-2 sr-1) was calculated for the region of interest. 
(Photo Credit: Deqiang Kong, East China Normal University) 
 

 

Vector Information and Transfection Conditions 

 
Table S1: Vectors used and developed in this study. 

Plasmid  Backbone Description 

TF- (pNS089) pEGFP-C3 (Clontech) TetR-VP16-eYFP 

TF+FUS (pNS091) pEGFP-C3 TetR-VP16-FUSn-eYFP 

   

CIBn-TetR (pNS1000) pEGFP-C3 CIBn-TetR 

OptoTF- (pNS1001) pEGFP-C3 Cry2-eYFP-VP16 

OptoTF+DDX (pNS025) pEGFP-C3 Cry2-eYFP-DDX-VP16 

OptoTF+FUS (pNS026) pEGFP-C3 Cry2-eYFP-FUS-VP16 

OptoTF+RNP (pNS027) pEGFP-C3 Cry2-eYFP-RNP-VP16 

OptoTF+FUS_Nterm (pNS038) pEGFP-C3 FUS-Cry2-eYFP-VP16 

OptoTF-_E2F4-TAD (pNS046) pEGFP-C3 Cry2-eYFP-E2F4 

OptoTF+FUS_E2F4-TAD (pNS075) pEGFP-C3 Cry2-eYFP-FUS-E2F4 

OptoTF+FUS_ΔVp16 (pNS043) pEGFP-C3 Cry2-eYFP-FUS 

   

OptoTF-_mC (pNS032) pEGFP-C3 Cry2-mCherry-VP16 

OptoTF+FUS_mC (pNS034) pEGFP-C3 Cry2-mCherry-FUS-VP16 

OptoTF+FUS_Nterm_mC (pNS041) pEGFP-C3 FUS-Cry2-mCherry-VP16 

   

tetO1_SEAP (pNS301) pKM001 tetO1-PhCMVmin-SEAP 

tetO2_SEAP (pNS302) pKM001 tetO2-PhCMVmin-SEAP 

tetO3_SEAP (pNS303) pKM001 tetO3-PhCMVmin-SEAP 

tetO4_SEAP (pNS304) pKM001 tetO4-PhCMVmin-SEAP 

tetO5_SEAP (pNS305) pKM001 tetO5-PhCMVmin-SEAP 

tetO6_SEAP (pNS306) pKM001 tetO6-PhCMVmin-SEAP 

tetO7_SEAP (pKM001) [4] - tetO7-PhCMVmin-SEAP 

tetO26_SEAP (pKM004) [4] pKM001 tetO26-PhCMVmin-SEAP 

tetO13_mCherry (pKM078) [4] - tetO13-PhCMVmin-mCherry 

lacO256_tetO6_SEAP (pNS053) pKM001 lacO256-tetO6-PhCMVmin-SEAP 

pN2-mCherryLacI - mCherry-lacI 

   

PhyB-VP16 (pKM022) [4] - PhyB-VP16_PIF-TetR 

PhyB-FUS-VP16 (pNS072) pKM022 PhyB-FUS-VP16_TetR-PIF 

PhyB-FUS-eYFP-VP16-IRES-TetR-PIF6 

(pNS098) 

pKM022 PhyB-FUS-eYFP-VP16-IRES-

TetR-PIF6  

tetO7_Luciferase (pAF101) pKM001 tetO7-PhCMVmin-Luciferase 

 
Table S2: Plasmids encoding functional components and quantities transfected per 24-well for all 
biological data presented in this publication. 
 

Figure Condition Plasmids and DNA amount 

Fig 1 c TF- Reporter: pNS301-306, pKM004 (550 ng). Transcription 
factor: pNS089 (30 ng) 



 
 

TF+FUS Reporter: pNS301-306, pKM004 (550 ng). Transcription 
factor: pNS091 (200 ng) 

Fig 1 d TF- Reporter: pNS301-306, pKM004 (550 ng). Transcription 
factor: pNS089 (30 ng) 

TF+FUS Reporter: pNS301-306, pKM004 (550 ng). Transcription 
factor: pNS091 (200 ng) 

Fig 2 b No IDR Reporter: pKM078 (350 ng), DNA-binding domain: 
pNS1000 (200 ng), Transcription factor: pNS1001 (20 
ng) 

DDX4N Reporter: pKM078 (350 ng), DNA-binding domain: 
pNS1000 (200 ng), Transcription factor: pNS025 (20 ng) 

FUSN Reporter: pKM078 (350 ng), DNA-binding domain: 
pNS1000 (200 ng), Transcription factor: pNS026 (20 ng) 

RNPAC Reporter: pKM078 (350 ng), DNA-binding domain: 
pNS1000 (200 ng), Transcription factor: pNS027 (20 ng) 

Fig 2 c OptoTF+FUS  Reporter: pKM001 (500 ng), DNA-binding domain: 
pNS1000 (20 ng), Transcription factor: pNS026 (20 ng) 

Fig 3 a Cry2-eYFP-VP16 Reporter: pKM001 (350 ng), DNA-binding domain: 
pNS1000 (200 ng), Transcription factor: pNS1001 (20 
ng) 

 Cry2-eYFP-FUSn-VP16 Reporter: pKM078 (350 ng), DNA-binding domain: 
pNS1000 (200 ng), Transcription factor: pNS026 (20 ng) 

 FUSn-Cry2-eYFP-VP16 Reporter: pKM078 (350 ng), DNA-binding domain: 
pNS1000 (200 ng), Transcription factor: pNS038 (20 ng) 

Fig 3 b OptoTF- Reporter: pNS301-306, pKM004 (530 ng), DNA-binding 
domain: pNS1000 (20 ng), Transcription factor: 
pNS1001 (200 ng) 

OptoTF+FUS Reporter: pNS301-306, pKM004 (530 ng), DNA-binding 
domain: pNS1000 (20 ng), Transcription factor: pNS026 
(30 ng) 

Fig 3 c OptoTF- Reporter: pNS304 (530 ng), DNA-binding domain: 
pNS1000 (20 ng), Transcription factor: pNS1001 (200 
ng) 

