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Supplementary Notes 

1. Details of the cSL gene pairs 
The cSLs obtained from Lee et al.22 were computationally identified with the ISLE 

(identification of clinically relevant synthetic lethality) pipeline, which mined data from 

8749 cancer TCGA patient tumors across 28 cancer types and applied a 4 step procedure 

to identify the cSL network. The pipeline starts with an initial set of experimentally 

identified cSL interactions either by double knock-out/knock-down in a single cell line or 

by inference from the single RNAi/CRISPR screens in a large number of cancer cell lines. 

Then, it analyzes patient tumor data across the 28 cancer types to further filter those pairs 

that show the evidence of (i) negative selection of and (ii) better patient survival due to 

co-inactivation while controlling for the effect of individual genes, followed by (iii) a 

phylogenetic screen (described in detail in Lee et al.22). We used the cSL network 

identified with FDR < 0.2 and FDR < 0.1 as described in the Methods. Experimentally 

identified cSLs were obtained by pooling the experimentally identified cSL pairs from 17 

double knock-down/knock-out screens compiled in Lee et al.22 and combining it with the 

cSL pairs identified with CRISPRi experiments by Horlbeck et al.34 as described in the 

Methods. The merit of using ISLE-inferred cSL pairs over the experimentally identified 

cSLs is that the selected cSL pairs may be more likely to be clinically relevant across 

many cancer types and less likely to be cancer-type specific. 

2. Effect size measure of Wilcoxon tests and multiple testing 
Throughout the text we measured the effect size of the Wilcoxon tests by the rank-

biserial correlation, which ranges from -1 and 1. Strong effects are represented by rank-

biserial correlations whose absolute values are close to 1, and weak effects represented 

by values close to 0. The exact formula for calculating the rank-biserial correlation can be 

found in Wendt et al.39 We corrected for multiple testing using the Benjamini-Hochberg 

method throughout our study. 

3. Robustness of the correlation between tissue cSL load and lifetime cancer risks, 
and cancer onset age 

Alternative cSL load measures 



 

 
 
 

We used various alternative approaches to compute cSL load and correlated them 

with lifetime cancer risk in order to show the robustness of our findings. These alternative 

approaches are described below: 

a) We computed the correlation between lifetime cancer risk and cSL load (for older 

populations) using a more stringent FDR threshold (FDR < 0.1 instead of FDR < 

0.2) for selecting the cSL network using ISLE (leading to 2326 pairs). We still get 

a significant correlation (Spearman’s ρ = -0.613, P = 0.000668, fig. S1a).    

b) We removed genes that have zero expression in more than 90% of all GTEx 

samples. We then computed cSL load (for older populations) with the remaining 

genes, and found a significant correlation with lifetime cancer risk (Spearman’s ρ 

= -0.605, P = 0.000838, fig. S1b). Here the ISLE-inferred cSLs with FDR < 0.2 

were used.  

c) For our main results presented in Fig. 2 of the main text, tissue cSL load (TCL) 

was computed by taking the median (i.e. the 50 percentile) cSL load of the samples 

from a tissue. We additionally computed TCL by taking the 65 percentile or the 40 

percentile of the cSL loads in the samples (age ≥ 50 years) of a tissue. TCLs 

obtained as such are also significantly correlated with lifetime cancer risk (ρ = -

0.794, P = 7.59e-7, fig. S1c; and ρ = -0.52, P = 0.0054, fig. S1d, respectively).  

d) We have defined a cSL gene pair to be inactivated if the expression levels of both 

genes in the cSL pair are below the 33 percentile within the population (i.e. each 

tissue type). We also used the definition of inactivated cSLs based on other 

percentiles, including 40 percentile, 20 percentile, and 10 percentile. The 

corresponding correlations with lifetime cancer risk are shown in fig. S1e-g, which 

remains significant.  We also computed cSL load by considering only zero-

expressed gene pairs, the correlation is further weaker and marginally significant 

(Spearman’s  ρ = -0.313, P = 0.11, fig. S1h). The issue with using very low gene 

expression cutoffs is that it will lead to very few cSL gene pairs where both genes 

defined as “inactivated” by that cutoff, and by doing this although we may reduce 

noise via keeping only the cSL pairs with strong effects, we also lose a lot of signal 

contributed by the additive effects of many more weaker cSL pairs.  



 

 
 
 

 Taken together, these results show that tissue cSL load is robustly (negatively) 

correlated with lifetime cancer risk across tissues. 

