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Supplementary Materials 

Fig. S1. Consistency of the preferred numerosity of number neurons. 

(A-B) Top: The preferred numerosity (PN) measured with new stimulus sets of the same type (A) 

or with different stimulus types (B) are significantly correlated with each other, implying 

consistency of the preferred numerosity. Bottom: The average numerical distance between 

preferred numerosities of each number-selective neuron measured with different stimulus 

conditions is close to zero. Dashed lines indicate the average.  



 

Fig. S2. Number tuning independent of other low-level visual cues. 

(A) Top: Additional analyses were performed to confirm that the observed preferred numerosity 

remains consistent under (1) rotation of images, (2) variation of the dot size, (3) rotation of each 



 

(square) dot, and (4) dot color. Bottom: Sample tuning curves of PN = 8 units are shown for 

various stimulus conditions. (B) The response of number-selective neurons to the preferred 

numerosity (peak value of the average tuning curve) remained consistently stronger than that to 

other numerosities, under the variation of low-level visual cues of the stimulus. Observed PN of 

the sample units (PN = 1, 4, 8, 16, 30) are shown. (C) Top: The preferred numerosity (PN) 

outcomes measured with the original and modified stimulus conditions are significantly correlated 

with each other. Bottom: The average numerical distance between PNs measured with different 

stimulus conditions is close to zero. (D) Responses of neurons preferring the numbers 1 and 2 as 

the distance between two stimulus dots vary. Left: Design of the stimuli. Two identically sized 

dots (total area – 226 pixel2) were located at random locations (50 iterations) and one dot was 

gradually shifted toward the other dot until the two dots fully overlapped. Right: The responses of 

number-selective neurons preferring 1 or 2 to these stimulus images (units of top 30% sharp 

tuning width in logarithmic number scale). For each initialization condition, the average 

responses of PN = 1 and PN = 2 units were normalized from 0 to 1. The response of each neuron 

was greater when their preferred numerosity (1 or 2) was given regardless of the distance between 

the two dots. The response of number-selective neurons preferring 1 remained fairly high until the 

elongated dot is split into two dots (distance at approximately 2r), and then the response 

noticeably decreased as the two split dots move further apart. In contrast, the response of number-

selective neurons preferring 2 significantly increased when the elongated dot was split into two 

parts and remains consistent as the distance between the two dots increased. Dashed lines indicate 

fitted logistic curves, PN1: R2 = 0.9997, midpoint = 2.98, PN2: R2 = 0.9844, midpoint = 1.90.  



 

Fig. S3. Number-selective neurons in pre-trained AlexNet. 

 (A) Top: Architecture of the pre-trained AlexNet (Photo credit: Se-Bum Paik, KAIST). Left 

bottom: Examples of the stimuli used to measure number tuning, as shown in Fig. 1A. Right 

bottom: Examples of tuning curves of individual number-selective neurons as reported (21). (B-

D) Most tuning properties observed in untrained networks, including the Weber-Fechner law (Fig. 

2C) and the numerical distance/size effects (Fig. 3D), were also reproduced in pre-trained 

networks. (B) Average tuning curves, (C) Distance and size effect, and (D) Numerosity 

comparison task performance of number-selective neurons in the pre-trained AlexNet. (E) Left: 

The ratio of number-selective neurons to the total neurons is significantly smaller in the pre-

trained network (P < 10-40, Wilcoxon rank-sum test). Right: The ratio of number-selective 



 

neurons is dependent on the bias of the average convolutional weights in the pre-trained network. 

When the weights of untrained networks are shifted with a negative bias, the ratio of number-

selective neurons decreases similar to that of pre-trained network.  



 

Fig. S4. Stimulus area-invariant, monotonically increasing and decreasing unit activities. 

(A) Examples of tuning curves of increasing (blue), decreasing (pink), and other (gray solid line) 

network units in Conv4 of the untrained AlexNet are shown. As suggested in previous work (16), 

increasing and decreasing units were defined when the response monotonically changes as the 

numerosity increases (left), but remains consistent as the total area of the stimulus increases 

(right; see Methods for details). Blue dashed lines indicate the regression for defining increasing 

units. (B) Regression coefficient (β) for log (numerosity) and log (cumulative area) of Conv4 

units. Pink, blue, and gray dots indicate 500 randomly selected decreasing, increasing, and other 

units, respectively. (C) The ratio of monotonic units is less than 0.3% in Conv1 and Conv2, but it 

increases up to 10% in Conv3, suggesting that the hierarchical convolutional layers are required 

to generate monotonic activities. (D) Monotonic units in Conv4 provide stronger inputs to number 

neurons than to the other neurons in Conv5 (red vs. gray; *P = 9.61×10-21, Wilcoxon rank-sum 

test), implying that number tuning in Conv5 arises from the monotonic units in Conv4. Inversely, 



 

number neurons in Conv5 also connect to monotonic units more strongly than the other Conv4 

units (red vs. green; *P = 5.59×10-16).  



 

 

Table S1. Summary of the architecture of AlexNet. 

The network consists of five convolutional layers for feature extraction (Conv1 – Conv5) and 

three fully connected layers for object classification (FC6 – FC8). In the current study, to 

investigate the selective responses of neurons rather than the trained performance of the system, 

the classification layers were discarded and the responses of units in the last convolutional layer 

(Conv5) were examined.  

Layer Type Number of neurons Kernels Activations 

Input Image input 227 × 227 × 3 Weights 11 × 11 × 3 × 96 
Bias 1 × 1 × 96  

Conv1 Convolution 55 × 55 × 96  ReLU and 
cross channel normalization 

Pool1 Max pooling 27 × 27 × 96   

Conv2 Convolution 27 × 27× 256 Weights 5 × 5 × 48 × 256 
Bias 1 × 1 × 256 

ReLU and 
cross channel normalization 

Pool2 Max pooling 13 × 13 × 256   

Conv3 Convolution 13 × 13 × 384 Weights 3 × 3 × 256 × 384 
Bias 1 × 1 × 384 ReLU 

Conv4 Convolution 13 × 13 × 384 Weights 3 × 3 × 192 × 384 
Bias 1 × 1 × 384 ReLU 

Conv5 Convolution 13 × 13 × 256 Weights 3 × 3 × 192 × 256 
Bias 1 × 1 × 256 ReLU 

Pool5 Max pooling 6 × 6 × 256   

FC6 Fully Connected 1 × 1 × 4096 Weights 4096 × 9216 
Bias 4096 × 1 ReLU and dropout 

FC7 Fully Connected 1 × 1 × 4096 Weights 4096 × 4096 
Bias 4096 × 1 ReLU and dropout 

FC8 Fully Connected 1 × 1 × 1000 Weights 1000 × 4096 
Bias 1000 × 1 Softmax 

Output Classification Output    


	abd6127_coverpage
	abd6127_SupplementalMaterial_v3