OptoTF+FUS Reporter: pNS304 (530 ng), DNA-binding domain: 
pNS1000 (20 ng), Transcription factor: pNS026 (30 ng) 

   

Fig 4 b OptoTF- Reporter: pKM001 (500 ng), DNA-binding domain: 
pNS1000 (20 ng), Transcription factor: pNS1001 (20 
ng) 

OptoTF+FUS Reporter: pKM001 (500 ng), DNA-binding domain: 
pNS1000 (20 ng), Transcription factor: pNS026 (20 ng)   

Fig S1 a,b TF- See Fig 1 c 

TF+FUS See Fig 1 d 

Fig S2 a,b No IDR, DDX4N, FUSN, 
RNPC 

See Fig 2 b 

Fig S3 a TF+FUS Reporter: pKM078 (350 ng), DNA-binding domain: 
pNS1000 (200 ng), Transcription factor: pNS026 (20 ng) 

Fig S3 b-d  OptoTF+FUS  Reporter: pKM001 (500 ng), DNA-binding domain: 
pNS1000 (20 ng), Transcription factor: pNS026 (20 ng) 

Fig S4 b  Genomic target DNA Marker: pN2-mCherryLacI (250 ng), DNA-binding 
domain: pNS1000 (0 or 250 ng), Transcription factor: 
pNS026 (250 ng) 

Plasmid target DNA Reporter: pNS053 (450), Marker: pN2-mCherryLacI (100 
ng), DNA-binding domain: pNS1000 (0 or 100 ng), 
Transcription factor: pNS026 (100 ng) 

Fig S5 a No IDR / FUSN Reporter: pKM001 (530 ng), DNA-binding domain: 
pNS1000 (200 ng), Transcription factor: pNS032 (20 ng) 
/ pNS034 (20 ng) 



 
 

Fig S5 b No IDR / FUSN Reporter: pKM001 (530 ng), DNA-binding domain: 
pNS1000 (200 ng), Transcription factor: pNS032 (20 ng) 
/ pNS41 (20 ng) 

Fig S5 c No IDR / FUSN Reporter: pKM001 (530 ng), DNA-binding domain: 
pNS1000 (200 ng), Transcription factor: pNS046 (20 ng) 
/ pNS75 (20 ng) 

Fig S6 b OptoTF- Reporter: pKM001 (350 ng), DNA-binding domain: 
pNS1000 (200 ng), Transcription factor: pNS1001 (200 
ng) 

 OptoTF+FUS Reporter: pKM001 (350 ng), DNA-binding domain: 
pNS1000 (200 ng), Transcription factor: pNS026 (200 
ng) 

 OptoTF+FUSΔVP16 Reporter: pKM001 (350 ng), DNA-binding domain: 
pNS1000 (200 ng), Transcription factor: pNS043 (200 
ng) 

Fig S7  OptoTF+FUS  Reporter: pKM001 (500 ng), DNA-binding domain: 
pNS1000 (20 ng), Transcription factor: pNS026 (20 ng) 

Fig S8 a,b OptoTF- See Fig 3 b 

OptoTF+FUS See Fig 3 c 

Fig S9 TF-, TF+FUS, OptoTF-, 
OptoTF +FUS 

See Fig 1 c and Fig 3 b 

Fig S10 b PhyB-VP16 Reporter: pKM001 (730 ng), DNA-binding domain + 
Transcription factor: pKM022 (20 ng) 

PhyB-FUSN-VP16 Reporter: pKM001 (730 ng), DNA-binding domain + 
Transcription factor: pNS072 (20 ng) 

  



 
 

Supplementary Information - Modelling.  

Section 1) Development of the mathematical model for DropletTF 

 

a. Derivation of the set of ordinary differential equations (ODEs). 

 
In the following chapter, we derive the mathematical model describing the TF- and 
TF+FUS transcription factors and the transcription of the reporter SEAP mRNA and 
translation of SEAP from its mRNA based on ODEs. 
 
The transcription factors TF- and TF+FUS binding to the tetO sites lead to a 

transcription of 𝑆𝐸𝐴𝑃𝑚𝑅𝑁𝐴. This is modelled by a Michalis-Menten reaction with the 
reaction rate 𝑘𝑡𝑟𝑎𝑛𝑠𝑘

∗  and the Michaelis-Menten constant 𝐾𝑚
∗ , dependent on the 

concentration of tetO in the cells. The parameter 𝑘𝑡𝑟𝑎𝑛𝑠𝑘
∗  defines the limit behaviour of 

the reaction. For high concentrations of tetO the concentration of 𝑆𝐸𝐴𝑃𝑚𝑅𝑁𝐴 
asymptotically approaches 𝑘𝑡𝑟𝑎𝑛𝑠𝑘

∗ . 𝐾𝑚
∗  on the other hand, defines the concentration of 

tetO, for which 𝑆𝐸𝐴𝑃𝑚𝑅𝑁𝐴 reaches half this limit concentration, thus governing the 
transient behaviour of the dose-response curve. 
These two parameters can differ for the TF- and the TF+FUS transcription factors. 
Thus, two distinct effects have to be modelled, depending on the existence of either 
TF- or TF+FUS. This is denoted in the asterisk of the parameters. This asterisk 

encapsulates the fact that separate parameters 𝑘𝑡𝑟𝑎𝑛𝑠𝑘
𝑇𝐹−  and 𝑘𝑡𝑟𝑎𝑛𝑠𝑘

𝑇𝐹+𝐹𝑈𝑆 as well as 𝐾𝑚
𝑇𝐹− 

and 𝐾𝑚
𝑇𝐹+𝐹𝑈𝑆 exist. The cooperativity of the reaction is modelled with the Hill parameter 

ℎ∗, which again is dependent on the transcription factor.  
SEAP mRNA is degraded with the rate 𝑘𝑑𝑒𝑔,𝑆𝐸𝐴𝑃𝑚𝑅𝑁𝐴

. This rate is independent of the 

transcription factor and thus only one parameter for it exists. The basal transcription of 

𝑆𝐸𝐴𝑃𝑚𝑅𝑁𝐴 can be neglected because of the short timescale of the experiments and the 
high transcription rates due to the transcription factors TF- and TF+FUS. 

