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Sample Synthesis 
Synthesis of the nanocrystals used in this study follows the procedure detailed in (1). 
 
Preparation of Cs-Oleate Stock Solution 
80 mg of Cs2CO3 (0.5 mM Cs+) was added to a 50 mL 2-neck round-flask, followed by 
addition of 1 mL of oleic acid and 7 mL of 1-octadecene. The flask was connected to a 
Schlenk line and vigorously stirred under vacuum at 100°C for 1 hour. After obtaining a 
transparent solution ([Cs+] = 0.06 mol/L), the system was maintained at 80°C under 
nitrogen flow to avoid the formation of a white precipitate. 
 
Synthesis of CsPbI3 Perovskite Nanocrystals with Cs:Pb:I = 1:4.34:8.68 Molar Ratio 
100 mg of PbI2 (~ 0.217 mM) was added to a 50 mL 3-neck round-flask, followed by the 
addition of 4.5 mL of 1-octadecene. The flask was connected to a Schlenk line and 
vigorously stirred under vacuum at 100°C for 30 minutes. Afterwards 1 mL of oleic acid 
and 0.l5 mL of oleylamine was added, while keeping the reaction flask under vigorous 
stirring in vacuum at 100°C until complete solubilization of the PbI2, upon obtaining a 
transparent yellow solution. Prior to injection of the Cs+ precursor, the temperatures of the 
Pb2+ and I- precursor solutions were raised to 140°C under vigorous stirring and nitrogen 
flow, followed by swift injection of 0.8 mL of Cs-oleate stock solution. Formation of an 
intense red colloidal suspension of CsPbI3 nanocrystals was then observed. The 
suspension was immediately submerged in a cold-water bath to cool down to room 
temperature for quenching nanocrystal growth. 
 
The nanocrystals were cleaned by adding 15 mL of anhydrous methylacetate and 
centrifuged at 12000 rpm for 5 minutes. The supernatant was discarded and the 
precipitated nanocrystals were redispersed in anhydrous hexane. 
 

Triplet State Quantum Pathways and Feynman Diagrams 
Peak structures in multi-dimensional spectra of a material are interpreted in terms of the 
accessible quantum pathways of its third-order optical response. These quantum pathways 
are readily enumerated by use of double-sided Feynman diagrams, which also provide a 
straightforward method to predict their associated peak position in a multi-dimensional 
spectrum. The rules for constructing and interpreting double-sided Feynman diagrams are 
discussed in detail elsewhere (16, 22) so we present only a brief summary here.  



 

 
All possible double-sided Feynman diagrams for the triplet-state manifold considered here 
are shown in Fig. S1. These diagrams consist of vertically-arranged sequences of density 
matrix elements, beginning with an initial ground state population |g⟩⟨g| as time advances 
upwards, with changes in the density matrix Bra/Ket induced by interactions with each 
excitation pulse (represented by arrows). For the signal wavevector ksig = -kA + kB + kC 
measured here, there are four arrows in total consisting of initial and final leftward 
pointing arrows and two intermediate rightward pointing arrows. An arrow pointing (out-
)inward corresponds to (de-)excitation of the corresponding Bra/Ket, resulting in three 
types of quantum pathways termed excited-state emission (ESE), ground-state bleach 
(GSB), and excited-state absorption (ESA). Here we consider only ESE and GSB 
pathways, since ESA pathways involve emission from biexciton states that manifest as 
asymmetric sidebands located outside our region of interest at the biexciton binding 
energy. 

Peak Strength Calculations in the Nanocrystal Reference Frame 
To explain the observed peak structure, we theoretically calculate relative peak strengths 
in the nanocrystal reference frame as shown in Fig. S2. 
 
To do so, we calculate the peak positions and strengths of all quantum pathways shown in 
Fig. S1. First, the absorption and emission energy peak coordinates are determined by the 
first and last coherences of each Feynman diagram and their oscillation frequencies. 
Second, the peak strengths are determined by the dipole matrix element |𝑑𝑑i| = di of each 
light-matter interaction and the relative spatial orientations of each transition dipole 
moment 𝑑𝑑i. We make one simplifying assumption, namely that each nanocrystal is 
orientated such that at least one of their triplet state dipole moments is oriented along the 
initial excitation pulse polarization. This assumption is justified in the last paragraph of 
this section. 
 
