

Supplementary Information for:

Divergence of Arctic shrub growth associated with sea ice decline

Agata Buchwal^{a,b,1}, Patrick F. Sullivan^c, Marc Macias-Fauria^d, Eric Post^e, Isla Myers-Smith^f, Julienne C. Stroeve^g, Daan Blok^h, Ken D. Tapeⁱ, Bruce C. Forbes^j, Pascale Ropars^{k,I}, Esther Lévesque^m, Bo Elberlingⁿ, Sandra Angers-Blondin^f, Joseph S. Boyle^f, Stéphane Boudreau^o, Noémie Boulanger-Lapointe^p, Cassandra Gamm^c, Martin Hallinger^q, Grzegorz Rachlewicz^{a,r}, Amanda Young^{s,t}, Pentti Zetterberg^u, and Jeffrey M. Welker^{v,b}

^aInstitute of Geoecology and Geoinformation, Adam Mickiewicz University, B. Krygowskiego 10, 61-680 Poznan, Poland; ^bDepartment of Biological Sciences, University of Alaska Anchorage, 3151 Alumni Loop, 99508 Anchorage, Alaska, USA; ^cEnvironment and Natural Resources Institute, University of Alaska Anchorage, Anchorage, AK, USA; ^dSchool of Geography and the Environment, University of Oxford, OX1 3QY Oxford, UK; Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, 95616 USA; ^fSchool of GeoSciences, University of Edinburgh, EH9 3FF Edinburgh, UK: ⁹University of Manitoba, Winnipeg and the National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, Colorado, USA; hDutch Research Council (NWO), The Hague, 93460, The Netherlands; Geophysical Institute, 2156 N Koyukuk Drive, University of Alaska Fairbanks, 99775 Fairbanks, Alaska, USA; ^jArctic Centre, University of Lapland, Box 122, FI-96101 Rovaniemi, Finland; ^kChaire de recherche du Canada en biodiversité nordique, Université du Québec à Rimouski, QC, G5L 3A1, Canada; Centre for Indigenous Peoples' Nutrition and Environment, McGill University, QC, H9X 3V9, Canada; "Département des Sciences de l'environnement et Centre d'études nordiques, Université du Québec à Trois-Rivières, QC, G8Z 4M3, Canada; "Center for Permafrost (CENPERM), Department of Geoscience and Natural Resource Management, University of Copenhagen, Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen, Denmark; ^oDépartement de biologie et Centre d'études nordiques, Université Laval, 1045 Avenue de la Médecine, G1V 0A6 Québec, Canada; PDepartment of Geography, University of British Columbia, 1984 West Mall, V6T 1Z2 Vancouver, BC, Canada; ^qBiology Department, Swedish Agricultural University (SLU), SE-750 07 Uppsala, Sweden; 'Department of Health and Environmental Science, Xi'an Jiaotong-Liverpool University, Ren'ai Road 111, 215123 Suzhou, China; SToolik Field Station, Institute of Arctic Biology, University of Alaska Fairbanks, USA; ¹Department of Geography, Pennsylvania State University, USA; ¹Laboratory of Dendrochronology, School of Forest Sciences, University of Eastern Finland, Joensuu, Finland: ^vDepartment of Ecology & Genetics, University of Oulu and UArctic, Oulu, Finland

Corresponding author: Agata Buchwal Email: <u>kamzik@amu.edu.pl</u>

This PDF file includes:

Figures S1 to S11

Tables S1 to S14 SI References

Other supplementary materials for this manuscript include the following:

All individual shrub ring data are available from the Dryad Digital Repository: <u>https://doi.org/10.5061/dryad.kh1893248</u> (Buchwal et al. 2020), Deposited date: November 24, 2020.

Buchwal, Agata et al. (2020), Data from: Divergence of Arctic shrub growth associated with sea ice decline, Dryad, Dataset, <u>https://doi.org/10.5061/dryad.kh1893248</u>

Datasets S1 (Example R code used for the analyses)

Supplementary Figures

Fig. S1. Overview of *increasers* (A, B) and *decreasers* (D, E) standardized (dRCS) shrub chronologies analyzed in the synthesis together with changes in mean RWI for all *increasers* (C) and *decreasers* (F) shrubs. Overview of entire chronologies timespan (A, C), together with study period 1979-2008 (B, E) indicated by vertical dashed lines; *increasers* (blue lines) = 13 chronologies (363 shrubs); *decreasers* (red lines) = 9 chronologies (251 shrubs). Smoothed conditional means with 95% confidence intervals are marked for each responder group. Mean correlation between chronologies (1979-2008) equaled 0.108 and 0.4 for *increasers* and *decreasers*, respectively. Changes in mean RWI (C, F) between early (P1=1980-1993; dashed lines and lighter colors) and recent (P2=1994-2008; solid lines and darker colors) period for all shrubs analyzed for (C) *increasers* (n=11,239 annual growth records, with 43% and 57% shrubs assigned to early and recent period respectively) and (F) *decreasers* (n=7,822 annual growth records, with 42% and 58% shrubs assigned to early and recent period respectively). RWIsq - ring-width index after transformation (square-root). Results of Welch two sample t-test, together with mean RWI for each period, are presented for each responder group in the top right. *** *P*<0.001

Fig. S2. Overview of 23 raw shrub ring chronologies (scaled for comparison) used in SIE-shrub growth relationship analyses for common period (1979-2008). Blue curves - *increasers*; red curves - *decreasers*; black curve - *neutral* chronology. For full site names and descriptive statistics for each chronology see Table S1

Fig. S3. Principal components analysis of the results of a *k*-means cluster analysis designed to group shrub radial growth responses to variation in monthly Pan-Arctic sea ice extent (SIE, 23 shrub-ring chronologies, dRCS detrending). Correlations coefficients for each chronology were obtained using monthly Pan-Arctic SIE (from previous June to current August) for (a, c) common period (1979-2008; Table S5) and (b, d) entire chronology timespan (Table S6). Blue color - *increasers*; red color - *decreasers*. Analysis of the optimal number of groups (c, d) showed strong support for just two major groups of responders. Thus, the YR chronology, which was identified as a *neutral* responder, because it was not significantly correlated with SIE during any months, was identified as a marginal increaser in this analysis. The YR chronology was excluded from subsequent analyses. For full chronology names see Table S1.

Fig. S4. Variation in mean standardized radial growth (RWI - ring width index, 1979-2008) changes together with variation in coefficient estimates for the best sea ice model (1980-2008) obtained for *increasers* (A-D) and *decreasers* (E-H) chronologies. Results are shown with distinction between Betula and Salix chronologies (A, C, E, G), and dry and moist soil types (B, D, F, H). Model estimates for the best sea ice model were obtained from linear mixed effect models using all shrubs (instead of chronologies, Table S13) with a random intercept for a year. See Table S1 for full chronology names.

Fig. S5. Variation in coefficient estimates for the best sea ice model (Beta) obtained for each *increaser* (A, C) and *decreaser* (B, D) chronology (1979-2008) in relation to distance from the open sea (A, B) and latitude (C, D). Model estimates were obtained from linear mixed effect models using all shrubs (instead of chronologies, Table S13) with a random intercept for a year. See Table S1 for full chronology names.

Fig. S6. Relationships between *increasers* (A-D) and *decreasers* (E-H) all shrubs annual radial growth (1980-2008, grouped by chronology) and selected sea ice variables: (A, E) mean Pan-Arctic sea ice extent (SIE) for June to August (JJA) period; (B, F) mean regional JJA SIE; (C, G) mean previous autumn SIE detrended; (D, H) mean regional JJA SIE detrended. RWI - ring width indices after square root transformation and diameter RCS detrending; RWIar - ring width indices after AR detrending. All predictors were standardized (z-score). For full model statistics (at the responder group level) please refer to Table S12 (raw sea ice data) and Table S14 (AR detrended shrub and sea ice data).

Fig. S7. (A) Relationship between slopes of shrub radial growth and slopes of June to August precipitation, and (B) June to August temperature for each *increaser* (blue points) and *decreaser* (red points) chronology (1979-2008). (C) Relationship between coefficient estimates (with associated standard errors) for the best sea ice model (Sea Ice Est.) and mean June to August SPEI obtained for each *increaser* (blue points) and *decreaser* (red points) chronology (1979-2008). (C) Relationship between coefficient estimates (with associated standard errors) for the best sea ice model (Sea Ice Est.) and mean June to August SPEI obtained for each *increaser* (blue points) and *decreaser* (red points) chronology (1979-2008). Sea Ice model estimates at a site level were obtained from linear mixed effect models using all shrubs (instead of chronologies) with a random intercept for a year (Table S13).

Fig. S8. Relationship between mean ring-widths and shrub stem radius. Relationship between mean ring-widths (Y axis, scaled for comparison) and shrub stem radius (X axis) for shrub ring chronologies used the synthesis with the stem radius up to 20 mm. Relationship is presented using smoothed detrending curve (RCS, diameter based) calculated for each chronology using all shrubs. For full site names see Table S1.

Fig. S9. Relationship between mean ring-widths and shrub stem radius. Relationship between mean ring-widths (Y axis, scaled for comparison) and shrub stem radius (X axis) for shrub ring chronologies used the synthesis with the stem radius greater than 20 mm. Relationship is presented using smoothed detrending curve (RCS, diameter based) calculated for each chronology using all shrubs. For full site names see Table S1.