Alternative mappings between normal and cancer tissue types 

In the main result as presented in Fig. 2 of the main text, we used the mapping 

between 16 GTEx normal tissues to 27 cancer types as given in table S2a. However 

certain mappings were not exact due to the limitations of the data available, for example, 

salivary gland was the closest GTEx tissue type in terms of anatomical proximity to head 

and neck carcinoma (with or without HPV-16), but histologically this mapping may not be 

valid. Therefore we ensured that our observed correlation between tissue cSL load (TCL) 

with cancer lifetime risk is not affected by including or removing this mapping (Spearman’s 

rho = -0.664 vs -0.662, P = 0.0002 vs 0.0003, fig. S1i). As another example, we 

additionally removed the mapping between “Brain - Cerebellum” in GTEx and 

Medulloblastoma, and still get a good correlation between TCL and risk (Spearman’s rho 

= -0.623, P = 0.00067, fig. S1j). This was done because we had normalized (inverse 

normal transformation across samples and genes) each GTEx tissue individually and all 

the brain tissue samples were normalized together. However for the Medulloblastoma to 

normal tissue mapping only a portion of the brain samples corresponding to Brain - 

Cerebellum was used for computing tissue cSL load. So the mapping between “Brain - 

Cerebellum” in GTEx and Medulloblastoma was removed to show robustness. 

Alternative cancer onset age definition 

We computed the onset age for each cancer type from SEER incidence data1. We 

mapped the cancer types in SEER to the tissue type in GTEx, given in table S3. We then 

computed TCL as described above for the samples below 40 years old in each GTEx 

tissue, and correlated the TCL with cancer onset age across tissues (for the result in Fig. 

3 of main text). TCLs were also computed for other upper cutoffs of ages (including 45 

and 50 years old), and their correlations with onset age are shown in fig. S6, in order to 

show that the result is robust to the parameters used. We find that in general, TCL for 

younger populations correlates positively with cancer onset age in a robust way. This is 

consistent with the hypothesis that the lower the TCL for a tissue, the earlier the cancer 

onset time, thus showing that tissue cSL load can impede cancer development.  



 

 
 
 

4. Randomized control analysis 
We did three types of random control analysis to test that the various observed 

effects in this study are specific to the cSL gene pairs and are not random. The three 

random controls were performed using: (i) random gene pairs; (ii) shuffled cSL gene pairs; 

and (iii) degree-preserving randomized cSL network (same size as the actual cSL 

network). Below we describe the detailed procedure testing for the cSL load correlation 

with cancer risk as an example. 

(i) Random gene pairs: we randomly sampled 20171 gene pairs from all the genes 

in the GTEx data and computed a tissue “pseudo-cSL load” with these random gene 

pairs, for each tissue for the older population (≥ 50 years), and then computed its 

correlation with lifetime cancer risk. This procedure was repeated for 1000 iterations and 

a histogram showing correlation distributions are shown in fig. S3a.  We see that the 

correlations are not significant (median Spearman’s ρ = -0.21, P = 0.29). An empirical p-

value was computed using the correlation obtained from the actual cSL network and the 

correlation distribution of the tissue pseudo-cSL loads (P < 0.001, fig. S3a), indicating that 

the signal from the true cSL network is always much stronger than random signals.  

(ii) Shuffled cSL gene pairs: starting from the 20171 cSL gene pairs listed in a table 

(20171-by-2, each row is a gene pair), we randomly shuffled the columns of the table to 

obtain a list of shuffled gene pairs, and computed a tissue pseudo-cSL load for each 

GTEx tissue for older populations (age ≥ 50 years). This was correlated with cancer 

lifetime risk. This procedure was repeated for 1000 iterations and a histogram showing 

correlation distributions are shown in fig. S3b.  We see that many of these random 

correlations are significant (median Spearman’s ρ = -0.537, P = 0.0039). This can be due 

to an effect on the single gene level, which we described in the main text, and showed 

that the genetic interaction effect actually is the dominant one (vs the single-gene effect, 

fig. S3d-g). For more details on the single-gene effect analysis, see the section “Details 

on the single-gene effect analysis” below. Additionally, the empirical p-value for the 

randomization test computed as above is P < 0.001 (fig. S3b), indicating that the signal 

from the true cSL network is still the strongest. 

(iii) Degree-preserving randomized cSL network: starting from the actual cSL 

network consisting of 20171 cSL gene pairs (edges), we performed a degree-preserving 



 

 
 
 

randomization, rewiring the network but retaining the original degree distribution. Tissue 

pseudo-cSL load was computed as above and correlated with cancer lifetime risk. This 

procedure was repeated for 1000 iterations and a histogram showing correlation 

distributions are shown in fig. S3c. The random correlations have a median value of 

Spearman’s ρ = -0.537, P = 0.0039, which as elaborated above and further explored in 

the main text, can be due to the single-gene effect (fig. S3d-g). Nevertheless, again the 

empirical p-value is P < 0.001 (fig. S3c), indicating a strong and robust cSL-specific effect. 