Calculated peak strengths are shown in Figs. S2C and S2D for normalized dipole matrix 
elements dx = dz = 1 and varying dy. The angle 𝜃𝜃xy between 𝑑𝑑x and 𝑑𝑑y is also varied 
between 0° and 45° as shown in Fig. S2B. As shown by the lowest peak strength plot, we 
achieve the best agreement with our experimental results by modeling a stronger dipole 
moment dy = 1.5 and a finite angle 𝜃𝜃xy = 45°. 
 
We note that more rigorous modeling of the relative peak strengths would require 
calculating the rotationally-averaged optical response function in the laboratory reference 
frame. However, dipole selection rules have been shown to persist in a rotationally-
averaged nanocrystal ensemble (35) and does not affect dephasing rates or inhomogeneous 
broadening of transitions. As an example, this can be intuitively understood by 
considering the strengths of peaks 1-3 for co-linear excitation and a nanocrystal 
orientation shown in Fig. S3A. As the nanocrystal rotates in the 𝑑𝑑x - 𝑑𝑑y plane (as 𝜃𝜃NC 
increases), the ratio between the central and sideband peak strengths decreases. 
Importantly however, the overall nonlinear signal also decreases which indicates that the 
nonlinear signal is predominantly generated by nanocrystals whose dipole moments are 
oriented along the excitation polarization. We thus expect the effects of rotational 
averaging to modify the peak strengths calculated here without affecting our main 
conclusions. 



 

Resonance Lineshapes in One- and Zero-Quantum Spectra 
We show straightforward extensions of the procedure outlined by Siemens et al. (27) to fit 
lineshapes of sidebands in one-quantum and zero-quantum spectra. 
 
One-Quantum Lineshapes 
We consider the case of a rephasing signal resulting from excitation and emission 
frequencies ꞷ1 and ꞷ2 respectively (ignoring dynamics during T), and assume perfectly 
correlated inhomogeneous broadening between the two transitions with dephasing rates 𝛾𝛾1 
and 𝛾𝛾2: 

𝑠𝑠(𝑡𝑡, τ) = Θ(𝑡𝑡)Θ(τ)𝑒𝑒−γ1τ𝑒𝑒−γ2𝑡𝑡 ∫ 𝑒𝑒−𝑖𝑖[(ω1+Δω)τ−(ω2+Δω)𝑡𝑡]𝑒𝑒−
Δω2

2σ2 𝑑𝑑Δω 

    = Θ(𝑡𝑡)Θ(τ)𝑒𝑒−γ1τ𝑒𝑒−γ2𝑡𝑡𝑒𝑒−𝑖𝑖ω1τ𝑒𝑒+𝑖𝑖ω2𝑡𝑡 ℱ �𝑒𝑒−
Δω2

2σ2 ��
𝑡𝑡−τ

 

∝ Θ(𝑡𝑡)Θ(τ)𝑒𝑒−γ1τ𝑒𝑒−γ2𝑡𝑡𝑒𝑒−𝑖𝑖ω1τ𝑒𝑒+𝑖𝑖ω2𝑡𝑡𝑒𝑒−
σ2
2 (𝑡𝑡−τ)2 

Defining the new time variables: 

𝑡𝑡′ =
1
2

(𝑡𝑡 + τ)   τ′ =
1
2

(𝑡𝑡 − τ) 
We recast the time-domain signal: 
𝑠𝑠(𝑡𝑡′, τ′) = Θ(𝑡𝑡′ + τ′)Θ(𝑡𝑡′ − τ′)𝑒𝑒−γ1�𝑡𝑡′−τ′�𝑒𝑒−γ2�𝑡𝑡′+τ′�𝑒𝑒−𝑖𝑖ω1�𝑡𝑡′−τ′�𝑒𝑒+𝑖𝑖ω2�𝑡𝑡′+τ′�𝑒𝑒−2σ2τ′2 

It is important to determine the specific axes that the new time variables result in after 
Fourier transform. Writing out the original transform: 