	-1 0 1 2	-	1.5 0.0 1.5		-2 0 1 2		-2 0 1 2		-2 0 1 2	-	3 -1 0 1	-	2 0 1 2	
	-0.27	• *** -0.34	*** -0.21	*** -0.36	*** 0.46	* -0.12	*** -0.27	*** -0.17	• -0.089	*** -0.33	*** 0.25	*** -0.26	*** -0.21	-0.27
		0.79*	0.83	0.79*	*** -0.34	-0.005	*** 0.45	*** 0.45	*** 0.33	*** 0.46	*** -0.50	*** 0.40	*** 0.45	** 0.17
	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		0.76**	0.73**	-0.55	0.03	*** 0.44	*** 0.43	*** 0.39	0.58**	*** -0.50	0.52	*** 0.39	*** 0.31
2		0 000 800 800 800 800 800 800 800 800 8		0.64	*** -0.32	0.05	*** 0.40	*** 0.41	*** 0.37	*** 0.37	*** -0.44	*** 0.34	*** 0.44	*** 0.19
	e e e e e e e e e e e e e e e e e e e				*** -0.40	-0011	0.55	*** 0.40	*** 0.31	*** 0.49	*** -0.48	*** 0.40	*** 0.49	*** 0.21
-2 0 2						* -0.11	*** -0.28	*** -0.17	*** -0.19	*** -0.52	*** 0.26	*** -0.46	*** -0.20	*** -0.45
							0.01	-0.067	-0.12	-0.084	0.029	* -0.11	0.066	0.28
							PS W	*** 0.42	*** 0.28	0.48	-0.76	*** 0.39	0.63	** 0.17
		 						DJF	0.62**	*** 0.48	*** -0.49	*** 0.34	*** 0.34	0.10
									MAM	0.53	*** -0.32	*** 0.41	*** 0.18	0.079
		, , , , , , ,								ALL	*** -0.49	0.88	*** 0.28	*** 0.24
											PFAR A	*** -0.42	*** -0.54	** -0.15
													*** 0.25	*** 0.21
														0.065
				, M										SPECSA
05 15 3	25 -	15 00 10	-2	0 -05 10		-2 0 2		3 -1 12		-2 0 1 2		2 0 1 2		3 -1 1

Fig. S10. Correlation matrix for response variable (RWI, i.e., mean annual ring width index for 13 *increaser's* chronologies, n=390 annual records, period 1979-2008) and predictor variables used in SEM. All predictors were standardized using z-score. For full name of predictors see Table S9. On the upper right corner Pearson's correlation coefficients between all variables are visualized with the significance level denoted with asterisks (i.e., *p<0.05, ** p<0.01, *** p<0.001). On the bottom left corner bivariate scatterplots with fitted lines are presented.