Similarly, such control tests were performed for the correlation with cancer onset 

age (fig. S7) and experimentally identified cSLs (fig. S9). We also performed control tests 

for the analysis of the tissue type-specificity of tumor suppressor genes (TSGs). As shown 

in Fig. 4 of the main text, the true cSL partner genes of a TSG tend to have higher 

expression in the tissue type(s) where the TSG is a known driver and the rest of the tissue 

types where the TSG is not an established cancer driver, supporting our hypothesis that 

the tissue type-specificity of TSGs can be (partly) explained by cSL. Specifically, out of 

the 23 cases of TSGs, 17 of them show such a trend, and only 6 cases show the opposite 

trend but with much weaker effect sizes and P values. We simply uses the difference in 

the number of cases on both sides as a test statistics (with the true cSL pairs, the value 

is 17-6=11), with a larger value of the statistics indicating a stronger evidence supporting 

our hypothesis. For each TSG, given its true cSL partner genes identified by the ISLE 

method, we randomly sampled the same number of genes from all the genes as its 

“pseudo-partner genes”, and we analyzed the differential expression (DE) of these 

pseudo-partner genes between the tissue type(s) where the TSG is a known driver and 

the rest of the tissue types where the TSG is not an established cancer driver using linear 

model, as described in Methods. Summarizing the results of all TSGs, the test statistics 

was calculated. After repeating the random sampling, we computed the empirical P value 

based on the fraction of times that the statistics obtained using pseudo-partner genes is 

greater than that obtained using the true cSL partners. We also performed another control 

test by randomly shuffling the mapping between the TSG and the tissue types where they 

have established driver functions, and the empirical P value was computed in a similar 

fashion. Both control tests yielded empirical P < 0.05. Additionally, we also performed the 

control tests as above for each of the TSG, with the test statistics being the linear model 



 

 
 
 

coefficient, which represents the mean difference in the expression level of the cSL 

partner genes between the tissue(s) of the TSG and the tissues where the TSG is not a 

known driver, and the empirical P values obtained for each TSG is given in fig. S8. 

5. Details on the single-gene effect analysis 

As we described above and in the main text, some of the random control tests 

yielded significant signals in terms of, e.g. correlation with cancer risk or onset age, 

although the signals from the actual cSL gene pairs are always much stronger. Notably, 

it is the shuffled cSL gene pairs or the degree-preserving randomization that produced 

significant signals, but not the purely random gene pairs. We therefore reasoned that the 

genes within the cSL network (cSL genes) may have an effect on the single gene level, 

and although the cSL load is meant to capture the pairwise cSL genetic interaction effect, 

it actually also captures some of the single-gene effect due to the way it is computed. 

Accordingly we computed the tissue cSL single gene load (SGL) as described in the main 

text, and confirmed the single-gene effect wrt cancer risk (fig. S3d) and onset age (fig. 

S7e). Interestingly in both cases, the single-gene effect is only exhibited by the cSL 

genes, and no significant signal can be found using random sets of genes or all genes 

(fig. S3e-f, S7f), which could be due to additional weak genetic interaction effects among 

the cSL genes not captured by the current cSL network. Further, as described in the main 

text, we examined the partial correlation between tissue cSL load (TCL) and risk/onset 

age after controlling for the SGL, and showed that it is the cSL genetic interaction effect 

that dominates the observed correlations (fig. S3g, S7g). Specifically, we regressed out 

the SGL component from both TCL and cancer risk/onset age with linear regression, then 

correlated the residues. This is the standard procedure of partial correlation and is 

equivalent to a multiple regression model for cancer risk/onset (as the dependent 

variable) with both SGL and TCL as the independent variables (covariates). We adopted 

the partial correlation procedure here (instead of the multiple regression) since it gives 

the correlation value, which is easier to compare to the rest of our results. 

6. Reproducing the result of Tomasetti & Vogelstein2 and Klutstein et al.6 

For our analysis, only a subset of the cancer types in Tomasetti & Vogelstein 20152 

have matched normal tissue types available from the GTEx database (table S2a), as 



 

 
 
 

explained in the Methods. To facilitate comparison, we reproduced the result of Tomasetti 

& Vogelstein 20152 that there is a strong association between the number of tissue stem 

cell divisions with cancer lifetime risk only on this subset of tissue types (Spearman’s ρ = 

0.717 , P = 2.57e-5, fig. S4). As a result of the drop-out of cancer types, this result is 

numerically different from that reported in their original manuscript2 (Spearman’s ρ = 0.81; 

P = 3.5e-8). Similar situation exists for reproducing the result of Klutstein et al.6 (fig. S4). 

7. Computing the level of negative selection of cSL gene pairs 

For each gene, we define that it’s lowly expressed in a sample if its expression 

level is below the 33 percentile of those in all samples of the same tissue type, which is 

consistent with the approach in Lee et al.22 and as elaborated in the main text Methods. 