𝑓𝑓(𝑡𝑡, τ) = �𝑒𝑒−𝑖𝑖(ω𝑡𝑡𝑡𝑡+ωττ) 𝑓𝑓(ω𝑡𝑡 ,ωτ)𝑑𝑑ωτ𝑑𝑑ω𝑡𝑡 

In terms of the new time variables: 

𝑓𝑓(𝑡𝑡′, τ′) = �𝑒𝑒−𝑖𝑖�ω𝑡𝑡�𝑡𝑡′+τ′�+ωτ�𝑡𝑡′−τ′�� 𝑓𝑓(ω𝑡𝑡 ,ωτ)𝑑𝑑ωτ𝑑𝑑ω𝑡𝑡 

                = �𝑒𝑒−𝑖𝑖�(ω𝑡𝑡+ωτ)𝑡𝑡′+(ω𝑡𝑡−ωτ)τ′� 𝑓𝑓(ω𝑡𝑡 ,ωτ)𝑑𝑑ωτ𝑑𝑑ω𝑡𝑡 

We see that the natural conjugate variables for t’ and 𝜏𝜏′ are: 
ω𝑡𝑡′ = ω𝑡𝑡 + ωτ   ωτ′ = ω𝑡𝑡 − 𝜔𝜔𝜏𝜏 

or equivalently: 
ω𝑡𝑡 = ω𝑡𝑡′ + ωτ′    ωτ = ω𝑡𝑡′ − ωτ′ 

Note that in the rephasing pulse sequence, 𝜔𝜔𝜏𝜏 is negative. 
 
Using the Jacobian of our variable transformation: 

𝐽𝐽 =  �
𝑑𝑑𝜔𝜔𝑡𝑡

𝑑𝑑𝜔𝜔𝑡𝑡′
� 𝑑𝑑𝜔𝜔𝑡𝑡

𝑑𝑑𝜔𝜔𝜏𝜏′
�

𝑑𝑑𝜔𝜔𝜏𝜏
𝑑𝑑𝜔𝜔𝑡𝑡′
� 𝑑𝑑𝜔𝜔𝜏𝜏

𝑑𝑑𝑑𝑑𝜏𝜏′
�

� =  −1 −  1 =  −2 

We change the variables of integration: 

𝑓𝑓(𝑡𝑡′, τ′) = 2�𝑒𝑒−𝑖𝑖�ω𝑡𝑡′𝑡𝑡
′+ωτ′τ

′� 𝑓𝑓(ω𝑡𝑡′ ,ωτ′)𝑑𝑑ωτ′𝑑𝑑ω𝑡𝑡′ 

We now shift the signal to the origin in our t’ and 𝜏𝜏′ coordinates via multiplication by 
𝑒𝑒+𝑖𝑖ω1�𝑡𝑡′−τ′�τ′𝑒𝑒−𝑖𝑖ω2�𝑡𝑡′+τ′�: 

𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡′, τ′) = Θ(𝑡𝑡′ + τ′)Θ(𝑡𝑡′ − τ′)𝑒𝑒−γ1�𝑡𝑡′−τ′�𝑒𝑒−γ2�𝑡𝑡′+τ′�𝑒𝑒−2σ2τ′2 
The projections along t’ and 𝜏𝜏′ are then: 



 

𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑡𝑡′ = � 𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡′, τ′)𝑑𝑑τ′
∞

−∞
= 𝑒𝑒−(γ1+γ2)𝑡𝑡′ ∫ 𝑒𝑒(γ1−γ2)τ′𝑡𝑡′

−𝑡𝑡′ 𝑒𝑒−2σ2τ′2𝑑𝑑τ′ 

𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,τ′ = � 𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡′, τ′)𝑑𝑑𝑡𝑡′
∞

−∞
= 𝑒𝑒(γ1−γ2)τ′𝑒𝑒−2σ

2τ′2 ∫ 𝑒𝑒−(γ1+γ2)𝑡𝑡′∞
�τ′� 𝑑𝑑𝑡𝑡′ 

Where the Heaviside functions are accounted for by change of integration limits. 
 