Thus, the ODE describing the dynamic concentration behavior of 𝑆𝐸𝐴𝑃𝑚𝑅𝑁𝐴 is 
  

𝑑[𝑆𝐸𝐴𝑃𝑚𝑅𝑁𝐴](𝑡)

𝑑𝑡
=  

𝑘𝑡𝑟𝑎𝑛𝑠𝑘
∗  [𝑡𝑒𝑡𝑂]ℎ

∗

(𝐾𝑚∗ )ℎ
∗
+ [𝑡𝑒𝑡𝑂]ℎ

∗ − 𝑘𝑑𝑒𝑔,𝑆𝐸𝐴𝑃 [𝑆𝐸𝐴𝑃𝑚𝑅𝑁𝐴], 
(1.1) 

where the asterisk are replaced by TF- or TF+FUS, depending on the experimental 
setup. 
 
𝑆𝐸𝐴𝑃𝑚𝑅𝑁𝐴 leads to a translation of the target protein SEAP with the rate 𝑘𝑡𝑟𝑎𝑛𝑠𝑙,𝑆𝐸𝐴𝑃. 

The degradation of SEAP can be neglected, because it happens on a much slower 
timescale than the experiments. Thus, the ODE describing the dynamic behavior of 
the SEAP concentration becomes   
 

𝑑[𝑆𝐸𝐴𝑃](𝑡)

𝑑𝑡
        = 𝑘𝑡𝑟𝑎𝑛𝑠𝑙,𝑆𝐸𝐴𝑃 [𝑆𝐸𝐴𝑃𝑚𝑅𝑁𝐴].   

(1.2) 

The Equations (1.1) and (1.2) are the full set of ODEs describing the model. 
 
  



 
 

 
b. Implementation of the experiments and model simplifications. 

 
The calibration of the model was performed using two distinct experiments, measuring 
the normalized SEAP production. These included a time-course experiment for up to 
56 h and a tetO dose-response measurement with tetO concentrations of 1,2,3,4,5,6 
and 26, i.e. a differing number of tetO DNA binding sites. Since in all experiments the 
normalized SEAP concentration was measured with the same methods, the Gaussian 

error parameters for the constant error 𝑠𝑑𝑎𝑏𝑠 and the relative error 𝑠𝑑𝑟𝑒𝑙 are the same 
for both experiments and are estimated jointly.  
 
Experiment 1: Time course measurement of normalized SEAP production 
We measured a SEAP production time course (TC) with values for 13 time-points from 
0 h to 56 h after transfection of the cells with three replicates per measurements. The 
measurements were performed for both transcription factors TF- and TF+FUS. We 
normalized the SEAP production using the measured fluorescence of eYFP (i.e. the 
transcription factor concentration) as normalization factor. The observation function of 
the normalized SEAP is thus 
 

𝑆𝐸𝐴𝑃𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
𝑒𝑌𝐹𝑃𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

        = 𝑠𝑐𝑎𝑙𝑒𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑇𝐶[𝑆𝐸𝐴𝑃],   
(1.3) 

 
where 𝑠𝑐𝑎𝑙𝑒𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑇𝐶 describes the scaling factor relating the normalized SEAP 

measurements to the state SEAP. This scaling factor is necessary to link the different 
measurement scales to the concentrations in the model. Since the absolute scale of 
the model state SEAP is unknown, one of these scaling parameters is fixed to an 
arbitrary value, removing the degree of freedom in the model linked to this arbitrary 
scaling and thus avoiding over-parametrization. We fixed 
 

𝑠𝑐𝑎𝑙𝑒𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑇𝐶 = 1. (1.4) 

 
Experiment 2: Dose-response measurements with varying amounts of tetO-repeats of 
normalized SEAP production 
We measured a SEAP production dose response (DR) 52 h after transfection of the 
cells with three replicates per measurements. The measurements were performed for 
constructs with 1,2,3,4,5,6 and 26 tetO repeats for both transcription factors TF- and 
TF+FUS. We normalized the SEAP production using the measured fluorescence of 
eYFP (i.e. the transcription factor concentration) as normalization factor. The 
observation function of the normalized SEAP is 
 

𝑆𝐸𝐴𝑃𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
𝑒𝑌𝐹𝑃𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

        = 𝑠𝑐𝑎𝑙𝑒𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝐷𝑅[𝑆𝐸𝐴𝑃].   
(1.5) 

 
 
  



 
 

Initial Conditions 
Solving the model equations requires initial conditions for the model states. They were 
set to 
  

[𝑆𝐸𝐴𝑃](0) = 0   and (1.6) 

[𝑆𝐸𝐴𝑃𝑚𝑅𝑁𝐴](0) = 0 
(1.7) 

because at the beginning of the measurements the cells were newly transfected and 
neither protein nor mRNA was yet produced. 
 
 
Simplifications 
The parameter 𝑘𝑡𝑟𝑎𝑛𝑠𝑙,𝑆𝐸𝐴𝑃 describes the transition between 𝑆𝐸𝐴𝑃𝑚𝑅𝑁𝐴 and SEAP. 

However, since the absolute concentration of 𝑆𝐸𝐴𝑃𝑚𝑅𝑁𝐴 is unknown, it equates to a 
scaling factor linking the two concentrations. Thus, it can be fixed to  
 

𝑘𝑡𝑟𝑎𝑛𝑠𝑙,𝑆𝐸𝐴𝑃 = 1. 
(1.8) 

 

c. Results of the parameter estimation and uncertainty analysis 

 

We performed the calibration of the model and the uncertainty analysis using a 
maximum likelihood approach. This approach is described in detail in Section (3) of 
this Supporting Information. 
The model of the transcription factors TF- and TF+FUS was calibrated using 119 data 
points. The model includes 11 parameters, of which 10 are fitted and one is the fixed 
scaling parameter of the time-course experiment (see Equation (1.4)). The fitted 
parameters include one scaling parameter, two error parameters and seven dynamic 
parameters. 
The entire analysis process was performed in MATLAB using the Data2Dynamics (48). 
software. The numerical integration of the ODEs within Data2Dynamics is performed 
using the CVODES solver (49). Parameter estimation uses the trust region algorithm 

LSQNONLIN (50). All parameters except the Hill coefficients ℎ∗ and the Michaelis-
Menten constants 𝐾𝑚

∗  were optimized on a logarithmic scale to scan for the best 
parameters over many orders of magnitude. 
 