For each cSL gene pair, we computed the fraction of samples where both genes are lowly 

expressed for each of the normal and cancer tissue types, which were compared to those 

computed with random gene pairs with Wilcoxon rank-sum tests. Rank-biserial 

correlation, the effect size metric of Wilcoxon test was used to measure the level of 

negative selection, since effectively this metric will take zero values on average for 

random gene pairs, and negative values for gene pairs whose co-downregulation in a 

tissue is selected against. Also, a smaller negative value (i.e. larger absolute value) 

indicates a stronger negative selection. 

8. Details on the analysis of highly specific vs lowly specific cSLs (hcSLs and 
lcSLs) 

Note that for each tissue type, a distinct set of hcSLs and lcSLs were identified. 

The sets of hcSLs of the tissues have pairwise Jaccard indices ranging from 0.136 to 

0.251 with a mean value of 0.163, which represents significantly more overlap compared 

to random sets of the same size (P < 0.001 in a randomization test for the mean Jaccard 

index). For the set of hcSLs and lcSLs for each tissue, we obtained the unique genes 

within the cSL pairs and identified the pathways they are enriched in as described in 

Methods. We focused on the pathways that are specifically enriched for the hcSL genes 

rather than the lcSL genes, since as we have shown the hcSLs are the ones most relevant 

in cancer risk. 



 

 
 
 

9. Contribution of cSL to the tissue-specificity of tumor suppressor genes (TSGs) 
A recent study reported that the expression levels of the genetic interaction 

(including cSL) partners of cancer driver genes differ across cancer types, in a way that 

is dependent on the tissue-specific functional status of the driver gene32. Their analysis 

was performed in cancer tissues, and thus does not directly support the role of cSL in 

cancer development. Our approach is different, however, in that we investigated the 

expression levels of the cSL partners of the TSGs in normal, non-cancerous tissues, and 

we sought to establish the link between the co-inactivation status of cSL gene pairs in 

normal tissues and the tissue type-specificity of carcinogenesis. 

10. The correlation between tissue cSL load and lifetime cancer risk is not 
confounded by the number (or rate) of normal tissue stem cell division 

Klutstein et al.6 have suggested a link between abnormal DNA methylation and 

DNA replication in stem cells, consistent with the strong correlation they observed 

between LADM and NSCD. On the contrary, we showed in the main text that tissue cSL 

load (TCL) significantly adds to either NSCD or LADM in terms of the correlation with 

lifetime cancer risk and is likely not a corollary of tissue stem cell divisions. We further 

performed partial correlation of TCL and lifetime cancer risk, conditioned on either the 

rate of tissue stem cell division or the number of stem cells residing in each normal tissue 

(both obtained from Tomasetti et al.2) and found that strong correlations remain (fig. 

S10a,b). We also computed the proliferation index (PI) for each of the samples in the 

GTEx normal tissue from gene expression using a proliferation signature named meta-

PCNA40. PI was computed as the median expression values of the set of meta-PCNA 

genes defined in Venet et al. 201140, and is regarded as a proxy for the rate of cell 

proliferation within a sample. We then took the median value of the PI’s for all samples of 

a tissue type, and correlated the median PI of a tissue with its lifetime cancer risk (across 

tissues), showing that there’s no significant correlation (fig. S10c). Also, we note that stem 

cell proliferation rates (rather than the total number of stem cell divisions), as estimated 

by Tomasetti et al.2, correlates only weakly with lifetime cancer risk (Spearman’s ρ = 

0.386, P = 0.046). 



 

 
 
 

11. Association of lifetime cancer risk with tissue cSL load controlled for the 
number of poised genes 

To investigate whether the number of poised genes in the tissues may underlie the 

observed correlation between TCL and lifetime cancer risk, we obtained the “core 15-

state model” chromatin state data from the ROADMAP epigenomics project42. We 

focused on human tissue samples, where the tissue type is also contained in the GTEx 

data. These tissue samples include liver, brain angular gyrus, brain anterior caudate, 

brain cingulate gyrus, brain germinal matrix, brain hippocampus middle, brain inferior 

temporal lobe, brain dorsolateral prefrontal cortex, brain substantia nigra, colonic mucosa, 

sigmoid colon, esophagus, lung, ovary, pancreas, small intestine, and stomach mucosa. 

For each of these tissue samples, we identified genes that are associated with the 

bivalent/poised transcription starting site (i.e. type 10_TssBiv) using the matchGenes 

function from the R package bumphunter43, and used these as tissue-specific poised 

genes. For the normal tissues where we have such poised gene information, we re-

computed the correlation of TCL (age ≥ 50) and lifetime cancer risk. As expected, we find 

a significant negative correlation as before (Spearman’s ρ = -0.707, P = 0.0032, fig. 

S12a). We then control for with the number of poised genes in each tissue, by regressing 

out the number of poised genes from TCL and correlating the residuals with lifetime 

cancer risk. We see a similar association between lifetime cancer risk and TCL controlling 

for the number of poised genes (Spearman’s ρ = -0.67, P = 0.0061, fig. S12b). This 

suggests that the observed correlation between TCL and lifetime cancer risk across 

human tissues is not dominant by the effect due to tissue-specific poised genes.  