In the inhomogeneous limit (σ ≫ γ1, γ2) the signal decays along τ′ much faster than along 
t'. In the integral along 𝜏𝜏′ we can approximate the gaussian portion of the kernel as a delta 
function. In the integral along t', we can approximate the lower limit as 0. These two limits 
give: 

𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑡𝑡′ = 𝑒𝑒−(γ1+γ2)𝑡𝑡′ ∫ 𝑒𝑒(γ1−γ2)τ′𝑡𝑡′
−𝑡𝑡′ δ(τ′)𝑑𝑑τ′ = 𝑒𝑒−(γ1+γ2)𝑡𝑡′Θ(𝑡𝑡′) 

𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,τ′ = 𝑒𝑒(γ1−γ2)τ′𝑒𝑒−2σ
2τ′2 ∫ 𝑒𝑒−(γ1−γ2)𝑡𝑡′∞

0 𝑑𝑑𝑡𝑡′ = 𝑒𝑒(γ1−γ2)τ′𝑒𝑒−2σ2τ′2 
which then give the frequency domain lineshapes in the inhomogeneous limit: 

𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(ω𝑡𝑡′) ∝
1

(γ1 + γ2) + 𝑖𝑖ω𝑡𝑡′
          (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) 

𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(ωτ′) ∝ 𝑒𝑒−
ωτ′
2

8σ2         (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) 
where we’ve assumed γ1 − γ2 ≪ 𝜎𝜎. 
 
Zero-Quantum Lineshapes 
The lineshapes of a zero-quantum spectrum can be derived by the same method, with 
inclusion of an intermediate zero-quantum coherence with a dephasing rate of γ𝑇𝑇 that is 
determined by the correlation between the two optical frequency energy gap fluctuations: 

𝑠𝑠(𝑡𝑡,𝑇𝑇, τ) = Θ(𝑡𝑡)Θ(𝑇𝑇)Θ(τ)𝑒𝑒−γ1τ𝑒𝑒−γ2𝑡𝑡𝑒𝑒−γ𝑇𝑇𝑇𝑇 ∫𝑒𝑒−𝑖𝑖[(ω1+Δω)τ−(ω2+Δω)𝑡𝑡]𝑒𝑒𝑖𝑖(ω2−ω1)𝑇𝑇𝑒𝑒−
Δω2

2σ2 𝑑𝑑Δ 

= Θ(𝑡𝑡)Θ(𝑇𝑇)Θ(τ)𝑒𝑒−γ1τ𝑒𝑒−γ2𝑡𝑡𝑒𝑒−γ𝑇𝑇𝑇𝑇𝑒𝑒+𝑖𝑖(ω2−ω1)𝑇𝑇𝑒𝑒−𝑖𝑖ω1τ𝑒𝑒+𝑖𝑖ω2𝑡𝑡 ∫ 𝑒𝑒+𝑖𝑖Δω(𝑡𝑡−τ)𝑒𝑒−
Δω2

2σ2 𝑑𝑑Δ 

= Θ(𝑡𝑡)Θ(𝑇𝑇)Θ(τ)𝑒𝑒−γ1τ𝑒𝑒−γ2𝑡𝑡𝑒𝑒−γ𝑇𝑇𝑇𝑇𝑒𝑒+𝑖𝑖(ω2−ω1)𝑇𝑇𝑒𝑒−𝑖𝑖ω1τ𝑒𝑒+𝑖𝑖ω2𝑡𝑡 ℱ �𝑒𝑒−
Δω2

2σ2 ��
𝑡𝑡−τ

 

= Θ(𝑡𝑡)Θ(𝑇𝑇)Θ(τ)𝑒𝑒−γ1τ𝑒𝑒−γ2𝑡𝑡𝑒𝑒−γ𝑇𝑇𝑇𝑇𝑒𝑒+𝑖𝑖(ω2−ω1)𝑇𝑇𝑒𝑒−𝑖𝑖ω1τ𝑒𝑒+𝑖𝑖ω2𝑡𝑡 �𝑒𝑒−
σ2
2 𝑡𝑡

′2
�
𝑡𝑡′=𝑡𝑡−τ

 