Using 100 optimization runs with randomly sampled initial parameter sets, we 
searched for the optimal parameter set. 83 of the runs converged to the lowest 
minimum (Modelling Fig. S1). This suggests that this minimum is the global minimum 
and thus the globally optimal parameter set. The step like structure in Modelling Fig. 
S1 suggests, that the optimization found one other minimum, however it is significantly 
worse than the best minimum.  
 
  



 
 

We used the profile likelihood method to analyze the identifiably of the parameters and 
to quantify their uncertainty by calculating 95% confidence intervals. All parameters 
except for 𝑘𝑑𝑒𝑔,𝑆𝐸𝐴𝑃 are identifiable (Modelling Fig. S2). 𝑘𝑑𝑒𝑔,𝑆𝐸𝐴𝑃 is practically non-

identifiable and not significantly different from zero. This practical non-identifiability 
originates from the limited information available on the relatively slow degradation of 
SEAP mRNA in the experiments. A detailed list of the parameters and their 
uncertainties can be found in Table S1. 
 
 

 
 

Modelling Fig. S1. Multiple optimization runs with random initial parameters for 
the model of TF- and TF+FUS. Multiple optimization runs with random initial 
parameter guesses for model of TF- and TF+FUS. We performed 100 optimization 
runs with random initial parameter guesses. Their results are sorted by their –2 log(L) 
value. 83 of the runs converged to the lowest minimum. All other local minima are 
significantly higher than this lowest minimum. 



 
 

 
Modelling Fig. S2. Parameter profile likelihood of the estimated parameters for 
model of TF- and TF+FUS. Parameter profile likelihood of the estimated parameters 
of the model describing TF- and TF+FUS. The black lines show the profile likelihood, 
while the optimal parameter value, i.e. the Maximum Likelihood Estimator, is shown as 
a grey dot. The dashed red lines indicate the 95% confidence level. Its intersection 
points with the profile likelihood yield the point-wise 95% confidence intervals of the 
parameter. The dotted blue lines indicate the –2 log(PL) value of the optimal parameter 
set. All parameters are identifiable, i.e. they have finite 95% confidence intervals except 
for the practically non-identifiable parameter 𝑘deg,SEAP. 

 

 

 

 

 

 



 
 

Modelling Table S1. Estimated model parameters and confidence intervals 
based on parameter profile likelihood for the model of TF- and TF+FUS. Maximum 

likelihood estimation was used to obtain the estimated parameters 𝜃. The point-wise 
95% confidence intervals 𝜎− and 𝜎+ were obtained with the profile likelihood method. 
The fixed scaling parameter scaleExperimentTC has no confidence interval. The Michaelis-

Menten constants 𝐾𝑚
∗  and the Hill parameters ℎ∗ were fitted on a linear scale, since 

they are naturally linearly confined. 
 

 

 

 

 

  



 
 

Section 2) Development of the extended mathematical model to 
describe DropletTFs and OptoDropletTFs. 

 
a. Derivation of the set of ODEs.  

 

In this chapter, we derive the extended mathematical model describing the TF-, 
TF+FUS and the OptoTF- and OptoTF+FUS transcription factors and the transcription 
of the reporter SEAP mRNA and translation of SEAP from its mRNA based on ODEs. 
This model is based on the previously introduced model in Section (1) of this SI. 
 
However, since now a blue-light activation of the transcription has to be modelled, new 
model states are necessary. The photoreceptors Cry2(PHR)-eYFP-NLS-VP16 
(OptoTF-) and Cry2(PHR)-eYFP-NLS-FUSn-VP16 (OptoTF+FUS) have a light-
dependent transitioning behavior between their two respective conformations. In the 
dark, the Cry2 proteins are in their monomeric state while upon illumination with blue 

light with the intensity Iblue they oligomerize  
 

[𝑉𝑃16inactive] 

𝑘off,VP16
←     

𝑘on,VP16 Iblue

→         
 [𝑉𝑃16active], 

(2.1) 

 
thus initiating the activation of the VP16 domain of the transcription factor from its 

inactive state 𝑉𝑃16inactive to its active state 𝑉𝑃16active. This transition behavior only 
holds true for the optogenetic transcription factors OptoTF- and OptoTF+FUS. In the 
case of the other transcription factors TetR-VP16-NLS-eYFP (TF-) and TetR-VP16-

NLS-FUSn-eYFP (TF+FUS), VP16 is always in its active state 𝑉𝑃16active. This was 
modelled with a Boolean variable bopto, which is one for OptoTF- and OptoTF+FUS 

and zero for TF- and TF+FUS. The ODE describing the concentration of VP16 thus 
become 
  
𝑑[𝑉𝑃16inactive](𝑡)

𝑑𝑡
=  bopto(− 𝑘on,VP16 Iblue[𝑉𝑃16inactive] + 𝑘off,VP16[𝑉𝑃16active])  

(2.2) 

 
and 
 
𝑑[𝑉𝑃16active](𝑡)

𝑑𝑡
 =  bopto(+ 𝑘on,VP16 Iblue[𝑉𝑃16inactive] − 𝑘off,VP16[𝑉𝑃16active]). 