12. Association of lifetime cancer risk with tissue cSL load after removing 
oncogenes 

To test whether TCL is predictive of lifetime cancer risk after removing oncogenes, we 

removed all cSL pairs containing oncogenes (the list of Tier 1 and Tier 2 oncogenes is 

taken from COSMIC11), and recomputed cSL load. We still see a strong negative 

correlation of cSL load and cancer risk in older populations (Spearman’s ρ = -0.64, P = 

0.000347, fig. S13a). We also see a strong positive correlation between cSL load and 



 

 
 
 

cancer onset age in younger populations (Spearman’s ρ = 0.47, P = 0.0171, fig. S13b). 

These correlations are quite similar to what we obtained earlier (i.e. without removing 

oncogenes). We note that these results support our currently proposed interpretation that 

the association between tissue cSL load and lifetime cancer risk is due to the overall 

additive synthetic lethal/sickness effect of all the cSL gene pairs, rather than being driven 

by a particular small subset of genes. 

13. Association of lifetime cancer risk with tissue cSL load after controlling for 
immune and fibroblast/stromal cell abundance 

We estimated the immune cell and fibroblast abundances for each of the GTEx samples 

from gene expression data using the ESTIMATE algorithm41 then obtained the median 

immune cell or fibroblast/stroma abundance levels for each tissue type. We then control 

for the immune cell or fibroblast abundance in a linear model while checking the 

association between TCL and lifetime cancer risk or cancer onset age. We still see 

significant negative associations between lifetime cancer risk and TCL controlling for 

predicted immune cell abundance (Spearman’s ρ = -0.66, P = 0.0002, fig. S14a); between 

lifetime cancer risk and TCL controlling for predicted fibroblast/stroma abundance 

(Spearman’s ρ = -0.57, P = 0.002, fig. S14b); and between lifetime cancer risk and TCL 

controlling for both predicted immune and fibroblast abundance (Spearman’s ρ = -0.65, 

P = 0.00025, fig. S14c). We also see significant positive associations between cancer 

onset age and TCL controlling for predicted immune cell abundance (Spearman’s ρ = 

0.48, P = 0.014, fig. S14d); between cancer onset age and TCL controlling for predicted 

fibroblast abundance (Spearman’s ρ = 0.52, P = 0.0081, fig. S14e); and between cancer 

onset age and TCL controlling for predicted immune and fibroblast abundance 

(Spearman’s ρ = 0.45, P = 0.0245, fig. S14f).  

14. Tissue cSL load variation within tissue in blood and its association with age-
specific cancer risk in leukemia 

To investigate the possibility of the association TCL with age-specific cancer risk 

within a tissue (instead of across tissues), we focused on leukemia (SEER tissue site 

recode name “Leukemia”, GTEx tissue type name “Blood”). We note that although 



 

 
 
 

leukemia can happen both at very young and very old ages, as shown in the plot below 

the older age group has much higher risk than the younger age group (fig. S15a). 

In the GTEx blood samples, we identified 1144 genes within the SL network whose 

expression changes with age (Wilcoxon rank-sum test adjusted P<0.01); comparing 

GTEx blood samples to the TCGA LAML leukemia samples, we identified 2068 

differentially expressed genes independent of age (controlling for age with linear model, 

adjusted P<0.01). These two sets of genes do not have significant overlap (Fisher’s test 

P=0.47). We computed the cSL load using the GTEx blood samples for every individual. 

GTEx data has normal non-cancerous individuals between 20-80 years and their age 

information is provided as a range of 10 years, therefore we computed age-specific TCL 

in bins of 10 years (20 to 29, 30 to 39 etc.). Correlating these age-specific TCLs with the 

corresponding age-specific leukemia risk from the SEER data, we find a strong negative 

correlation (Spearman’s ρ = -0.943, P = 0.0167, fig. S15b). These results seem to provide 

evidence that cSL load is not only associated with lifetime cancer risk across tissues, but 

also may partly account for the variation in cancer risk by age in leukemia. However a 

deeper study is required before ascertaining whether cSL load can indeed be predictive 

age-specific cancer risk within leukemia, and since it is beyond the scope of this current 

study, it can be looked at in a future analysis.  

However, we note that we further checked and found that the above correlation 

between age-specific cSL load and age-specific cancer risk is not consistently significant 

for all tissue/cancer types beyond blood/leukemia. This suggests that the potential role of 

cSL load in cancer risk variation by age within each tissue can be independent from its 

role in the variation of lifetime cancer risk across tissues, as different factors can 

contribute to these two kinds of variations. 