= Θ(𝑡𝑡)Θ(𝑇𝑇)Θ(τ)𝑒𝑒−γ1τ𝑒𝑒−γ2𝑡𝑡𝑒𝑒−γ𝑇𝑇𝑇𝑇𝑒𝑒+𝑖𝑖(ω2−ω1)𝑇𝑇𝑒𝑒−𝑖𝑖ω1τ𝑒𝑒+𝑖𝑖ω2𝑡𝑡𝑒𝑒−
σ2
2 (𝑡𝑡−τ)2 

Shifting the frequency domain peak to the origin: 

𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡,𝑇𝑇, τ) = 𝑠𝑠(𝑡𝑡,𝑇𝑇, τ)𝑒𝑒−𝑖𝑖(ω2−ω1)𝑇𝑇𝑒𝑒−𝑖𝑖ω2𝑡𝑡 

= Θ(𝑡𝑡)Θ(𝑇𝑇)Θ(τ)𝑒𝑒−γ1τ𝑒𝑒−γ2𝑡𝑡𝑒𝑒−γ𝑇𝑇𝑇𝑇𝑒𝑒−𝑖𝑖ω1τ𝑒𝑒−
σ2
2 (𝑡𝑡−τ)2 

We project onto the T axis: 

𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑇𝑇) = � 𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡,𝑇𝑇, τ)𝑑𝑑𝑑𝑑
∞

−∞
 

= Θ(𝑡𝑡)Θ(𝑇𝑇)Θ(τ)𝑒𝑒−γ1τ𝑒𝑒−γ𝑇𝑇𝑇𝑇𝑒𝑒−𝑖𝑖ω1τ∫ 𝑒𝑒−γ2𝑡𝑡∞
0 𝑒𝑒−

σ2
2 (𝑡𝑡−τ)2𝑑𝑑𝑑𝑑 

= Θ(𝑡𝑡)Θ(𝑇𝑇)Θ(τ)𝑒𝑒−(γ1+γ2)τ𝑒𝑒−γ𝑇𝑇𝑇𝑇𝑒𝑒−𝑖𝑖ω1τ∫ 𝑒𝑒−γ2𝑡𝑡
′∞

−τ 𝑒𝑒−
σ2
2 𝑡𝑡

′2
𝑑𝑑𝑡𝑡′ 



 

And taking the inhomogeneous limit: 
𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑇𝑇) = Θ(𝑡𝑡)Θ(𝑇𝑇)Θ(τ)𝑒𝑒−(γ1+γ2)τ𝑒𝑒−γ𝑇𝑇𝑇𝑇𝑒𝑒−𝑖𝑖ω1τ 

We obtain the frequency-domain lineshape: 

𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(ω𝑇𝑇) = Θ(𝑡𝑡)Θ(τ)𝑒𝑒−(γ1+γ2)τ𝑒𝑒−𝑖𝑖ω1τℱ{𝑒𝑒−γ𝑇𝑇𝑇𝑇Θ(𝑇𝑇)} 

∝ Θ(𝑡𝑡)Θ(τ)𝑒𝑒−(γ1+γ2)τ𝑒𝑒−𝑖𝑖ω1τ
1

γ𝑇𝑇 − 𝑖𝑖ω𝑇𝑇
 

One-Quantum Lineshape Fits 
The lineshapes observed in the obtained one-quantum spectra, especially on the ΔE < 0 
side of each spectra, exhibit lineshapes distorted by vibrational coupling that deviate from 
ideal summations of Lorentzians. We thus fit the co-linear and cross-linear lineshapes with 
symmetric complex Lorentzian peaks, but only on the ΔE ≥ 0 side. 
 
Co-Linear Spectrum Fits 
To investigate the dependence of parameters on nanocrystal size, we fit cross-diagonal 
slices centered at various slice positions |ħω𝜏𝜏| = |ħωt|, shown in Fig. S4. 

 
Cross-Linear Spectrum Fits 
Just as with the co-linear spectrum, we fit cross-diagonal slices centered at various slice 
positions |ħω𝜏𝜏| = |ħωt|, shown in Fig. S5. 
 