(2.3) 

 
As in the previous model, the transcription factors binding to the tetO sites lead to the 

transcription of 𝑆𝐸𝐴𝑃𝑚𝑅𝑁𝐴 which in turn invokes the production of the reporter protein 
SEAP. The modelling is again performed using a Hill reaction, described in Equation 
(1.1) with the reaction rate 𝑘𝑡𝑟𝑎𝑛𝑠𝑘

∗  and the Michaelis-Menten constant 𝐾𝑚
∗ , as well as 

the Hill parameter ℎ∗. These three parameters were fitted separately for each 
transcription factor. The degradation rate of 𝑆𝐸𝐴𝑃𝑚𝑅𝑁𝐴 𝑘𝑑𝑒𝑔,𝑆𝐸𝐴𝑃 however, is the same 

for all four transcription factors. In contrast to Equation (1.1), now, the linear activation 
of mRNA transcription by the transcription factors is modelled by introducing the VP16-
based transcription. The equation thus becomes 
 



 
 

𝑑[𝑆𝐸𝐴𝑃𝑚𝑅𝑁𝐴](𝑡)

𝑑𝑡
=  

𝑘𝑡𝑟𝑎𝑛𝑠𝑘
∗  [𝑡𝑒𝑡𝑂]ℎ

∗

(𝐾𝑚∗ )ℎ
∗
+ [𝑡𝑒𝑡𝑂]ℎ

∗ [𝑉𝑃16active]
ℎ𝑉𝑃16 − 𝑘𝑑𝑒𝑔,𝑆𝐸𝐴𝑃 [𝑆𝐸𝐴𝑃𝑚𝑅𝑁𝐴]. 

(2.4) 

 
Here, the cooperativity of the VP16 induced transcription activation is modelled by the 

Hill parameter ℎ𝑉𝑃16. 
 

The translation of SEAP by 𝑆𝐸𝐴𝑃𝑚𝑅𝑁𝐴  
 

𝑑[𝑆𝐸𝐴𝑃](𝑡)

𝑑𝑡
        = 𝑘𝑡𝑟𝑎𝑛𝑠𝑙,𝑆𝐸𝐴𝑃 [𝑆𝐸𝐴𝑃𝑚𝑅𝑁𝐴]   

(2.5) 

 
is identical to Equation (1.2). Thus, Equations (2.2) – (2.5) are able to describe the 
extended system of both TF-, TF+FUS as well as OptoTF- and OptoTF+FUS. 
 

 

 

 

b. Implementation of the extended experiments and model simplifications. 

 

Experiments 1 and 2: Time course measurement of normalized SEAP production and 
tetO dose-response measurements of TF- and TF+FUS 
 

Since this model is an extension of the previously defined model, the two experiments 

discussed in Section 1 describing the time courses (TC) of TF- and TF+FUS as well 

as their tetO-dose responses (DR) are also included in this model. Their observation 

functions are defined by 

 

𝑆𝐸𝐴𝑃𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
𝑒𝑌𝐹𝑃𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

        = 𝑠𝑐𝑎𝑙𝑒𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑇𝐶[𝑆𝐸𝐴𝑃]   
(2.6) 

and 

𝑆𝐸𝐴𝑃𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
𝑒𝑌𝐹𝑃𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

        = 𝑠𝑐𝑎𝑙𝑒𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝐷𝑅[𝑆𝐸𝐴𝑃]   
(2.7) 

 

identically to Equations (1.3) and (1.5). Again, one of the scaling factors linking the 

normalized SEAP measurements to the concentration of SEAP in the model can be 

fixed. We used the scale of the time course measurement  

 

𝑠𝑐𝑎𝑙𝑒𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑇𝐶 = 1. (2.8) 

and set it to one as we also did for the smaller model in Equation (1.4). 

 

Experiment 3: Time course measurement of normalized SEAP production of OptoTF- 
and OptoTF+FUS 
 
We kept the cells which were transfected with OptoTF- and OptoTF+FUS in darkness 
for 24 h in order to be able to transcribe and translate the transcription factor 
components necessary for the experiment. Since the transcription factor components 
including Cry2 are inactive in darkness, we started our measurements upon 



 
 

illuminating the cells with blue light (465 nm, 5 µmol m-2 s-1). We then measured SEAP 
production values for 8 time-points from 0 h to 32 h after starting the illumination with 
three replicates per measurements. The measurements were performed for both 
transcription factors OptoTF- and OptoTF+FUS. We normalized the SEAP production 
using the measured fluorescence of eYFP as normalization factor. The observation 
function of the normalized SEAP is thus similar to the time course measurement of 
experiment 1 
 

𝑆𝐸𝐴𝑃𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
𝑒𝑌𝐹𝑃𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

        = 𝑠𝑐𝑎𝑙𝑒𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑇𝐶,𝑂𝑝𝑡𝑜[𝑆𝐸𝐴𝑃],   
(2.9) 

 
where 𝑠𝑐𝑎𝑙𝑒𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑇𝐶_𝑂𝑝𝑡𝑜 describes the scaling factor relating the normalized SEAP 

measurements to the state SEAP. Since the absolute scale of the model state SEAP 
for the optogenetic conditions of the model is unknown, one of the scaling parameters 
from the measurements of the optogenetic system has to be fixed to an arbitrary value, 
too. This removes the degree of freedom in the model linked to this arbitrary scaling 
and thus avoids over-parametrization. We fixed 
 

𝑠𝑐𝑎𝑙𝑒𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑇𝐶,𝑂𝑝𝑡𝑜 = 1. (2.10) 

 
 
Experiment 4: Dose response measurements with varying amounts of tetO-repeats of 
normalized SEAP production of OptoTF- and OptoTF+FUS 
 
The dose-response measurement of the optogenetic transcription factors was 
performed similarly to the time course experiment, i.e. the cells were kept in the dark 
for 24 h first. Afterwards, they were kept under blue light. We measured SEAP 
production values 52 h after starting the illumination of the cells with three replicates 
per measurements. The measurements were performed for constructs with 1,2,3,4,5,6 
and 26 tetO repeats for both transcription factors OptoTF- and OptoTF+FUS. We 
normalized the SEAP production levels as previously discussed. The observation 
function of the normalized SEAP is 
 

𝑆𝐸𝐴𝑃𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
𝑒𝑌𝐹𝑃𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

        = 𝑠𝑐𝑎𝑙𝑒𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝐷𝑅,𝑂𝑝𝑡𝑜[𝑆𝐸𝐴𝑃].   
(2.11) 

 
 
Initial Conditions 
Solving the model equations requires initial conditions for the model states. For SEAP 
and its mRNA they were set to 
  

[𝑆𝐸𝐴𝑃](0) = 0   and (2.12) 

[𝑆𝐸𝐴𝑃𝑚𝑅𝑁𝐴](0) = 0. 
(2.13) 

 
These initial conditions are true for all transcription factors. For the TF- and TF+FUS 
transcription factors this is because at the beginning of the measurements, cells were 
newly transfected and therefore had not yet produced neither mRNA nor protein. For 



 
 

OptoTF- and OptoTF+FUS the cells were kept in the dark for 24h after transfection, 
thus no SEAP mRNA or protein was produced.  
 