 

 

  



 

 
 
 

Supplementary Figures 

 
figure S1. Correlation between tissue cSL load and lifetime cancer risk across 
tissues is robust to variations to the computational method used. Scatter plots 



 

 
 
 

showing Spearman correlations (rho) between cancer lifetime risk and: (a) cSL load 

(computed using FDR<0.1); (b) cSL load (computed by removing genes which have zero 

expression in more than 90% of the samples); (c) cSL load (by taking 65 percentile cSL 

load value across samples for each tissue, instead of median value); (d) cSL load (by 

taking 40 percentile cSL load value across samples for each tissue, instead of median 

value); (e) cSL load (using low expression threshold as less than 40 percentile); (f) cSL 

load (using low expression threshold as less than 20 percentile); (g) cSL load (using low 

expression threshold as less than 10th percentile); (h) cSL load (considering only genes 

with zero expression);  (i) cSL load (removed 2 mappings between Head & neck 

squamous cell carcinoma and salivary gland);  (j) cSL load (removed data point which 

mapped Medulloblastoma to Brain-Cerebellum). cSL analysis was done on older 

populations (age ≥ 50 years) for all sub-figures. 

 

 
figure S2. Correlation between tissue cSL load computed with different age ranges 
and lifetime cancer risk. Scatter plots showing Spearman correlations (rho) between 

cancer lifetime risk and: (a) Tissue cSL load (younger population, age < 50 years); (b) 

Tissue cSL load (on entire population which includes all age groups). 

 

 

 

 



 

 
 
 

 

 
figure S3. Randomized control analysis for the correlation between tissue cSL load 
and lifetime cancer risk using pseudo-cSL load. (a) Histogram showing Spearman 

correlations of pseudo-cSL load (computed from random gene pairs) with cancer lifetime 

risk (no. of iterations = 1000). Correlation for tissue cSL load (True ISLE-inferred cSL) 

and cancer risk is shown in red. Randomization test shows that the correlation obtained 

from ISLE-inferred tissue cSL network is always more significant than those obtained from 



 

 
 
 

tissue pseudo-cSL loads (P < 0.001). (b) Histogram showing Spearman correlations of 

pseudo-cSL load (computed from shuffled cSL pairs) with cancer lifetime risk (no. of 

iterations = 1000). Correlation for tissue cSL load (True ISLE-inferred cSL) and cancer 

risk is shown in red. Randomization test shows that the correlation obtained from ISLE-

inferred cSL network is much more significant than those obtained from tissue pseudo-

cSL loads (P < 0.001). (c) Histogram showing Spearman correlations of pseudo-cSL load 

(computed from degree-preserving randomized cSL network) with cancer lifetime risk (no. 

of iterations = 1000). Correlation for tissue cSL load (True ISLE-inferred cSL) and cancer 

risk is shown in red. Randomization test shows that the correlation obtained from ISLE-

inferred cSL network is much more significant than those obtained from tissue pseudo-

cSL loads (P < 0.001). Scatter plots showing Spearman correlations (rho) between cancer 

lifetime risk and: (d) tissue single-gene load (computed from only the genes in the ISLE-

inferred cSL network); (e)  tissue single-gene load (computed from all genes). (f) 

Histogram showing Spearman correlations of tissue single-gene load (computed from 

random single genes) with cancer lifetime risk (no. of iterations = 1000). Correlation for 

tissue single-gene load (inferred from ISLE-inferred cSL genes) and cancer risk is shown 

in red. Randomization test shows that the correlation obtained from cSL genes is much 

more significant than those obtained from random single genes (P < 0.001).  (g) Scatter 

plots showing Spearman correlations (rho) between cancer lifetime risk and tissue cSL 

load controlled for tissue single-gene load (single-gene load is computed from only the 

genes in the ISLE-inferred cSL network). 

 

 

 

 

 

 

 

 



 

 
 
 

 
figure S4. Reproduced result of Tomasetti & Vogelstein2 and Klutstein et al.6 Scatter 

plots showing Spearman correlations (rho) between lifetime cancer risk and: (a) total no. 

of stem cell divisions (NSCD); (b) LADM (levels of abnormal DNA methylation), across 

tissues. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 
 

 
figure S5. The cSL gene pairs used in this study are more specific to cancer and 
have much weaker synthetic lethal effect to the normal tissues. (a) The level of 

negative selection against the inactivation of both genes in cancer-derived cSL gene 

pairs, compared to that of random gene pairs in both normal tissues from GTEx and 

cancers from TCGA. Co-inactivation of the genes in cSL gene pairs are much weaker 

selected against in GTEx normal tissues than in TCGA cancer samples. (b) Similar to (a), 

but with the analysis performed using cross-validation. ISLE was applied to a random 

subset of TCGA cancer samples to identify the cSLs, and the negative selection level in 

cancer was computed for the held-out samples not used by ISLE. P values for one-sided 

Wilcoxon rank-sum tests are shown. 