_		-1012	-	1.5 0.0 1.5		-2 0 1 2	-	3 -1 12		-3 -1 1		-2 0 1		-1012	
		0.48	* *** 0.44	*** 0.49	*** 0.47	0.02	0.089	*** 0.30	** 0.20	** 0.16	* 0.13	*** -0.29	0.10	* 0.15	* 0.15
 			0.79*	0.83*	0.79*	** -0.18	*** 0.22	*** 0.42	*** 0.35	*** 0.24	*** 0.32	*** -0.48	*** 0.37	*** 0.35	*** 0.25
4		500 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		0.76**	0.73**	*** -0.38	* 0.15	*** 0.43	*** 0.38	*** 0.29	*** 0.53	*** -0.48	0.55	*** 0.34	*** 0.35
1.5 0.5 141111					0.64	*** -0.25	* 0.12	*** 0.37	*** 0.35	*** 0.32	*** 0.32	*** -0.45	*** 0.38	*** 0.34	*** 0.24
ġ		Contraction of the second		Conception of the second se		-0.16	*** 0.22	0.59	*** 0.37	*** 0.24	*** 0.39	-0.63	*** 0.36	*** 0.48	*** 0.29
-2 0 2					- V		-0.057	** -0.16	** -0.16	*** -0.27	*** -0.47	** 0.20	*** -0.53	*** -0.23	*** -0.28
5								* 0.13	0.054	* -0.13	-0.051	-0.087	-0015	4000	*** 0.41
3 -1 -1						Ĩ		pSON	*** 0.40	*** 0.24	*** 0.34	-0.79	*** 0.28	0.68	*** 0.27
			`````````````````````````````````````						DJF	0.57**	*** 0.43	*** -0.42	*** 0.30	*** 0.39	* 0.13
3 0 2				15 - 1 - 1				•• *** **		MAN	*** 0.52	*** -0.31	*** 0.33	*** 0.30	0.069
ė											ALL	*** -0.40	0.85	*** 0.34	*** 0.27
-2 0													*** -0.33	-0.69	*** -0.29
- 														*** 0.29	*** 0.23
 - - -															** 0.20
ą		Í Í						••• *** ***	• *** **		°*****				SPERJJA
	05 15		-15 00 10		0 -05 10		2 0 1 2		3 -1 12				-1012		-3 -1 1 3

Fig. S11. Correlation matrix for response variable (RWI, i.e., mean annual ring width index for nine *decreaser's* chronologies, n=270 annual records, period 1979-2008) and predictor variables used in SEM. All predictors were standardized using z-score. For full name of predictors see Table S9. On the upper right corner Pearson's correlation coefficients between all variables are visualized with the significance level denoted with asterisks (i.e., * p<0.05, ** p<0.01, *** p<0.001). On the bottom left corner bivariate scatterplots with fitted lines are presented.

Supplementary Tables

Table S1. Characteristics of shrub chronologies included in the synthesis with responder type indication (blue font - *increaser*, red font - *decreaser*, black bold font - *neutral*). YR site, as a neutral responder, was not included in the final analyses. Types of soil moisture classes (D - dry; M - moist, W - wet) for each site were assessed after Myers-Smith et al. (2015) (3), with moist and wet classes pooled into moist soil type. Sampling design after Sullivan & Csank (2016) (11): SEL- selective; DOM - dominant; STR - stratified; RAN - random. Shrubs' sectioning method types: SS - serial sectioning; S - stem only; LS - largest stem; RC - root collar only. Descriptive statistics are presented for the study periods (1979-2008). MRW - mean ring width; sd - standard deviation; MS - mean sensitivity; AR(1) - first-order autocorrelation; rbar.tot - mean pairwise correlation between all cross-sections; EPS - expressed population signal.

Chronology ID	Site name/ Species	Latitude (N)	Longitute (E/-W)	Soil moisture class	Sampling design	Shrubs' sectioning method	# shrubs	# cross- sections	first YR	last YR	MRW [mm]	sd [mm]	MS	AR(1)	raw (rbar.tot	CRN	standa CF rbar.tot	rdized RN EPS	Data contributors	Reference
AF_SAR	Alexandra Fiord/	78.9	-75.9	D	RAN	RC	29	29	1937	2008	0.09	0.063	0.719	0.102	0.118	0.795	0.116	0.792	Boulanger-Lapointe N.	(1)
BL_BGL	Baker Lake/ Betula glandulosa	64.4	-95.9	м	RAN	LS	44	77	1946	2010	0.115	0.062	0.382	0.563	0.313	0.969	0.328	0.971	Lévesque E.	in prep.
BS_BGL	Boniface River/ Betula glandulosa	57.7	-76.1	м	DOM	RC	39	39	1949	2009	0.659	0.462	0.471	0.541	0.309	0.935	0.326	0.939	Ropars P., Boudreau S.	(2)
BT_BGL	Boniface River / Betula glandulosa	57.7	-76.1	D	DOM	RC	76	76	1915	2009	0.572	0.371	0.454	0.574	0.548	0.988	0.488	0.985	Ropars P., Boudreau S.	(2)
DE_SGL	Dempster/ Salix glauca	67.0	-136.2	D	DOM, SEL, STR	S	15	15	1972	2008	0.052	0.035	0.401	0.451	0.475	0.908	0.32	0.837	Myers-Smith I.	(3)
DK_BNA	Disko Island/ Betula nana	69.2	-53.3	D	RAN, DOM	SS	15	31	1888	2011	0.095	0.057	0.472	0.572	0.427	0.915	0.424	0.913	Buchwal A., Rachlewicz G., Elberling B.	(4)
EB_SPO	Ebbadalen/ Salix polaris	78.6	16.5	D	RAN	SS	10	25	1941	2010	0.062	0.04	0.781	0.108	0.34	0.855	0.305	0.83	Buchwal A., Rachlewicz G.	(5)
GR_BGL	George River/ Betula glandulosa	58.7	-65.9	м	RAN	LS	17	22	1980	2011	0.301	0.107	0.304	0.316	0.228	0.807	0.198	0.777	Lévesque E.	in prep.
HE_SAR	Herschel Island/ Salix arctica	69.6	-138.9	М	DOM, SEL, STR	S, RC	24	24	1954	2008	0.068	0.032	0.384	0.339	0.228	0.825	0.259	0.849	Myers-Smith I., Angers- Blondin S.	(3)
HE_SRI	Herschel Island/ Salix richardsonii	69.6	-138.9	М	DOM, SEL, STR	S, RC	17	17	1960	2008	0.051	0.025	0.359	0.349	0.036	0.355	0.249	0.829	Myers-Smith I., Angers- Blondin S.	(3)
KG_BNA	Kangerlussuaq/ Betula nana	67.1	-50.3	D	RAN, DOM	RC	42	42	1903	2013	0.178	0.081	0.446	0.368	0.181	0.892	0.239	0.921	Sullivan P., Post E., Gamm C., Young A.	(6)
KG_SGL	Kangerlussuaq/ Salix glauca	67.1	-50.3	D	RAN, DOM	RC	32	32	1935	2013	0.291	0.126	0.402	0.372	0.185	0.854	0.246	0.894	Sullivan P., Post E., Gamm C., Young A.	(6)
KY_SPU	Kytalyk Reserve/ Salix pulchra	70.8	147.5	М	RAN, DOM	SS	19	19	1928	2009	0.087	0.056	0.464	0.421	0.234	0.849	0.2	0.821	Blok D.	(7)
KY_BNA	Kytalyk Reserve/ Betula nana	70.8	147.5	D	RAN, DOM	RC	19	19	1939	2008	0.182	0.112	0.479	0.416	0.345	0.909	0.377	0.92	Blok D.	(7)
LA_SAR	Lake A/ Salix arctica	83.0	-75.4	D	RAN	RC	19	19	1890	2008	0.178	0.118	0.739	0.099	0.401	0.926	0.366	0.915	Boulanger-Lapointe N.	(1)
LB_SRI	Laborovaya/ Salix lanata	68.0	68.0	M/W	RAN, DOM	RC	29	29	1934	2006	0.636	0.257	0.398	0.386	0.262	0.909	0.357	0.94	Forbes B. C, Macias-Fauria M., Zetterberg P.	(8)
PL_SAR	Peary Land/ Salix arctica	82.1	-33.0	D	RAN, DOM	S, SS	10	24	1925	2014	0.153	0.078	0.542	0.184	0.249	0.777	0.241	0.773	Buchwal A., Elberling B.	(9)
RE_SAR	Resolute/ Salix arctica	74.7	-94.9	D	RAN	RC	31	31	1948	2008	0.187	0.15	0.807	0.114	0.097	0.758	0.108	0.779	Boulanger-Lapointe N.	(1)
TL_BNA	l oolik Lake/ Betula nana	68.4	-149.9	D	RAN, DOM	SS	29	58	1905	2016	0.132	0.081	0.578	0.322	0.191	0.872	0.201	0.879	Buchwal A., Welker J.	in prep.
UM_BGL	Umiujuaq/ Betula glandulosa	56.5	-76.4	М	RAN	LS	25	25	1950	2010	0.339	0.154	0.44	0.378	0.216	0.855	0.219	0.858	Lévesque E.	in prep.
VA_SRI	Varandei/ Salix lanata	68.7	58.5	М	RAN, DOM	RC	39	39	1921	2005	0.895	0.417	0.536	0.285	0.546	0.979	0.57	0.981	Forbes B. C, Macias-Fauria M., Zetterberg P.	(10)
YR_SRI	Yuribei River/ Salix lanata	68.9	70.2	W	RAN, DOM	RC	27	27	1911	2009	0.619	0.267	0.437	0.306	0.35	0.935	0.344	0.934	Forbes B. C, Macias-Fauria M., Zetterberg P.	(8)
ZA_SAR	Zackenberg/ Salix arctica	74.5	-20.5	D	RAN	RC	34	34	1909	2010	0.108	0.077	0.686	0.062	0.091	0.751	0.101	0.772	Boulanger-Lapointe N.	(1)
						min	10	15	1888	2005	0.051	0.025	0.304	0.062	0.036	0.355	0.101	0.772		
						max	76	77	1980	2016	0.895	0.462	0.807	0.574	0.548	0.988	0.57	0.985		
						mean	28	33	1932	2010	0.263	0.14	0.508	0.332	0.277	0.853	0.286	0.874	l	
						sum	641	753												

Table S2. List of shrub chronologies included in the synthesis together with the geographical coordinates and regional sea ice province assigned. Mean day of the year (DOY) for the first advanced day (FAD) and the last retreat day (LRD) together with 95% confidence intervals was calculated after Stroeve et al. (2016) (12).