Since the scaling of the VP16 states can be arbitrarily chosen by the model, we choose 
initial conditions that ensured that for all conditions the active state of VP16 had the 
same concentration of one. This makes the comparison of the model parameters 
between the OptoTF and TF systems possible. Thus, the initial conditions for the TF 
system are 
 

[𝑉𝑃16active](0) = 1   and (2.14) 

[𝑉𝑃16inactive](0) = 0 
(2.15) 

 
For the OptoTF system the initial conditions are determined by the steady state of the 

two VP16 states, which is dependent on the blue light intensity Iblue as well as the 
rates of the VP16 reactions 𝑘on,VP16 and 𝑘off,VP16. They are 

 
[𝑉𝑃16active](0) = 1   and (2.16) 

[𝑉𝑃16inactive](0) =  
𝑘off,VP16

Iblue 𝑘on,VP16
. 

(2.17) 

 
The total concentration of VP16 is conserved in the model. 
 
Simplifications 
The parameter 𝑘𝑡𝑟𝑎𝑛𝑠𝑙,𝑆𝐸𝐴𝑃 describes the transition between 𝑆𝐸𝐴𝑃𝑚𝑅𝑁𝐴 and SEAP. As 

discussed for the smaller model, since the absolute concentration of 𝑆𝐸𝐴𝑃𝑚𝑅𝑁𝐴 is 
unkown, it equates to a scaling factor linking the two concentrations and can be fixed 
to one (Equation (1.8)).  
 
The values of the parameters describing the blue light-dependent activation of the 
VP16 transcription factors, i.e. the conformational change of Cry2 were fixed to 
previously determined values. The dark revision of activated Cry2 happens with the 
half-life of 5.5 min (51), thus the rate describing the dark revision can be fixed by 

𝑘off,VP16  =  
1

5.5
[min−1]  =   

60

5.5
[h−1].   

(2.18) 

 
The activation rate of a similar optogenetic transcription factor was determined (52) to 
be 
 

𝑘on,VP16  =  5.0 x 10−2 [(h 𝜇mol m−2 s−2)−1] .   
(2.19) 

 

Furthermore, the Hill parameter of the VP16 activation  ℎ𝑉𝑃16 cannot be determined 
from the given measurements. In order to estimate this parameter, multiple blue-light 

intensities have to be measured thus leading to differing concentrations of 𝑉𝑃16active. 
Therefore, the parameter was fixed  
 



 
 

ℎ𝑉𝑃16  = 2, (2.20) 

assuming cooperativity in Cry2 oligomerization.   
 
 
c. Results of the parameter estimation and uncertainty analysis of the extended 

model. 

 

We performed the calibration of the model and the uncertainty analysis using a 
maximum likelihood approach. This approach is described in detail in Section (3) of 
this Supporting Information. 
The extended model of the transcription factors TF-, TF+FUS, OptoTF- and 
OptoTF+FUS was calibrated using 209 data points. The model includes 22 
parameters, of which 17 are fitted, two are fixed scaling parameters of the time-course 
experiments (see Equations (2.8) and (2.10)), two are the fixed rates of VP16 and one 
is the fixed Hill parameter of the same compound. The fitted parameters include two 
scaling parameters, two error parameters and thirteen dynamic parameters. 
The entire analysis process was performed in MATLAB using the Data2Dynamics[10] 
software. The numerical integration of the ODEs within Data2Dynamics is performed 
using the CVODES solver (49). Parameter estimation uses the trust region algorithm 
LSQNONLIN (50). All parameters except the Hill coefficients and the Michaelis-Menten 

constants 𝐾𝑚
∗  were optimized on a logarithmic scale to scan for the best parameters 

over many orders of magnitude. 
 
Using 100 optimization runs with randomly sampled initial parameter sets, we 
searched for the optimal parameter set. 91 of the runs converged to the lowest 
minimum (Modelling Fig. S3). This suggests that this minimum is the global minimum 
and thus the globally optimal parameter set. The step-like structure in Modelling Fig. 
S3 suggests, that the optimization found other minima, however they are significantly 
worse than the best minimum.  
We used the profile likelihood method to analyze the identifiably of the parameters and 
to quantify their uncertainty by calculating 95% confidence intervals. All parameters 
are identifiable (Modelling Fig. S4). 𝑘𝑑𝑒𝑔,𝑆𝐸𝐴𝑃, which was practically non-identifiable in 

the smaller model now is also identifiable. This suggests that the combined information 
from all four experiments sufficiently restricts the uncertainty of the parameter in order 
to become identifiable. A detailed list of the parameters and their uncertainties can be 
found in Modelling Table S2. 
 



 
 

 
 

 
Modelling Fig. S3. Multiple optimization runs with random initial parameters for 
extended model of TF-, TF+FUS, OptoTF- and OptoTF+FUS. Multiple optimization 
runs with random initial parameter guesses for model of TF- and TF+FUS. We 
performed 100 optimization runs with random initial parameter guesses. Their results 
are sorted by their –2 log(L) value. 91 of the runs converged to the lowest minimum. 
All other local minima are significantly higher than this lowest minimum.  
 
 



 
 

 

 
Modelling Fig. S4. Parameter profile likelihood of the estimated parameters for 
extended model of TF-, TF+FUS, OptoTF- and OptoTF+FUS. Parameter profile 
likelihood of the estimated parameters of model describing TF-, TF+FUS, OptoTF- and 
OptoTF+FUS. The black lines show the profile likelihood, while the optimal parameter 
value, i.e. the Maximum Likelihood Estimator, is shown as a grey dot. The dashed red 
lines indicate the 95% confidence level. Its intersection points with the profile likelihood 
yield the point-wise 95% confidence intervals of the parameter. The dotted blue lines 
indicate the –2 log(PL) value of the optimal parameter set. All parameters are 
identifiable. 