 

 

 



 

 
 
 

 
figure S6. Spearman correlation between Tissue cSL load and cancer onset age 
computed using different thresholds. Scatter plots showing correlation between: (a)   

Tissue cSL load (age  ≤ 40) and cancer onset time (computed at 33 percentile of 

maximum risk); (b)   Tissue cSL load (age  ≤ 40) and cancer onset time (computed at 75 

percentile of maximum risk); (c)   Tissue cSL load (age  ≤ 40) and cancer onset time 

(computed at maximum risk); (d)   Tissue cSL load (age  ≤ 45) and cancer onset time 

(computed at 75 percentile of maximum risk); (e)   Tissue cSL load (age  ≤ 50) and cancer 

onset time (computed at 50 percentile of maximum risk); (f) Tissue cSL load (age  ≤ 50) 

and cancer onset time (computed at 75 percentile of maximum risk). All of them have 

FDR < 0.1. 
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figure S7. Randomized control analysis for the correlation between tissue cSL load 
and cancer onset age using pseudo-cSL load. (a) Scatter plot showing Spearman 

correlations (rho) between cancer onset age and tissue cSL load (computed from ISLE-

inferred hcSL gene pairs). (b) Histogram showing Spearman correlations of pseudo-cSL 

load (computed from random gene pairs) with cancer onset age (no. of iterations = 1000). 

Correlation for tissue cSL load (True ISLE-inferred lcSL network) and cancer onset age 

is shown in red. Randomization test shows that the correlation obtained from ISLE-

inferred hcSL gene pairs is always more significant than those obtained from pseudo-

cSLs (P < 0.001). (c) Histogram showing Spearman correlations of pseudo-cSL load 

(computed from shuffled hcSL gene pairs) with cancer onset age (no. of iterations = 

1000). Correlation for tissue cSL load (True ISLE-inferred hcSLs) and cancer onset age 

is shown in red. Randomization test shows that the correlation obtained from ISLE-

inferred hcSL gene pairs is much more significant than those obtained from tissue 

pseudo-cSL loads (P < 0.001). (d) Histogram showing Spearman correlations of pseudo-

cSL load (computed from degree-preserving randomized hcSL network) with cancer 

onset age (no. of iterations = 1000). Correlation for tissue cSL load (True ISLE-inferred 

lcSL) and cancer onset age is shown in red. Randomization test shows that the correlation 

obtained from ISLE-inferred hcSL network is much more significant than those obtained 

from tissue pseudo-cSL loads (P < 0.001). (e) Scatter plot showing Spearman correlations 

(rho) between cancer onset age and tissue single-gene load (computed from only the 

genes in the ISLE-inferred hcSL network). (f) Histogram showing Spearman correlations 

of tissue single-gene load (computed from random single genes) with cancer onset age 

(no. of iterations = 1000). Correlation for tissue single-gene load (inferred from ISLE-

inferred hcSL genes) and cancer onset age is shown in red. Randomization test shows 

that the correlation obtained from hcSL genes is much more significant than those 

obtained from random single genes (P < 0.001).  (g) Scatter plots showing Spearman 

correlations (rho) between cancer lifetime onset age and tissue cSL load controlled for 

tissue single-gene load (for hcSL network). Only age groups less than or equal to 40 

years are considered for this analysis. Normal tissue GTEx gene expression data is used 

to compute the tissue cSL load.  

 



 

 
 
 

 
figure S8. Expression of the cSL partner genes of tumor suppressor genes (TSGs) 
by each TSG. The difference between the mean expression levels of the cSL partner 

genes of each tumor suppressor gene (TSG) in the tissue type(s) where the TSG is a 

known driver (“Tissue of TSG” is TRUE) and in the rest of the tissue types where the TSG 

is not an established driver (“Tissue of TSG” is FALSE). The expression levels are those 



 

 
 
 

from the GTEx normal tissue samples. Each panel is a tissue-specific TSG, and the tissue 

types where they are established cancer drivers can be found in table S6 (Note that no 

cSL partner genes were identified for most of the TSGs in table S6, and we are analyzing 

only the TSGs with more than one cSL partners identified). The P values (top row) shown 

are from the linear models associated with the “Tissue of TSG” term as described in the 

main Methods, and the “P_rand” values (bottom row) are the empirical P values obtained 

from the random control tests described in the Supp. Notes. Where the P values are 

numerically extremely small, they are displayed as zero by the software. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 
 

 

 
figure S9. Correlation between tissue cSL load computed with experimentally 
identified cSLs and lifetime cancer risk across tissues. (a) Spearman correlation (rho) 



 

 
 
 

between tissue cSL loads computed from experimentally identified cSL pairs with lifetime 

cancer risk. (b) Histogram showing Spearman correlations of pseudo-cSL load (computed 

from random gene pairs) with cancer lifetime risk (no. of iterations = 1000). (c) Histogram 

showing Spearman correlations of pseudo-cSL load (computed from randomly shuffled 

experimentally identified cSL pairs) with cancer lifetime risk (no. of iterations = 1000). (d) 