Chronology ID	Responder	Site name	Species	Latitude (N)	Longitute (E/-W)	REGIONAL SEA ICE province used:	mean DOY of FAD (95% CI)	mean DOY of LRD (95% CI)
AF_SAR	increaser	Alexandra Fiord	Salix arctica	78.9	-75.9	Baffin Sea	317 (314-321)	182 (179-185)
BL_BGL	decreaser	Baker Lake	Betula glandulosa	64.4	-95.9	Hudson Bay	335 (332-338)	176 (173-179)
BS_BGL	increaser	Boniface River research station	Betula glandulosa	57.8	-76.2	Hudson Bay	335 (332-338)	176 (173-179)
BT_BGL	increaser	Boniface River research station	Betula glandulosa	57.7	-76.1	Hudson Bay	335 (332-338)	176 (173-179)
DE_SGL	decreaser	Dempster	Salix glauca	67.0	-136.2	Beaufort Sea	293 (289-298)	189 (182-195)
DK_BNA	increaser	Disko Island	Betula nana	69.2	-53.3	Baffin Sea	317 (314-321)	182 (179-185)
EB_SPO	increaser	Ebbadalen	Salix polaris	78.6	16.5	Greenland Sea	324 (318-331)	181 (177-186)
GR_BGL	increaser	Kangiqsualujjuaq (George River)	Betula glandulosa	58.7	-65.9	Hudson Bay	335 (332-338)	176 (173-179)
HE_SRI	decreaser	Herschel Island	Salix richardsonii	69.6	-138.9	Beaufort Sea	293 (289-298)	189 (182-195)
HE_SAR	decreaser	Herschel Island	Salix arctica	69.6	-138.9	Beaufort Sea	293 (289-298)	189 (182-195)
KG_BNA	decreaser	Kangerlussuaq	Betula nana	67.1	-50.3	Baffin Sea	317 (314-321)	182 (179-185)
KG_SGL	decreaser	Kangerlussuaq	Salix glauca	67.1	-50.3	Baffin Sea	317 (314-321)	182 (179-185)
KY_SPU	decreaser	Kytalyk Reserve	Salix pulchra	70.8	147.5	East Siberian	286 (282-291)	201 (197-206)
KY_BNA	decreaser	Kytalyk Reserve	Betula nana	70.8	147.5	East Siberian	286 (282-291)	201 (197-206)
LA_SAR	increaser	Lake A	Salix arctica	83.0	-75.4	Central Arctic	334 (317-352)	206 (190-223)
LB_SRI	increaser	Laborovaya	Salix lanata	68.0	68.0	Kara Sea	313 (308-318)	189 (185-194)
PL_SAR	increaser	Peary Land	Salix arctica	82.1	-33.0	Central Arctic	334 (317-352)	206 (190-223)
RE_SAR	increaser	Resolute	Salix arctica	74.7	-94.9	Canadian Archipelago	293 (291-296)	192 (189-196)
TL_BNA	increaser	Toolik Lake	Betula nana	68.4	-149.9	Beaufort Sea	293 (289-298)	189 (182-195)
UM_BGL	increaser	Umiujuaq	Betula glandulosa	56.5	-76.4	Hudson Bay	335 (332-338)	176 (173-179)
VA_SRI	decreaser	Varandei	Salix lanata	68.7	58.5	Barents Sea	342 (335-348)	159 (153-164)
ZA_SAR	increaser	Zackenberg	Salix arctica	74.5	-20.5	Greenland Sea	324 (318-331)	181 (177-186)

Table S3. Mean standardized ring width index (RWI) for early (1979-1993) and recent (1994-2008) period for each chronology. \triangle RWI represents difference between early and recent period. P-value from the Welch two sample t-test is reported. Values marked in bold indicate a statistically significant difference (*p*<0.05).

Boopondor	Chronology ID	Site nome	Species	mear	NRWI		
Responder	Chirohology ID	Site fiame	Species	(1979-1993)	(1994-2008)		P-value
increaser	AF_SAR	Alexandra Fiord	Salix arctica	0.80	0.79	0.00	0.967
increaser	BS_BGL	Boniface River	Betula glandulosa	0.74	1.29	0.55	0.004
increaser	BT_BGL	Boniface River	Betula glandulosa	0.81	1.60	0.79	0.000
increaser	DK_BNA	Disko Island	Betula nana	0.73	1.33	0.60	0.000
increaser	EB_SPO	Ebbadalen	Salix polaris	0.97	1.11	0.14	0.322
increaser	GR_BGL	Kangiqsualujjuaq (George River)	Betula glandulosa	0.91	1.04	0.13	0.165
increaser	LA_SAR	Lake A	Salix arctica	0.99	1.11	0.13	0.434
increaser	LB_SRI	Laborovaya	Salix lanata	1.04	1.34	0.29	0.020
increaser	PL_SAR	Peary Land	Salix arctica	0.95	1.18	0.23	0.088
increaser	RE_SAR	Resolute	Salix arctica	1.13	1.02	-0.12	0.357
increaser	TL_BNA	Toolik Lake	Betula nana	0.97	1.03	0.06	0.555
increaser	UM_BGL	Umiujuaq	Betula glandulosa	0.90	1.18	0.28	0.003
increaser	ZA_SAR	Zackenberg	Salix arctica	0.88	0.93	0.05	0.563
			mean	0.91	1.15	0.24	0.000
decreaser	BL_BGL	Baker Lake	Betula glandulosa	1.20	0.91	-0.30	0.006
decreaser	DE_SGL	Dempster	Salix glauca	1.09	0.94	-0.15	0.074
decreaser	HE_SAR	Herschel Island	Salix arctica	1.14	0.97	-0.17	0.328
decreaser	HE_SRI	Herschel Island	Salix richardsonii	1.18	0.80	-0.38	0.000
decreaser	KG_BNA	Kangerlussuaq	Betula nana	1.16	0.95	-0.21	0.036
decreaser	KG_SGL	Kangerlussuaq	Salix glauca	1.07	0.94	-0.13	0.198
decreaser	KY_BNA	Kytalyk Reserve	Betula nana	0.97	0.64	-0.33	0.000
decreaser	KY_SPU	Kytalyk Reserve	Salix pulchra	1.05	0.70	-0.35	0.007
decreaser	VA_SRI	Varandei	Salix lanata	1.21	0.98	-0.23	0.136
			mean	1.12	0.87	-0.25	0.000

Table S4. Changes in mean summer (June-July-August) temperature, precipitation and SPEI for each study site for the study period (1979-2008), as well for early (1979-1993) and recent (1994-2008) period calculated using linear regression. Values marked in bold indicate a statistically significant changes in analyzed climatic parameters (*p*<0.05). Climatic data sources: see Table S9.

			Т	EMP JJA					F	PRECIP JJA						SPEI JJA			
Responder	Site ID	(1979-2008)	(1979-1993)	(1994-2008)	(*	1979-20	08)	(1979-2008)	(1979-1993)	(1994-2008)	(1	979-20	08)	(1979-2008)	(1979-1993)	(1994-2008)	(1	979-200	8)
		[ºC]	[°C]	[°C]	β	p-value	R2	[mm]	[mm]	[mm]	β	p-value	R2				β	p-value	R2
increaser	AF	0.8	0.5	1.0	0.05	0.006	0.237	77	70	85	0.74	0.323	0.035	-0.443	-0.283	-0.596	-0.026	0.008	0.227
increaser	BS	8.1	7.5	8.7	0.07	0.001	0.321	185	192	177	-1.20	0.266	0.044	1.353	1.406	1.286	-0.006	0.360	0.030
increaser	BT	8.1	7.5	8.7	0.07	0.001	0.321	185	192	177	-1.20	0.266	0.044	1.315	1.406	1.286	0.001	0.881	0.001
increaser	DK	4.4	4.3	4.6	0.02	0.120	0.084	92	92	91	0.18	0.745	0.004	-0.048	0.010	-0.105	-0.001	0.869	0.001
increaser	EB	2.6	2.2	2.9	0.06	0.000	0.487	100	93	107	0.35	0.543	0.013	0.732	0.971	0.510	-0.029	0.001	0.352
increaser	GR	8.1	7.8	8.5	0.04	0.008	0.226	218	185	250	3.78	0.000	0.406	1.594	1.455	1.749	0.020	0.002	0.304
increaser	LA	-1.1	-1.3	-0.9	0.04	0.015	0.194	53	53	53	-0.03	0.953	0.000	-0.341	-0.201	-0.488	-0.030	0.016	0.190
increaser	LB	10.7	10.5	10.8	0.04	0.094	0.097	150	152	148	-0.54	0.419	0.023	-0.023	-0.012	-0.068	-0.010	0.039	0.143
increaser	PL	-1.9	-2.1	-1.7	0.04	0.011	0.208	29	30	28	-0.36	0.254	0.046	-0.760	-0.554	-1.067	-0.083	0.009	0.222
increaser	RE	2.1	1.9	2.4	0.04	0.039	0.144	71	67	75	0.17	0.750	0.004	-0.611	-0.601	-0.627	-0.009	0.292	0.040
increaser	TL	9.8	9.6	10.0	0.03	0.060	0.120	103	117	89	-1.61	0.006	0.236	-1.013	-0.867	-1.149	-0.019	0.000	0.470
increaser	UM	8.8	8.2	9.3	0.07	0.001	0.326	203	206	200	-0.66	0.527	0.014	1.489	1.563	1.399	-0.010	0.146	0.074
increaser	ZA	2.7	2.4	3.0	0.05	0.000	0.421	60	68	51	-0.83	0.222	0.053	-0.101	-0.012	-0.194	-0.015	0.096	0.096
	mean	4.9	4.5	5.2	0.05	0.027	0.245	117.3	116.8	117.8	-0.09	0.406	0.071	0.242	0.329	0.149	-0.017	0.209	0.165
decreaser	BL	8.7	8.1	9.4	0.06	0.010	0.214	116	117	115	-0.28	0.729	0.004	-0.060	0.059	-0.244	-0.018	0.004	0.259
decreaser	DE	8.0	7.9	8.0	0.01	0.794	0.002	103	102	103	-0.17	0.767	0.003	-0.605	-0.549	-0.632	-0.002	0.535	0.014
decreaser	HE	8.6	8.4	8.7	0.01	0.494	0.017	63	83	44	-2.11	0.000	0.411	-0.973	-0.823	-1.185	-0.027	0.000	0.535
decreaser	KG	8.6	8.3	8.9	0.03	0.020	0.178	94	92	97	0.32	0.495	0.017	-0.494	-0.482	-0.549	-0.006	0.240	0.049
decreaser	KY	8.7	8.3	9.1	0.06	0.008	0.226	80	92	67	-1.05	0.143	0.075	-0.756	-0.652	-0.787	-0.003	0.686	0.006