 
Modelling Table S2. Estimated model parameters and confidence intervals 
based on parameter profile likelihood for the extended model of TF-, TF+FUS, 
OptoTF- and OptoTF+FUS. Maximum likelihood estimation was used to obtain the 



 
 

estimated parameters 𝜃. The point-wise 95% confidence intervals 𝜎− and 𝜎+ were 
obtained with the profile likelihood method. The fixed scaling parameters 
scaleExperimentTC and scaleExperimentTC,Opto as well as the fixed parameters 𝑘off,VP16 , 

𝑘on,VP16, and hVP16 have no confidence intervals. The Michaelis-Menten constants 𝐾𝑚
∗  

and the Hill parameters ℎ∗ were fitted on a linear scale, since they are naturally linearly 
confined. 

 

 

 

 

 

 



 
 

d. Model prediction of blue-light dose-response measurement. 

 
The predictions of the aforementioned calibrated model suggest that the OptoTF+FUS 
system reaches higher gene expression levels than the OptoTF- system, even for 
lower light intensities than the 5 µmol m-2 s-1 used in the experiments for the calibration 
of the model. For testing this prediction we measured the SEAP production of OptoTF- 
and OptoTF+FUS for varying intensities of blue light (465 nm, 0.1, 0.17, 0.32, 
0.5 µmol m-2 s-1) 48 h after transfection. 
 
The observation function of the newly measured dataset is described by 
 

𝑆𝐸𝐴𝑃𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
𝑒𝑌𝐹𝑃𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

        = 𝑠𝑐𝑎𝑙𝑒𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛,𝐿𝑖𝑔ℎ𝑡𝐷𝑅[𝑆𝐸𝐴𝑃].   
(2.21) 

 
Determining the uncertainties of the model prediction for these measurement 
conditions requires fitting the newly measured data in order to determine the inherent 
scaling factor 𝑠𝑐𝑎𝑙𝑒𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛,𝐿𝑖𝑔ℎ𝑡𝐷𝑅 of the data. Furthermore, since in contrast to the 

calibrated model for all four transcription factors (SI Modelling Section 2 c) now the 

VP16 concentrations differ due to different light intensities, the Hill parameter hVP16 has 
to be fitted to the new dataset as well. This fitting process is performed using the fixed 
maximum likelihood estimate for all other parameters of the previously calibrated 
model. We used the profile likelihood method to determine the uncertainty of the two 
parameters and their identifiability (Modelling Fig. S5). Both parameters are 
identifiable. Their detailed list can be found in Modelling Table S3. 
 
Using these two parameters, the uncertainty of the model prediction for the given 
experimental conditions, i.e. the blue-light dose response of OptoTF- and 
OptoTF+FUS can be calculated. For this purpose, the prediction profile likelihood (37, 
55) of the respective conditions was calculated. For this uncertainty, however, only the 
four experimental datasets of the original model can be used. The light-dose response 
dataset cannot be used for this prediction if it is to be compared to the predicted 
trajectories. Nevertheless, the uncertainty of the estimation of the scaling and Hill 
parameter has to be propagated to the model prediction. They were included in the 

model by introducing a log-normal prior 𝑁(𝜇, 𝜎𝑁
2) with a standard deviation of  

 

       𝜎𝑁  = 3.84 x  (𝜎+ − 𝜎−),  
(2.22) 

 

where 𝜎+ and 𝜎− describe point-wise confidence intervals of the parameter, and the 
mean  
 

       𝜇 = 𝜃, (2.23) 

 
i.e. the maximum likelihood estimate of the previous calibration process to the 
parameters 𝑠𝑐𝑎𝑙𝑒𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛,𝐿𝑖𝑔ℎ𝑡𝐷𝑅 and hVP16. These priors ensure that the profile 

likelihood of the parameters is identical to the profile likelihood of the calibration model 
(Modelling Fig. S5). The adjustment of the prior by 3.84 is necessary to adjust the 
size of the 95% confidence intervals to the width of the log-normal prior. 
 



 
 

Given the uncertainty of the extended model as well as the propagated uncertainty of 
the coupling of the data with the model via scaling and Hill kinetics, the prediction 
profile likelihood yields a predicted model trajectory as well as the uncertainty of this 
prediction (Figure 4 b). The measured data is in agreement with these trajectories 
suggesting that OptoTF+FUS indeed yields higher SEAP production for identical blue-
light intensities when compared to OptoTF-.  

 
 

Modelling Fig. S5. Parameter profile likelihood of the estimated parameters for 
the extended model of TF-, TF+FUS, OptoTF- and OptoTF+FUS including the 
light-dose response dataset. Parameter profile likelihood of the two estimated 
parameters of model including the extended light-dose response dataset. The black 
lines show the profile likelihood, while the optimal parameter value, i.e. the Maximum 
Likelihood Estimator, is shown as a grey dot. The dashed red lines indicate the 95% 
confidence level. Its intersection points with the profile likelihood yield the point-wise 
95% confidence intervals of the parameter. The dotted blue lines indicate the –2 
log(PL) value of the optimal parameter set. Both parameters are identifiable. All other 
parameters of the model were fixed to the maximum likelihood estimate of the 
extended model (Modelling Table S2). 

 

 

 

 

 

 

 



 
 

Modelling Table S3. Estimated model parameters and confidence intervals 
based on parameter profile likelihood for the extended model of TF-, TF+FUS, 
OptoTF- and OptoTF+FUS including the light-dose response dataset. Maximum 

likelihood estimation was used to obtain the estimated parameters 𝜃. The point-wise 
95% confidence intervals 𝜎− and 𝜎+ were obtained with the profile likelihood method. 
All other parameters were fixed to the maximum likelihood estimate of the extended 
model (Modelling Table S2). 
 
 

 



 
 

Section 3) Introduction to the maximum likelihood approach to 
parametrize the models and perform identifiably analysis. 

 

We developed two mathematical models based on ordinary differential equations 
(ODEs). Their detailed derivation can be found in the preceding sections. For the 
parametrization of these models we used a maximum likelihood approach. For the 
uncertainty analysis we used the profile likelihood method. These methods will be 
introduced here briefly, based on previous introductions in Raue et. al. (53) and the 
supporting information of Beyer et al. (54).  
 