Extracting the Optical Dephasing Rates 
The slices are fitted in the range 0 ≤ ΔE ≤ 2.5 meV to five complex Lorentzians, where all 
four sidebands are shifted in phase by π/2 to achieve the correct lineshapes. To explore the 
possibility of a weak, third sideband at energy ΔE = Ω1 + Ω2, corresponding to absorption 
and emission involving the states |𝜓𝜓x⟩ and |𝜓𝜓y⟩, we attempted to fit the above lineshapes 
with an additional two Lorentzian peaks. However, no reasonable fits were found possible. 
 
From the fitted peak linewidths, we can extract the dephasing rates of the triplet state 
manifold 𝛾𝛾x, 𝛾𝛾y, and 𝛾𝛾z. To do so, we make the key assumption that the zero-phonon 
linewidth, which would be a weighted average of the three dephasing rates 𝛾𝛾𝑥𝑥, 𝛾𝛾𝑦𝑦, 𝛾𝛾𝑧𝑧 for 
the case of equal strength dipole moments, is approximately equal to 𝛾𝛾y for the case of a 
stronger dipole moment dy as discussed in the above section on peak strength calculations.  
This finally provides three equations and three variables. The dephasing rates are plotted 
in Fig. S6. While 𝛾𝛾x does not exhibit a clear monotonic increase or decrease with changing 
size, 𝛾𝛾y sharply increases at a slice position of around 1900 meV. This indicates that, 
within the size-distribution probed by our laser bandwidth, |𝜓𝜓y⟩ becomes degenerate with 
|𝜓𝜓d⟩ at an energy gap of around 1900 meV and becomes increasingly higher in energy at 
larger slice positions. A more statistically comprehensive study is needed to draw firm 
quantitative conclusions. 

 

Co-Linear Zero-Quantum Spectra 
Zero-quantum spectra were acquired with a co-linear (HHHH) excitation scheme, and 
shown in Fig. S7. No inter-triplet coherences were observed, which are expected to be 
symmetric in positive and negative mixing energy due to their electronic origin. However, 
multiple negative mixing energy sidebands appear with increasing delay 𝜏𝜏, which we 
attribute to electronic-vibrational coupling and discuss in a separate paper. 

 



 

Cross-Linear Zero-Quantum Spectra 𝜏𝜏 Dependence 
Zero-quantum spectra were acquired with a cross-linear (HVHV) excitation scheme as a 
function of 𝜏𝜏 to confirm their electronic origin. Though the plot in Fig. 3B (in which each 
slice is normalized to its respective central peak) suggests a faster decay in sideband 
intensities relative to the central peak, this is not the case as shown by plots of the peak 
intensities in Fig. S8. The apparent faster decay of the sidebands is due to the overall 
decrease in signal to noise ratio of the measurements, and the increase in noise floor thus 
appears as an accelerated decrease in sideband intensity. 
 

Correlation Between Inhomogeneously Broadened Transitions 
We examine an alternative cause of line-broadening, namely partially-correlated 
inhomogeneous broadening between two optical transitions. To be more specific, we may 
define the two limiting cases of (1) perfectly correlated and (2) uncorrelated 
inhomogeneous broadening: 

1. Perfectly correlated inhomogeneous broadening: all emitters that have a certain 
resonance energy for one optical transition will be degenerate with respect to the 
resonance energy of another optical transition. In other words, a change in 
resonance energy of an optical transition leads to a deterministic change in that of 
another. 

2. Uncorrelated inhomogeneous broadening: emitters that have a certain resonance 
energy for one optical transition may assume a range of energies for a second 
optical transition with equal probability. The conditional probability of the second 
resonance energy (of an ensemble) is simply the inhomogeneous distribution of the 
respective optical transition. 

In perovskite nanocrystals, partially-correlated inhomogeneous broadening may occur due 
to variations in anisotropy of the nanocrystal geometry. We thus examine the effect of 
such partial correlation on lineshapes in one-quantum spectra. 
 