decreaser	VA	10.4	10.2	10.5	0.05	0.101	0.093	141	140	141	-0.05	0.937	0.000	0.250	0.208	0.305	-0.001	0.870	0.001
-	mean	8.8	8.5	9.1	0.04	0.238	0.122	99.5	104.4	94.6	-0.56	0.512	0.085	-0.440	-0.373	-0.515	-0.010	0.389	0.144

Table S5. Pearson's correlation coefficients between standardized shrub chronologies and monthly (from previous June to current August) Pan-Arctic SIE (raw data) for the study period (1979-2008). Significant values (*p*<0.05) are indicated in black, whereas bold values represent significant coefficients obtained with P-values adjusted for the false discovery rate. Blue cells - *increasers*; red cells - *decreasers*.

Chronology ID	pJun	pJul	pAug	pSep	pOct	pNov	pDec	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG
AF_SAR	-0.124	-0.361	-0.457	-0.439	-0.544	-0.209	-0.178	-0.074	-0.057	-0.020	-0.003	0.040	-0.110	-0.183	-0.260
BL_BGL	0.654	0.492	0.540	0.415	0.414	0.399	0.552	0.618	0.602	0.608	0.645	0.613	0.582	0.555	0.549
BS_BGL	-0.531	-0.654	-0.645	-0.715	-0.783	-0.657	-0.683	-0.635	-0.570	-0.509	-0.423	-0.315	-0.634	-0.602	-0.561
BT_BGL	-0.302	-0.356	-0.210	-0.255	-0.314	-0.367	-0.295	-0.334	-0.231	-0.285	-0.232	-0.100	-0.380	-0.350	-0.184
DE_SGL	0.512	0.489	0.508	0.566	0.506	0.410	0.599	0.555	0.569	0.456	0.466	0.435	0.595	0.528	0.546
DK_BNA	-0.461	-0.451	-0.310	-0.304	-0.501	-0.645	-0.446	-0.466	-0.371	-0.415	-0.342	-0.114	-0.366	-0.515	-0.444
EB_SPO	-0.171	-0.073	-0.045	-0.059	-0.082	-0.172	-0.295	-0.207	-0.204	-0.088	-0.265	-0.249	-0.406	-0.386	-0.281
GR_BGL	-0.343	-0.306	-0.431	-0.480	-0.397	-0.408	-0.439	-0.386	-0.377	-0.305	-0.159	-0.158	-0.313	-0.364	-0.403
HE_SAR	0.594	0.446	0.522	0.455	0.428	0.368	0.554	0.600	0.675	0.597	0.617	0.640	0.573	0.568	0.689
HE_SRI	0.709	0.620	0.688	0.682	0.552	0.630	0.746	0.801	0.803	0.743	0.739	0.743	0.795	0.692	0.664
KG_BNA	0.344	0.364	0.398	0.456	0.482	0.559	0.522	0.560	0.522	0.473	0.404	0.359	0.405	0.327	0.343
KG_SGL	0.250	0.348	0.418	0.467	0.428	0.346	0.387	0.486	0.523	0.462	0.442	0.445	0.361	0.170	0.292
KY_BNA	0.493	0.495	0.373	0.374	0.447	0.487	0.482	0.554	0.536	0.576	0.590	0.427	0.480	0.376	0.424
KY_SPU	0.511	0.540	0.453	0.460	0.398	0.507	0.385	0.473	0.449	0.491	0.544	0.384	0.320	0.303	0.309
LA_SAR	-0.044	-0.186	-0.173	-0.246	-0.444	-0.134	-0.113	-0.008	-0.037	0.039	0.116	0.213	-0.154	-0.223	-0.250
LB_SRI	-0.493	-0.374	-0.517	-0.470	-0.307	-0.279	-0.316	-0.448	-0.558	-0.548	-0.583	-0.609	-0.539	-0.475	-0.547
PL_SAR	-0.321	-0.309	-0.367	-0.338	-0.517	-0.565	-0.528	-0.319	-0.300	-0.192	-0.335	-0.320	-0.369	-0.397	-0.491
RE_SAR	-0.179	-0.138	-0.130	-0.062	-0.083	-0.126	-0.164	-0.031	-0.083	-0.116	-0.121	-0.072	0.019	-0.193	-0.325
TL_BNA	-0.105	-0.199	-0.239	-0.277	-0.188	-0.322	-0.144	-0.175	-0.156	-0.198	-0.210	-0.262	-0.261	-0.248	-0.215
UM_BGL	-0.483	-0.308	-0.386	-0.373	-0.380	-0.434	-0.478	-0.541	-0.490	-0.415	-0.397	-0.326	-0.634	-0.598	-0.493
VA_SRI	0.285	0.454	0.265	0.290	0.500	0.562	0.491	0.281	0.093	0.112	0.172	0.018	0.131	0.140	0.109
YR_SRI	-0.099	-0.045	-0.234	-0.181	-0.052	0.143	0.016	-0.010	-0.150	-0.121	-0.164	-0.266	-0.165	-0.116	-0.183
ZA_SAR	-0.089	-0.315	-0.373	-0.398	-0.463	-0.165	-0.128	-0.098	-0.065	-0.020	-0.031	0.028	-0.090	-0.075	-0.156

Table S6. Pearson's correlation coefficients between standardized shrub chronologies and monthly (from previous June to current August) Pan-Arctic SIE (raw data) for the maximum chronology timespan (1979-max. 2016, see Table S1). Significant values (*p*<0.05) are indicated in black, whereas bold values represent significant coefficients obtained with P-values adjusted for the false discovery rate. Blue cells - *increasers*; red cells - *decreasers*.

Chronology ID	pJun	pJul	pAug	pSep	pOct	pNov	pDec	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG
AF_SAR	-0.124	-0.361	-0.457	-0.439	-0.544	-0.209	-0.178	-0.074	-0.057	-0.020	-0.003	0.040	-0.110	-0.183	-0.260
BL_BGL	0.701	0.559	0.610	0.513	0.492	0.462	0.617	0.665	0.655	0.639	0.637	0.607	0.638	0.622	0.614
BS_BGL	-0.551	-0.667	-0.656	-0.711	-0.791	-0.667	-0.694	-0.648	-0.587	-0.525	-0.432	-0.316	-0.648	-0.619	-0.579
BT_BGL	-0.288	-0.344	-0.196	-0.229	-0.308	-0.361	-0.281	-0.327	-0.226	-0.281	-0.231	-0.101	-0.370	-0.338	-0.178
DE_SGL	0.512	0.489	0.508	0.566	0.506	0.410	0.599	0.555	0.569	0.456	0.466	0.435	0.595	0.528	0.546
DK_BNA	-0.554	-0.561	-0.485	-0.498	-0.620	-0.678	-0.557	-0.567	-0.510	-0.486	-0.358	-0.194	-0.549	-0.628	-0.569
EB_SPO	-0.179	-0.090	-0.065	-0.077	-0.101	-0.183	-0.295	-0.218	-0.214	-0.102	-0.269	-0.256	-0.385	-0.375	-0.283
GR_BGL	-0.171	-0.171	-0.275	-0.289	-0.247	-0.272	-0.240	-0.231	-0.231	-0.188	-0.096	-0.099	-0.158	-0.189	-0.241
HE_SAR	0.594	0.446	0.522	0.455	0.428	0.368	0.554	0.600	0.675	0.597	0.617	0.640	0.573	0.568	0.689
HE_SRI	0.709	0.620	0.688	0.682	0.552	0.630	0.746	0.801	0.803	0.743	0.739	0.743	0.795	0.692	0.664
KG_BNA	0.574	0.564	0.573	0.616	0.638	0.687	0.686	0.694	0.675	0.605	0.474	0.458	0.614	0.578	0.556
KG_SGL	0.376	0.416	0.470	0.513	0.467	0.434	0.488	0.550	0.587	0.543	0.490	0.482	0.454	0.332	0.370
KY_BNA	0.350	0.373	0.218	0.181	0.354	0.402	0.341	0.456	0.427	0.488	0.530	0.399	0.376	0.263	0.310
KY_SPU	0.511	0.540	0.453	0.460	0.398	0.507	0.385	0.473	0.449	0.491	0.544	0.384	0.320	0.303	0.309
LA_SAR	-0.044	-0.186	-0.173	-0.246	-0.444	-0.134	-0.113	-0.008	-0.037	0.039	0.116	0.213	-0.154	-0.223	-0.250
LB_SRI	-0.493	-0.374	-0.517	-0.470	-0.307	-0.279	-0.316	-0.448	-0.558	-0.548	-0.583	-0.609	-0.539	-0.475	-0.547
PL_SAR	-0.186	-0.122	-0.149	-0.144	-0.287	-0.374	-0.332	-0.209	-0.193	-0.139	-0.249	-0.228	-0.274	-0.226	-0.291
RE_SAR	-0.179	-0.138	-0.130	-0.062	-0.083	-0.126	-0.164	-0.031	-0.083	-0.116	-0.121	-0.072	0.019	-0.193	-0.325
TL_BNA	-0.320	-0.303	-0.353	-0.378	-0.379	-0.401	-0.304	-0.260	-0.228	-0.174	-0.138	-0.180	-0.306	-0.370	-0.329
UM_BGL	-0.413	-0.254	-0.307	-0.277	-0.309	-0.387	-0.401	-0.479	-0.426	-0.382	-0.384	-0.315	-0.518	-0.505	-0.422
VA_SRI	0.285	0.454	0.265	0.290	0.500	0.562	0.491	0.281	0.093	0.112	0.172	0.018	0.131	0.140	0.109
YR_SRI	-0.100	-0.048	-0.225	-0.171	-0.055	0.138	0.008	-0.015	-0.150	-0.123	-0.165	-0.266	-0.166	-0.118	-0.182
ZA_SAR	-0.121	-0.336	-0.360	-0.355	-0.506	-0.222	-0.168	-0.163	-0.135	-0.059	-0.033	-0.021	-0.211	-0.158	-0.208

Table S7. Pearson's correlation coefficients between standardized shrub chronologies and monthly (from previous June to current August) regional SIE (raw data) for common period (1979-2008). Significant values (*p*<0.05) are indicated in black, whereas bold values represent significant coefficients obtained with P-values adjusted for the false discovery rate. Blue cells - *increasers*; red cells - *decreasers*.

Chronology ID	pJun	pJul	pAug	pSep	pOct	pNov	pDec	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG
AF_SAR	0.000	-0.160	-0.166	-0.157	-0.086	-0.025	0.074	0.187	0.154	0.190	0.163	-0.014	-0.091	-0.073	-0.120
BL_BGL	0.222	0.221	0.251	0.255	0.445	0.311	0.108	0.270	0.276	0.046	0.219	0.397	0.238	0.422	0.476
BS_BGL	-0.522	-0.525	-0.492	-0.411	-0.495	-0.532	-0.471	-0.173	-0.277	-0.199	-0.030	-0.347	-0.701	-0.610	-0.551
BT_BGL	-0.538	-0.408	-0.369	-0.424	-0.453	-0.479	-0.546	-0.300	0.129	-0.090	-0.064	-0.466	-0.706	-0.520	-0.437