Histogram showing Spearman correlations of pseudo-cSL load (computed from randomly 

shuffled experimentally identified cSL pairs) with cancer lifetime risk (no. of iterations = 

1000). (d) Histogram showing Spearman correlations of pseudo-cSL load (computed from 

degree-preserving randomized experimentally identified cSL network) with cancer lifetime 

risk (no. of iterations = 1000). In subfigures (b,c,d) Correlation for cSL load (from 

experimentally identified cSLs -- true cSL) and cancer risk is shown in red. Randomization 

test shows that the correlation obtained from true cSL network is much more significant 

than those obtained from pseudo-cSL loads (P < 0.001). (e) For each tissue-specific 

tumor suppressor (TSG) gene Gi, the expression levels of its experimentally identified 

cSL partner genes in the tissue type(s) where gene Gi is a TSG were compared to those 

where gene Gi is not an established TSG, using GTEx normal tissue expression data. 

The volcano plot summarizes the result of comparison with linear models. Positive linear 

model coefficients (X-axis) mean that the expression levels of the cSL partner genes are 

on average higher in the tissue(s) where gene Gi is a TSG. Many cases have near-zero 

P values and are represented by points (half-dots) on the top border line of the plot. All 

TSGs with FDR < 0.05 are labeled. 
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figure S10. Correlation between cSL load and lifetime cancer risk is independent 
from stem cell division. Scatter plots showing partial Spearman correlations (rho) 

between lifetime cancer risk and tissue cSL load (TCL) conditioned on: (a) the rate of 

tissue stem cell division; (b) the number of stem cells residing in each normal human 

tissue. (c) A scatter plot showing the Spearman correlations (rho) between lifetime cancer 

risk and the median proliferation index for each type of the normal tissues from the GTEx 

dataset. 

 

 



 

 
 
 

 

 

 

 
figure S11. Correlation between cSL load and lifetime cancer risk or cancer onset 
age is not confounded by the number of samples available for each tissue. The 

number of samples of each tissue in the TCGA or GTEx datasets is not a confounding 

factor for correlation with cancer risk or onset age. The four scatter plots show all the 

pairwise correlation between the number of TCGA or GTEx samples for each tissue type 

and lifetime cancer risk (ranked) or cancer onset age. Spearman’s correlation coefficient 

and the corresponding P value are shown. 

 



 

 
 
 

 

figure S12. Correlation between cSL load and lifetime cancer risk is not confounded 
by the number of poised genes in each tissue. Scatter plots showing the Spearman’s 

correlations across tissues between lifetime cancer risk and: (a) TCL computed for the 

older population (age ≥ 50 years) by considering only tissues for which we have data for 

the number of poised genes (15 data points); (b) TCL controlled for the number of poised 

genes the number of poised genes 

 

figure S13. Correlation between cSL load and lifetime cancer risk is not confounded 
by the expression levels of oncogenes in each tissue. cSL pairs with any oncogenes 

are removed, and tissue cSL load (TCL) is recomputed for all tissues. (a) Scatter plot 

showing the Spearman’s correlations between lifetime cancer risk and recomputed TCL 

computed for the older population (age ≥ 50 years). (Ranked values are used as lifetime 



 

 
 
 

cancer risk spans several orders of magnitude.) (b) Scatter plot showing the Spearman’s 

correlations between cancer onset age and recomputed TCL (age ≤ 40 years). 

 

figure S14. Correlation between cSL load and lifetime cancer risk or cancer onset 
age is not confounded by the abundance of immune cells or fibroblasts in each 
tissue. Scatter plots showing the Spearman’s correlations between lifetime cancer risk 

and TCL computed for the older population (age ≥ 50 years): (a) by controlling for the 

predicted immune cell abundance estimates across tissues; (b) by controlling for the 

predicted fibroblast (stromal) cell abundance estimates across tissues. (c) by controlling 

for both the predicted immune and fibroblast cell abundance estimates across tissues. 

Scatter plots showing the Spearman’s correlations between cancer onset age and TCL 

computed for the younger population (age ≤ 40 years): (d) by controlling for the predicted 

immune cell abundance estimates across tissues; (e) by controlling for both the predicted 

fibroblast cell abundance estimates across tissues; (f) by controlling for the predicted 

immune and fibroblast cell abundance estimates across tissues.  
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figure S15. The case of leukemia where tissue cSL load is correlated with cancer 
risk by age. (a) Scatter plot showing the variation of age-specific cancer risk variation 

with age in leukemia. (b) Scatter plot showing the variation of age-specific cancer risk 

variation in leukemia with age-specific tissue cSL load (TCL). Spearman’s correlation 

(rho) and p-values are shown.  
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