The mathematical models discussed in this work describe the dynamics of the 

concentrations of the relevant biochemical complexes. Using �⃗� as the vector of these 
states, the ODEs can be generalized to 
 

𝑑

𝑑𝑡
�⃗�(𝑡) = 𝑓(�⃗�, �⃗�, �⃗⃗�(𝑡)) , (3.1) 

 

where �⃗� describes the vector of dynamic variables and �⃗⃗�(𝑡) the time dependent 
external inputs. Solving these ODEs requires initial values for the vector �⃗� at 𝑡 = 0, 
which can either be estimated or be fixed to a specific value.  
Measurements of specific concentrations within cells directly is impossible, thus, no 

direct measurements of the states �⃗� are available. Therefore, an observation function 
 

𝑦(𝑡) = 𝑔(�⃗�(𝑡), 𝑠) + 𝜀(𝑡) (3.2) 
 

has to be used to link the measurements 𝑦(𝑡) to the states �⃗�(𝑡). This observation 
function 𝑔 includes observation parameters 𝑠, e.g. scaling factors of the measurement. 
The error model of the observations is encoded in the noise term 𝜀(𝑡). We used the 
error model 
 

𝜀 =  𝜀𝑎𝑏𝑠 + 𝜀𝑟𝑒𝑙. (3.3) 
 

𝜀𝑎𝑏𝑠~ 𝑁(0, 𝜎𝑎𝑏𝑠
2 ) describes a constant Gaussian error with variance 𝜎𝑎𝑏𝑠

2 , while 

𝜀𝑟𝑒𝑙 ~ 𝑁(0, 𝜎𝑟𝑒𝑙
2  𝑔(�⃗�(𝑡), 𝑠)) describes a Gaussian error with a variance relative to the 

simulated state in 𝑔 scaled by 𝜎𝑟𝑒𝑙
2 . Thus, the total variance 𝜎2 at the time point 𝑡𝑗 

becomes 
 

𝜎𝑗 (𝑔(�⃗�(𝑡𝑗), 𝑠))
2

= 𝜎𝑎𝑏𝑠
2 + 𝜎𝑟𝑒𝑙

2   𝑔(�⃗�(𝑡𝑗), 𝑠). (3.4) 

 

Given 𝑁𝐷 data points of one experiment with the measurement vector �⃗�𝐷, the 

probability of these measurements given a specific set of parameters �⃗� = (�⃗�, �⃗�0, 𝑠, 𝜎) 
can be defined as 

𝐿(�⃗�𝐷 , �⃗�) =
1

√2𝜋𝜎𝑗 (𝑔(�⃗�(𝑡𝑗), 𝑠))
2
∏𝑒𝑥𝑝 (

(𝑦𝑗
𝐷 −  𝑔(�⃗�(𝑡𝑗), 𝑠) )

2

2𝜎𝑗 (𝑔(�⃗�(𝑡𝑗), 𝑠))
2 )

𝑁𝐷

𝑗=1

, (3.5) 

where 𝑡𝑗 denotes the time of the measurement 𝑦𝑗
𝐷. These parameters include the ODE 

parameters �⃗�, estimated initial concentrations �⃗�0, observable parameters 𝑠, and the 



 
 

error parameters 𝜎. In general, multiple experiments, i.e. measurements �⃗�𝐷 with 

distinct observation functions 𝑔 are used to calibrate the model. A general term for the 
likelihood function using 𝑁𝑒𝑥𝑝 experiments is 

 

𝐿(�⃗�𝐷 , �⃗�) = ∏ 𝐿 (�⃗�𝐷𝑘 , �⃗�𝑘)
𝑁𝑒𝑥𝑝
𝑘=1 . (3.6) 

 
The maximum likelihood estimator  
 

𝜃 = argmax
𝜃

(𝐿(�⃗�𝐷 , �⃗�)) . (3.7) 

 

gives the parameter set 𝜃, for which the measurements are most likely, i.e. have the 
highest probability. Instead of maximizing the likelihood without any loss of generality 

𝜒𝑚𝑜𝑑
2 (�⃗�, �⃗�𝐷) ∶=  −2log (𝐿) can be minimized. For the Gaussian distributed errors this 

term  
 

𝜒𝑚𝑜𝑑
2 (�⃗�, �⃗�𝐷) =∑(

(𝑦𝑗
𝐷 −  𝑔(�⃗�(𝑡𝑗), 𝑠) )

2

2𝜎𝑗2
)

𝑁𝐷

𝑗=1⏟                  

𝜒2(�⃗⃗⃗�,�⃗⃗�𝐷)

+∑(2 𝑁𝐷 𝑙𝑜𝑔 (√2𝜋 𝜎𝑗2 )  )

𝑁𝐷

𝑗=1⏟                  

ρ(�⃗⃗⃗�)

    
(3.8) 

consists of the sum of the square of the residuals of the data 𝜒2(�⃗�, �⃗�𝐷) as well a an 

error correction term ρ(�⃗�)  independent of the data.  
 

After calibrating the model to 𝜃, a major question remains about the uncertainty of the 
parameters in the non-linear context of the model. We performed an uncertainty 
analysis of the model as well as an identifiability analysis of the parameters using the 
profile likelihood method (55). It gives finite sample likelihood based intervals by using 
a threshold in the likelihood. The profile likelihood 
 

𝜒𝑃𝐿
2 (𝜃𝑖) = min

𝜃𝑖≠𝑗
(𝜒𝑚𝑜𝑑

2 (�⃗�, �⃗�𝐷) )  (3.9) 

 

of the parameter 𝜃𝑖 thus encodes the path with the highest likelihood along the 
parameter axis. This translates into a 95% confidence interval (CI) of the parameter 
 
 

𝐶𝐼(𝜃𝑖) = {𝜃| 𝜒𝑃𝐿
2 (𝜃) − 𝜒𝑃𝐿

2 (�⃗�) <  𝜒2(95%, 𝑑𝑓 = 1) }, (3.10) 

where 𝜒2(95%, 𝑑𝑓 = 1) is the 95th quantile of the 𝜒2- distribution with one degree of 
freedom.  
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