DE_SGL	0.021	-0.006	0.087	0.321	0.145	0.026	0.276	-0.335	0.096	0.260	0.002	-0.089	-0.134	-0.134	0.033
DK_BNA	-0.522	-0.350	-0.142	0.132	-0.122	-0.497	-0.647	-0.564	-0.484	-0.464	-0.490	-0.452	-0.529	-0.571	-0.405
EB_SPO	-0.121	-0.263	-0.256	-0.284	-0.404	-0.268	-0.264	-0.189	-0.203	-0.131	-0.031	-0.067	-0.032	-0.152	-0.265
GR_BGL	-0.269	-0.146	-0.259	-0.189	-0.284	-0.322	-0.304	-0.091	-0.167	-0.215	0.214	-0.097	-0.264	-0.317	-0.357
HE_SAR	0.015	0.004	-0.038	0.168	0.184	0.023	0.345	-0.024	0.143	0.336	0.089	-0.210	-0.105	0.062	0.156
HE_SRI	-0.029	-0.061	0.018	0.373	0.172	-0.038	0.239	-0.013	0.282	0.164	0.245	0.068	0.086	0.077	0.078
KG_BNA	0.603	0.537	0.275	0.178	0.390	0.439	0.498	0.415	0.503	0.505	0.481	0.485	0.493	0.463	0.192
KG_SGL	0.392	0.456	0.378	0.336	0.511	0.357	0.293	0.173	0.132	0.195	0.232	0.226	0.274	0.271	0.085
KY_BNA	-0.251	-0.184	0.040	0.156	0.184	0.164	0.129	-0.246	0.084	-0.117	-0.051	-0.063	-0.083	-0.092	0.112
KY_SPU	0.053	0.096	0.286	0.410	0.450	0.353	0.268	-0.373	0.143	-0.171	-0.064	-0.044	-0.054	-0.091	0.117
LA_SAR	0.241	0.118	-0.168	-0.441	-0.443	-0.363	-0.269	-0.130	-0.160	-0.075	0.170	0.171	0.146	0.213	0.032
LB_SRI	-0.122	-0.103	-0.021	0.168	0.070	-0.010	-0.091	-0.227	-0.338	0.285	-0.012	0.040	-0.158	-0.366	-0.193
PL_SAR	-0.076	-0.160	-0.237	-0.297	-0.313	-0.262	-0.218	0.121	0.004	-0.048	0.295	0.143	0.274	0.265	-0.069
RE_SAR	0.045	-0.136	-0.225	-0.200	-0.414	-0.004	-0.050	0.068	0.046	0.026	0.009	-0.093	-0.101	-0.205	-0.443
TL_BNA	-0.165	-0.151	-0.298	-0.376	-0.437	-0.170	-0.121	-0.027	-0.005	-0.114	0.078	-0.266	-0.339	-0.482	-0.480
UM_BGL	-0.066	0.020	-0.210	-0.196	-0.314	-0.347	-0.118	-0.275	-0.230	-0.111	-0.018	-0.313	-0.548	-0.576	-0.473
VA_SRI	-0.019	0.212	0.417	0.405	0.481	0.400	0.257	0.005	-0.191	-0.069	-0.124	-0.151	-0.049	0.020	0.207
YR_SRI	-0.082	-0.012	-0.026	0.071	-0.034	0.095	0.191	-0.118	-0.150	0.019	-0.122	0.071	-0.031	-0.170	-0.043
ZA_SAR	0.030	0.008	0.149	0.223	0.151	0.102	0.026	-0.042	-0.071	-0.060	0.144	0.250	0.024	-0.150	-0.186

Table S8. Output of linear regression models between standardized shrub chronologies and seasonal Pan-Arctic and regional SIE (all data z-score) for common period (1979-2008). List of predictors and data sources are presented in Table S9. Significant values (*p*<0.05) indicated in bold. Blue font - *increasers*; red font - *decreasers*. Grey font - non-significant values.

Chronology			JJA	SIE					pSO	N SIE					DJF	SIE					MAN	1 SIE		
		Pan-Arc	tic		region	al		Pan-Arc	tic		region	al		Pan-Arc	tic		region	al		Pan-Arc	tic		regiona	al
	R ²	β	<i>p</i> -value	R^2	β	<i>p</i> -value	R ²	β	<i>p</i> -value	R ²	β	<i>p</i> -value	R ²	β	<i>p</i> -value	R ²	β	<i>p</i> -value	R ²	β	p-value	R ²	β	<i>p</i> -value
AF_SAR	0.043	-0.078	0.272	0.011	-0.034	0.578	0.191	-0.165	0.018	0.012	-0.033	0.578	0.012	-0.036	0.578	0.022	0.043	0.439	0.000	0.002	0.972	0.014	0.032	0.537
BL_BGL	0.341	0.243	0.001	0.173	0.141	0.022	0.194	0.184	0.017	0.146	0.131	0.040	0.203	0.168	0.014	0.070	0.159	0.165	0.425	0.226	0.000	0.116	0.205	0.065
BS_BGL	0.382	-0.429	0.000	0.466	-0.386	0.000	0.599	-0.533	0.000	0.295	-0.306	0.002	0.373	-0.375	0.000	0.213	-0.457	0.012	0.194	-0.255	0.015	0.075 ·	-0.275	0.143
BT_BGL	0.091	-0.246	0.105	0.372	-0.406	0.000	0.107	-0.261	0.083	0.253	-0.329	0.005	0.073	-0.193	0.155	0.042	-0.234	0.289	0.048	-0.150	0.243	0.085 ·	-0.344	0.119
DE_SGL	0.329	0.181	0.001	0.009	-0.026	0.623	0.292	0.172	0.002	0.031	0.070	0.362	0.306	0.157	0.002	0.000	0.003	0.960	0.228	0.126	0.008	0.046	0.128	0.253
DK_BNA	0.223	-0.274	0.008	0.303	-0.272	0.002	0.247	-0.286	0.006	0.028	-0.078	0.390	0.205	-0.233	0.014	0.386	-0.275	0.000	0.095	-0.150	0.097	0.239	-0.206	0.006
EB_SPO	0.131	-0.184	0.049	0.029	-0.077	0.367	0.011	-0.054	0.583	0.112	-0.137	0.076	0.030	-0.079	0.365	0.039	-0.085	0.305	0.044	-0.089	0.266	0.007 -	-0.036	0.671
GR_BGL	0.148	-0.132	0.039	0.118	-0.094	0.068	0.218	-0.158	0.011	0.092	-0.084	0.109	0.242	-0.148	0.007	0.090	-0.146	0.114	0.049	-0.065	0.250	0.000 -	-0.007	0.945
HE_SAR	0.416	0.408	0.000	0.001	0.017	0.874	0.206	0.278	0.013	0.018	0.101	0.493	0.257	0.278	0.005	0.047	0.131	0.259	0.419	0.341	0.000	0.059	0.289	0.195
HE_SRI	0.537	0.306	0.000	0.007	0.032	0.653	0.454	0.255	0.000	0.028	0.079	0.387	0.542	0.248	0.000	0.057	0.090	0.210	0.604	0.270	0.000	0.038	0.153	0.301
KG_BNA	0.133	0.137	0.047	0.174	0.133	0.022	0.281	0.201	0.003	0.146	0.118	0.041	0.343	0.198	0.001	0.248	0.145	0.006	0.189	0.136	0.016	0.261	0.140	0.004
KG_SGL	0.074	0.103	0.145	0.052	0.073	0.225	0.206	0.168	0.014	0.195	0.133	0.017	0.220	0.154	0.010	0.057	0.068	0.211	0.223	0.149	0.008	0.051	0.062	0.228
KY_BNA	0.190	0.142	0.016	0.001	-0.007	0.892	0.212	0.143	0.012	0.033	0.056	0.342	0.234	0.133	0.008	0.003	-0.022	0.764	0.314	0.152	0.001	0.013 ·	-0.036	0.549
KY_SPU	0.104	0.157	0.082	0.000	-0.005	0.952	0.237	0.234	0.007	0.195	0.211	0.016	0.276	0.226	0.003	0.002	0.024	0.836	0.247	0.201	0.005	0.019 ·	-0.064	0.469
LA_SAR	0.052	-0.132	0.224	0.024	0.132	0.410	0.088	-0.173	0.118	0.222	-0.352	0.010	0.006	-0.039	0.699	0.055	-0.260	0.223	0.015	0.060	0.514	0.029	0.123	0.366
LB_SRI	0.294	-0.285	0.003	0.070	-0.145	0.174	0.165	-0.241	0.036	0.016	0.075	0.526	0.185	-0.186	0.025	0.048	-0.408	0.270	0.372	-0.239	0.001	0.001	0.018	0.863
PL_SAR	0.199	-0.217	0.013	0.033	0.129	0.336	0.243	-0.241	0.007	0.106	-0.205	0.084	0.128	-0.156	0.057	0.001	-0.022	0.903	0.088	-0.120	0.112	0.056	0.142	0.209
RE_SAR	0.043	-0.096	0.272	0.079	-0.123	0.132	0.009	-0.044	0.627	0.059	-0.113	0.203	0.003	-0.021	0.789	0.002	0.017	0.827	0.012	-0.042	0.572	0.002 ·	-0.025	0.835
TL_BNA	0.061	-0.094	0.187	0.210	-0.153	0.011	0.079	-0.106	0.139	0.133	-0.170	0.052	0.011	-0.035	0.589	0.004	-0.022	0.757	0.054	-0.073	0.217	0.047 -	-0.153	0.252
UM_BGL	0.346	-0.215	0.001	0.343	-0.175	0.001	0.179	-0.151	0.022	0.093	-0.089	0.108	0.231	-0.153	0.008	0.047	-0.111	0.259	0.160	-0.122	0.028	0.042 -	-0.109	0.277
VA_SRI	0.015	0.083	0.545	0.004	0.033	0.744	0.236	0.378	0.012	0.233	0.246	0.013	0.099	0.183	0.117	0.000	800.0	0.956	0.010	0.053	0.613	0.019 -	-0.075	0.498
YR_SRI	0.026	-0.064	0.394	0.008	-0.043	0.628	0.003	-0.021	0.785	0.002	0.021	0.825	0.001	0.012	0.860	0.000	-0.012	0.949	0.036	-0.063	0.314	0.001 -	-0.019	0.838
ZA_SAR	0.013	-0.033	0.541	0.014	-0.031	0.527	0.143	-0.109	0.043	0.030	0.041	0.369	0.015	-0.031	0.529	0.000	-0.004	0.927	0.000	-0.002	0.960	0.015	0.030	0.526

Table S9. List of sea-ice and climate-related predictors used in SEM and analyses and in LME models (fixed effects) together with data sources. Climate variables (temperature, precipitation, SPEI) were calculated from CRU TS 4.01 data. SPEI was calculated using spei package (v1.7) (13, 14) in R. All predictors were standardized before the analyses (z-score), except for SPEI which was already represented by an index. Response variable was represented by ring-width index (RWI), which was a standardized mean annual growth after diameter RCS detrending (i.e., each chronology per responder group for SEM analyses and each shrub for LME models).

Predictor type	Variable code	Definition	Data Source
Pan-Arctic sea-ice extent (SIE)	pSON_pA	previous September-October-November mean Pan-Arctic sea-ice extent	NOAA/NSIDC (Climate Data Record of Passive Microwave Sea IceConcentration, Version 2)