Model 
To determine the effects of partially-correlated inhomogeneous broadening, we adopt a 
model introduced in (36). We begin with the rephasing signal resulting from excitation 
and emission frequencies ω1 and ω2 respectively of a single emitter: 

𝑅𝑅 ∝ 𝑒𝑒−𝑖𝑖ω1τ𝑒𝑒𝑖𝑖ω2𝑡𝑡𝑒𝑒−γ1τ−γ2𝑡𝑡 
We then define a generalized two-dimensional Gaussian function (ignoring normalization 
prefactors for clarity): 

𝑔𝑔(ω1,ω2) = 𝑒𝑒
−4𝑙𝑙𝑙𝑙(2)

(1−𝑅𝑅2)�
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2  − 2𝑅𝑅ω1 − ω1

𝑐𝑐
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𝑐𝑐

𝛿𝛿ω2
�
 

where 𝛿𝛿ω1,2 are the FWHM of each inhomogeneous transition energy distribution, 
ω1,2
𝑐𝑐  are the center energies of each distribution, and R is the correlation coefficient 

ranging from R = 0 (uncorrelated) to R = 1 (perfectly correlated). 
 
To simplify the calculations, we follow (36) and define R and 𝛿𝛿ω1,2 in terms of the 
variables a11, a22, and a12: 

𝑅𝑅 =
𝑎𝑎12

√𝑎𝑎11𝑎𝑎22
  δω1 = �

4 ln(2)𝑎𝑎11
𝑎𝑎11𝑎𝑎22 − 𝑎𝑎122

  δω2 = �
4 ln(2)𝑎𝑎22
𝑎𝑎11𝑎𝑎22 − 𝑎𝑎122

 

This recasts the distribution function as: 
𝑔𝑔(ω1,ω2) = 𝑒𝑒−𝑎𝑎11(ω1−ω1

𝑐𝑐)2𝑒𝑒−𝑎𝑎22(ω2−ω2
𝑐𝑐)2𝑒𝑒2𝑎𝑎12(ω2−ω2

𝑐𝑐)(ω1−ω1
𝑐𝑐) 



The rephasing signal generated from the inhomogeneous ensemble may then be calculated 
by: 

�𝑅𝑅𝑅𝑅(ω2,ω1)𝑑𝑑ω2 𝑑𝑑ω1 = 𝑒𝑒𝑖𝑖ω2
𝑐𝑐𝑡𝑡𝑒𝑒−𝑖𝑖ω1

𝑐𝑐τ𝑒𝑒−γ1τ−γ2𝑡𝑡∬𝑒𝑒−𝑖𝑖𝑖𝑖τ𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒−𝑎𝑎11𝑥𝑥2−𝑎𝑎22𝑦𝑦2+2𝑎𝑎12𝑥𝑥𝑥𝑥 

where we've defined x = 𝜔𝜔2-𝜔𝜔2
𝑐𝑐 and y = 𝜔𝜔1-𝜔𝜔1𝑐𝑐.  

 
Since the following integral has the solution: 

�𝑒𝑒−
1
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We can define the following variables: 
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This recasts the above integral to provide the following solution: 
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and in terms of our original physical variables: 
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Signatures in One-Quantum Spectra 
To examine the signatures of partially-correlated inhomogeneous broadening in one-
quantum spectra, we simulate sideband lineshapes according to the above model. To give 
a sense for parameters that would result in the broadening of sidebands 4 and 5 in Fig. 2D, 
we assume identical homogeneous dephasing rates between states |𝜓𝜓y⟩ and |𝜓𝜓z⟩ (𝑇𝑇2

𝑦𝑦  = 𝑇𝑇2𝑧𝑧 
= 5.32 ps). By fixing the inhomogeneous width ratio 𝛿𝛿ω1/ 𝛿𝛿ω2 = 1 while varying the 
correlation parameter R, we obtain the following behavior for cross-diagonal slices of a 
single sideband located at ΔE = -Ω1, plotted in Fig. S9. 
 