	DJF_pA	previous December-January-February mean Pan-Arctic sea-ice extent	NOAA/NSIDC (Climate Data Record of Passive Microwave Sea IceConcentration, Version 2)
	MAM_pA	March-April-May mean Pan-Arctic sea-ice extent	NOAA/NSIDC (Climate Data Record of Passive Microwave Sea IceConcentration, Version 2)
	JJA_pA	June-July-August mean Pan-Arctic sea-ice extent	NOAA/NSIDC (Climate Data Record of Passive Microwave Sea IceConcentration, Version 2)
Regional sea-ice extent (SIE)	pSON	previous September-October-November mean regional sea-ice extent	NOAA/NSIDC (Climate Data Record of Passive Microwave Sea IceConcentration, Version 3)
	DJF	previous December-January-February mean regional sea-ice extent	NOAA/NSIDC (Climate Data Record of Passive Microwave Sea IceConcentration, Version 3)
	MAM	March-April-May mean regional sea-ice extent	NOAA/NSIDC (Climate Data Record of Passive Microwave Sea IceConcentration, Version 3)
	JJA	June-July-August mean regional sea-ice extent	NOAA/NSIDC (Climate Data Record of Passive Microwave Sea IceConcentration, Version 3)
Timing of regional sea-ice retreat and advance	pFAD	previous year first advance day of sea-ice at 50% sea-ice concentration threshold	Stroeve et al. (2016)
	pLRD	previous year last retreat day of regional sea-ice at 50% sea-ice concentration threshold	Stroeve et al. (2016)
	LRD	last retreat day of regional sea-ice at 50% sea-ice concentration threshold	Stroeve et al. (2016)
Climate variables	TEMP_JJA	June-July-August mean temperature	CRU TS 4.01
	PRECIP_JJA	June-July-August precipitation sum	CRU TS 4.01
	SPEI_JJA	June-July-August mean standardized precipitation evaporation index	CRU TS 4.01, spei package

Table S10. Piecewise SEM results for *increasers*. Linear mixed effect (LME) models for RWI, summer (June-to-August, JJA) SPEI, temperature and precipitation were implemented into each SEM with a random intercept for a site included in each model. Models were run for period (1979-2008), except for previous year sea ice variables (i.e. pLRD, pFAD, DJF, pSON, DJF_pA, pSON_pA) for which we lack measurements for year 1979. For the source data and the abbreviations, see Table S9.

									increas	ərs									
Sea ice	e variable						Stand	ardized pa	arameter	estimates	6			R^2	endogen	ous variat	oles	_	
included i	n the model	-			R\	NI		;	SPEIJJA	\	PREC	IP JJA	TEMP JJA						
	Variable code	p-value	Fisher's C test		Sea ice variable	TEMP JJA	SPEI JJA	Sea ice variable	PRECI P JJA	TEMP JJA	Sea ice variable	TEMP JJA	Sea ice variable	RWI	SPEI JJA	PRECI P JJA	TEMP JJA	AIC	AICc
		0.084	4.957	Est.	-0.064	0.425	-0.035	-0.047	0.056	-0.230	-0.209	-0.208	-0.463	0.27	0.78	0.05	0.21	46.96	49.80
				SE	0.021	0.020	0.024	0.032	0.027	0.030	0.060	0.056	0.048						
	LRD			df	370	370	370	373	373	373	375	375	376						
				p-value	0.195	0.000	0.591	0.096	0.028	0.000	0.000	0.000	0.000						
		0.331	2.214	Est.	-0.130	0.427	-0.040	-0.020	0.066	-0.210	0.051	-0.077	-0.196	0.29	0.78	0.01	0.04	44.21	46.97
	nl RD			SE	0.019	0.019	0.025	0.029	0.027	0.028	0.055	0.053	0.053						
	PERD			df	359	359	359	361	361	361	362	362	363						
				p-value	0.004	0.000	0.556	0.424	0.008	0.000	0.335	0.146	0.000						
		0.194	3.28	Est.	0.145	0.415	-0.040	0.004	0.065	-0.208	0.055	-0.100	0.257	0.30	0.78	0.01	0.07	45.28	48.10
Se	nFAD			SE	0.020	0.019	0.025	0.031	0.027	0.028	0.058	0.054	0.054						
able	prite			df	359	359	359	361	361	361	362	362	363						
aria				p-value	0.002	0.000	0.558	0.879	0.010	0.000	0.306	0.060	0.000						
e <		0.058	5.707	Est.	-0.122	0.391	-0.035	-0.017	0.061	-0.216	-0.196	-0.214	-0.523	0.28	0.78	0.04	0.27	47.71	50.59
aic	JJA			SE	0.025	0.021	0.024	0.039	0.027	0.032	0.072	0.058	0.054						
sea				df	370	370	370	373	373	373	375	375	376						
lal		0 4 0 0	0.040	p-value	0.018	0.000	0.586	0.574	0.016	0.000	0.001	0.000	0.000	0.07	0.70	0.00		45.05	10 70
gior		0.139	3.948	Est.	-0.001	0.456	-0.027	0.001	0.064	-0.207	-0.144	-0.139	-0.190	0.27	0.78	0.03	0.04	45.95	48.73
regic	MAM			SE	0.025	0.018	0.024	0.039	0.027	0.027	0.073	0.051	0.072						
					0.079	370 0 000	3/0	3/3	0012	0,000	3/5	3/5	3/0						
		0 1 0 1	2 24 2	p-value	0.978	0.000	0.077	0.965	0.012	0.000	0.005	0.007	0.000	0.00	0.70	0.01	0.02	45 04	40.44
		0.191	3.313	ESI.	-0.094	0.430	-0.030	0.023	0.007	-0.202	-0.064	-0.101	-0.169	0.28	0.76	0.01	0.03	45.31	40.14
	DJF			JC df	250	250	250	0.039	261	0.020	0.073	0.000	0.070						
				n_value	0.030	0.000	0.661	0 371	0 000	0 000	0 107	0.054	0.001						
		0 235	29	Fet	-0 155	0.000	-0.031	0.071	0.000	-0 201	-0.015	-0.004	-0.282	0.30	0.78	0.01	0.08	11 90	47 70
		0.200	2.5	SE	0.022	0.010	0.025	0.020	0.027	0.020	0.015	0.054	0.059	0.50	0.70	0.01	0.00	44.50	41.10
	pSON			df	359	359	359	361	361	361	362	362	363						
				p-value	0.001	0.000	0.645	0.440	0.009	0.000	0.779	0.092	0.000						
		0.113	4.35	Est.	-0.123	0.391	-0.017	0.055	0.065	-0.177	-0.045	-0.136	-0.549	0.28	0.78	0.01	0.30	46.36	49.16
				SE	0.028	0.021	0.024	0.043	0.027	0.032	0.081	0.060	0.057						
	JJA_pA			df	370	370	370	373	373	373	375	375	376						
es				p-value	0.021	0.000	0.790	0.066	0.009	0.000	0.457	0.025	0.000						
abl		0.147	3.838	Est.	-0.068	0.436	-0.023	0.030	0.063	-0.197	0.016	-0.106	-0.320	0.27	0.78	0.01	0.10	45.84	48.61
'ari				SE	0.021	0.019	0.024	0.031	0.027	0.028	0.060	0.053	0.054						
e Se	WAW_PA			df	370	370	370	373	373	373	375	375	376						
aio				p-value	0.147	0.000	0.726	0.250	0.011	0.000	0.771	0.047	0.000						
se		0.195	3.272	Est.	-0.131	0.410	-0.029	0.016	0.066	-0.201	-0.062	-0.108	-0.344	0.29	0.78	0.01	0.12	45.27	48.09
Stic	D.IF nA			SE	0.022	0.020	0.025	0.034	0.027	0.029	0.064	0.055	0.057						
-Arc	ро: _рл			df	359	359	359	361	361	361	362	362	363						
an-				p-value	0.006	0.000	0.663	0.542	0.009	0.000	0.262	0.050	0.000						
۵.		0.16	3.662	Est.	-0.209	0.374	-0.016	0.048	0.068	-0.187	-0.054	-0.108	-0.399	0.31	0.78	0.01	0.16	45.66	48.51
	pSON pA			SE	0.025	0.020	0.024	0.039	0.027	0.030	0.074	0.057	0.062						
	, · · _ p/ (df	359	359	359	361	361	361	362	362	363						
				p-value	0.000	0.000	0.817	0.075	0.007	0.000	0.339	0.055	0.000						

Table S11. Piecewise SEM results for *decreasers*. Linear mixed effect (LME) models for RWI, summer (June-to-August, JJA) SPEI, temperature and precipitation were implemented into each SEM with a random intercept for a site included in each model. Models were run for period (1979-2008), except for previous year sea ice variables (i.e. pLRD, pFAD, DJF, pSON, DJF_pA, pSON_pA) for which we lack measurements for year 1979. For the source data and the abbreviations, see Table S9.

								d	ecreaser	S									
Sea io	e variable						Standa	ardized pa	rameter e	estimates				R ² e	endoger	nous varia	ables		
included	in the model		Fisher's		RV	NI			SPEI JJA	١	PREC	IP JJA	TEMP JJA						
	Variable	p-value	C test		Sea ice	TEMP	SPEI	Sea ice	PRECIP	TEMP	Sea ice	TEMP	Sea ice	R\//I	SPEI	PRECI	TEMP	AIC	AICc
	code		0 1001		variable	.1.1A	.1.1A	variable	LIA	JIA	variable	.1.1A	variable	1.001	JJA	P JJA	JJA		
	code				variable	007	007	variable	004	007	variable	00A	variable						
		0.495	1.405	Est.	0.130	0.127	0.235	0.075	0.241	-0.110	-0.045	-0.060	-0.528	0.10	0.76	0.00	0.28	43.41	47.30