We may quantify the changes by plotting the sideband intensity and effective dephasing 
rate with respect to correlation coefficient R, shown in Fig. S10. Just as uncorrelated 
inhomogeneous broadening suppresses quantum beats in integrated FWM measurements, 
the sideband intensity decreases sharply with decreasing correlation coefficient. This is 
due to incomplete rephasing of the photon echo signal without perfect correlation. The 
effective dephasing rate is calculated from the lineshape FWHM assuming the relationship 
for a normal Lorentzian lineshape. As expected, for R = 1 the effective dephasing time is 
simply the identical homogeneous dephasing rates used in the simulation (𝑇𝑇2

𝑦𝑦  = 𝑇𝑇2𝑧𝑧 = 5.32 
ps), and a correlation coefficient of approximately R = 0.98 is required to reach a 
broadening equivalent to the fitted experimental dephasing rate of |𝜓𝜓z⟩ (𝑇𝑇2𝑧𝑧 = 0.76 ps). 
 



Supplementary Figures 

 
Fig. S1. Double-sided Feynman diagrams of quantum pathways. Double-sided 

Feynman diagrams representing accessible quantum pathways in perovskite 
nanocrystals. Nine ESE and GSB diagrams each are possible, which involve an 
intermediate excited-state population/coherence and ground-state population 
respectively. The peak position of each diagram in one-quantum spectra is labeled 
above. ESA diagrams are neglected as described in the text. 

 



 
Fig. S2. Peak strength calculations. A, Excitation polarization sequences as described in 

Fig. 1D in the main text. B, Schematic of dipole moment vector orientations, in 
which 𝑑𝑑z is mutually orthogonal to 𝑑𝑑x/y while the angle 𝜃𝜃xy is allowed to vary. (C, 
D), Calculated relative peak strengths for C, co-linear and D, cross-linear 
excitation for dipole matrix elements {dx,dy,dz} = {1,dy,1} and angle 𝜃𝜃xy as 
indicated. 

 



 
Fig. S3. Peak strength dependences on nanocrystal orientation. A, Nanocrystal 

orientation relative to the co-linear excitation pulse polarizations. B, Amplitudes of 
peaks 1-3 calculated for normalized dipole matrix elements dx = dy = dz = 1 as a 
function of orientation angle 𝜃𝜃NC.  

 

 
Fig. S4. Co-linear one-quantum lineshape fits. Left: The slices from a co-linear one-

quantum spectrum at 4.6 K are plotted as blue curves, with their corresponding 
fitted lineshapes overlayed as dashed red lines. Right: Fitted parameters are plotted 
as a function of slice position. 

 



 

 
Fig. S5. Cross-linear one-quantum lineshape fits. Left: The slices from a cross-linear 

one-quantum spectrum at 4.6 K are plotted as blue curves, with their 
corresponding fitted lineshapes overlayed as dashed red lines. Right: Fitted 
parameters are plotted as a function of slice position. 

 

 
Fig. S6. Fitted optical dephasing rates. Individual dephasing rates of optical coherences 

extracted from fitted peak linewidths in co-linear and cross-linear one-quantum 
spectra. 
 



                                                                                      
 

 
Fig. S7. Co-linear zero-quantum spectra. A, Zero-quantum spectra taken with co-linear 

excitation at 𝜏𝜏 = 250 fs. B, Evolution of normalized slices taken at ħωt = 1890 meV 
(indicated by the dashed red line in A). C, Normalized cross-slice taken at 𝜏𝜏 = 250 
fs and ħωt = 1890 meV (indicated by the dashed red line in A). 

 

 
Fig. S8. Cross-linear zero-quantum spectra 𝜏𝜏 dependence. Peak intensities of the 

central (DC) peak and two sidebands as a function of 𝜏𝜏, which decay at the same 
rate. 

 



 
Fig. S9. One-quantum spectra with varying correlation coefficient. Left column: One-

quantum spectra for a single sideband at ΔE = -Ω1, simulated for correlation 
coefficients of R = 1 and R = 0.98 as indicated. Right column: Cross-diagonal 
slices of respective one-quantum spectra taken at |ħω𝜏𝜏| = |ħωt| = 1900 meV as 
indicated by the red dashed arrows. 

 

 
Fig. S10. Sideband intensity and linewidth with varying correlation coefficient. 

Integrated sideband intensity and effective dephasing time T2 as a function of 
correlation coefficient R. Because the sideband lineshapes deviate from a 
Lorentzian lineshape with decreasing correlation coefficient, effective dephasing 
times are calculated from the Lorentzian FWHM relationship ΔEFWHM = 4𝛾𝛾. 
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