	LRD			SE	0.026	0.024	0.053	0.019	0.015	0.018	0.077	0.072	0.056						
				df	255	255	255	258	258	258	259	259	260						
			. =	p-value	0.067	0.070	0.002	0.042	0.000	0.003	0.537	0.405	0.000						
		0.472	1.501	Est.	0.134	0.076	0.190	0.066	0.216	-0.191	-0.016	-0.066	-0.235	0.09	0.85	0.00	0.05	43.50	47.56
	pLRD			SE	0.023	0.022	0.059	0.013	0.012	0.012	0.070	0.066	0.064						
	•			df	246	246	246	249	249	249	250	250	251						
		0.500	4 004	p-value	0.034	0.234	0.018	0.013	0.000	0.000	0.807	0.302	0.000		0.05	0.04	0.04	40.00	47.00
		0.588	1.061	ESt.	-0.282	0.092	0.147	-0.096	0.208	-0.188	-0.077	-0.047	0.201	0.14	0.85	0.01	0.04	43.06	47.08
es	pFAD			SE	0.023	0.021	0.060	0.013	0.011	0.012	0.070	0.065	0.065						
abl				ar	246	240	240	249	249	249	250	250	251						
/ari		0.404	4 00	p-value	0.000	0.134	0.070	0.000	0.000	0.000	0.224	0.459	0.001	0.40	0.70	0.04	0.00	40.00	47 77
é		0.401	1.83	ESt.	0.143	0.125	0.223	0.125	0.247	-0.090	-0.088	-0.078	-0.473	0.10	0.76	0.01	0.22	43.83	47.77
a ic	JJA			SE df	0.027	255	0.053	0.019	0.015	0.017	0.080	0.069	0.062						
se				ui n voluo	200	200	200	200	200	200	209	209	200						
nal		0 200	2 247	p-value Ect	0.030	0.004	0.003	0.000	0.000	0.011	0.205	0.200	0.000	0.11	0.75	0.02	0.09	11 25	10 22
gio		0.309	2.347	SE	0.140	0.090	0.234	0.035	0.244	0.016	0.086	-0.079	0.080	0.11	0.75	0.02	0.00	44.55	40.33
ē	MAM			df	255	255	255	258	258	258	250	250	260						
				n_value	0 020	0 114	0 002	0 202	0 000	0 000	0.015	0 211	0.000						
		0 522	13	Fet	0.020	0.114	0.002	0.202	0.000	-0 203	0.045	-0.055	-0 165	0 10	0.84	0.01	0.03	43 30	47 34
		0.522	1.5	SF	0.027	0.070	0.060	0.020	0.012	0.012	0.040	0.065	0.077	0.10	0.04	0.01	0.00	40.00	-1.54
	DJF			df	246	246	246	249	249	2/0	250	250	251						
				p-value	0.006	0 264	0.033	0 451	0.000	0.000	0 478	0.382	0.008						
		0 777	0.504	Fst	0.297	0.085	0 151	0.088	0.204	-0.193	0 118	-0.043	-0.165	0 15	0.85	0.02	0.03	42 50	46 47
		0	0.001	SF	0.026	0.021	0.059	0.015	0.011	0.012	0.081	0.065	0.077	00	0.00	0.02	0.00	.2.00	
	pSON			df	246	246	246	249	249	249	250	250	251						
				p-value	0.000	0.160	0.061	0.001	0.000	0.000	0.061	0.492	0.008						
-		0.892	0.229	Est.	0.502	0.223	0.109	0.136	0.220	-0.099	0.164	0.025	-0.377	0.28	0.77	0.02	0.14	42.23	46.02
				SE	0.027	0.019	0.051	0.022	0.015	0.016	0.088	0.065	0.076						
	JJA_pA			df	255	255	255	258	258	258	259	259	260						
es				p-value	0.000	0.000	0.130	0.000	0.000	0.003	0.013	0.699	0.000						
abl		0.952	0.099	Est.	0.514	0.169	0.138	0.094	0.228	-0.126	0.122	-0.006	-0.251	0.32	0.76	0.02	0.06	42.10	45.88
ari				SE	0.021	0.018	0.049	0.017	0.015	0.015	0.070	0.063	0.066						
ر و	ΙνιΑινι_ρΑ			df	255	255	255	258	258	258	259	259	260						
aic				p-value	0.000	0.002	0.049	0.004	0.000	0.000	0.052	0.926	0.000						
ses		0.421	1.732	Est.	0.490	0.108	0.095	0.063	0.202	-0.196	0.211	-0.025	-0.175	0.29	0.85	0.05	0.03	43.73	47.81
iti				SE	0.022	0.019	0.057	0.014	0.012	0.012	0.074	0.064	0.071						
Arc	⊔J⊢_рА			df	246	246	246	249	249	249	250	250	251						
r-ut				p-value	0.000	0.053	0.224	0.018	0.000	0.000	0.001	0.681	0.005						
å		0.525	1.288	Est.	0.477	0.095	0.077	0.084	0.197	-0.194	0.217	-0.028	-0.159	0.28	0.85	0.05	0.03	43.29	47.32
				SE	0.026	0.019	0.058	0.016	0.012	0.012	0.083	0.063	0.080						
	h2014 ^b			df	246	246	246	249	249	249	250	250	251						
				p-value	0.000	0.094	0.327	0.001	0.000	0.000	0.001	0.649	0.010						

Table S12. Parameter estimates (β) for sea ice predictors with associated 95% confidence intervals from top ranked linear mixed-effect models for increasers (top) and decreasers (bottom) in the study period 1980-2008. Model parameter estimates were calculated using maximum likelihood method. Response variable is represented by all shrubs mean ring width index (RWI) after dRCS detrending and square root transformation. Random intercept of a shrub (n=363 increasers and n=251 decreasers) nested within a site (n=13 increasers and n=9 decreasers; i.e. six geographic locations for nine decreasers chronologies) was included to each model. SE - standard error; df - number of pairs tested; sd - standard deviation for random effects; R²m - marginal R²; R²c - conditional R²; AICc - Akaike's information criteria with small sample bias adjustment. Nonsignificant relationships are marked in grey font. For the source data and the abbreviations, see Table S9.

model	Intercept	β	lower Cl	upper CI	SE	df	t-value	sd: Site	sd: Shrut in Site	o sd: Residual	AICc	delta	weight	predictor p-value	Intercept p-value	R ² m	R ² c
JJA	0.977	-0.061	-0.069	-0.053	0.004	10870	-15.1	0.046	0.172	0.341	6505	0	1	0.000	0.000	0.017	0.229
pSON_pA	0.985	-0.071	-0.082	-0.061	0.005	10870	-13.5	0.047	0.171	0.343	6549	45	0	0.000	0.000	0.018	0.225
LRD	0.973	-0.043	-0.049	-0.036	0.003	10870	-12.5	0.046	0.173	0.343	6574	70	0	0.000	0.000	0.011	0.222
pSON	0.975	-0.045	-0.054	-0.037	0.004	10870	-10.6	0.046	0.172	0.344	6618	114	0	0.000	0.000	0.009	0.219
JJA_pA	0.981	-0.057	-0.068	-0.046	0.006	10870	-10.3	0.046	0.171	0.345	6622	117	0	0.000	0.000	0.011	0.217
pFAD	0.972	0.025	0.017	0.032	0.004	10870	6.6	0.046	0.173	0.345	6685	180	0	0.000	0.000	0.003	0.215
DJF_pA	0.974	-0.031	-0.041	-0.021	0.005	10870	-6.0	0.046	0.172	0.346	6692	188	0	0.000	0.000	0.004	0.213
pLRD	0.97	-0.017	-0.023	-0.010	0.003	10870	-4.9	0.046	0.173	0.346	6704	199	0	0.000	0.000	0.002	0.213
DJF	0.969	-0.016	-0.026	-0.007	0.005	10870	-3.3	0.046	0.173	0.347	6716	211	0	0.001	0.000	0.001	0.211
MAM	0.968	-0.010	-0.020	-0.001	0.005	10870	-2.1	0.046	0.173	0.348	6722	218	0	0.000	0.034	0.000	0.210
null model	0.967	n.a.	0.934	1.000	0.017	10871	57.1	0.046	0.173	0.348	6725	220	0	n.a.	0.000	0.000	0.210
MAM_pA	0.967	-0.002	-0.011	0.007	0.005	10870	-0.4	0.046	0.173	0.348	6727	222	0	0.681	0.000	0.000	0.210
								decreas	ers								
model	Intercept	β	lower Cl	upper Cl	SE	df	t-value	sd: Site	d: Shrub in Site	sd: Residual	AICc	delta	weight	predictor p-value	Intercept p-value	R ² m	R ² c
model	Intercept	β 0.076	lower Cl 0.065	upper Cl 0.087	SE 0.006	df 7558	t-value 13.3	sd: Site ^s	d: Shrub in Site 0.152	sd: Residual 0.308	AICc 2175	delta 0	weight 1	predictor p-value 0.000	Intercept p-value 0.000	R ² m 0.031	R ² c 0.225
model DJF_pA MAM_pA	Intercept 0.933 0.943	β 0.076 0.058	lower Cl 0.065 0.048	upper CI 0.087 0.069	SE 0.006 0.005	df 7558 7558	t-value 13.3 11.3	sd: Site ⁵ 0.024 0.027	d: Shrub in Site 0.152 0.151	sd: Residual 0.308 0.310	AICc 2175 2220	delta 0 45	weight 1 0	predictor p-value 0.000 0.000	Intercept p-value 0.000 0.000	R ² m 0.031 0.019	R ² c 0.225 0.211
model DJF_pA MAM_pA pSON_pA	Intercept 0.933 0.943 0.933	β 0.076 0.058 0.068	lower CI 0.065 0.048 0.056	upper Cl 0.087 0.069 0.079	SE 0.006 0.005 0.006	df 7558 7558 7558	t-value 13.3 11.3 11.2	sd: Site ⁵ 0.024 0.027 0.024	d: Shrub in Site 0.152 0.151 0.150	sd: Residual 0.308 0.310 0.311	AICc 2175 2220 2221	delta 0 45 46	weight 1 0 0	predictor p-value 0.000 0.000 0.000	Intercept p-value 0.000 0.000 0.000	R ² m 0.031 0.019 0.019	R ² c 0.225 0.211 0.209
model DJF_pA MAM_pA pSON_pA pSON	Intercept 0.933 0.943 0.933 0.943	β 0.076 0.058 0.068 0.027	lower Cl 0.065 0.048 0.056 0.018	upper CI 0.087 0.069 0.079 0.035	SE 0.006 0.005 0.006 0.004	df 7558 7558 7558 7558 7558	t-value 13.3 11.3 11.2 6.2	sd: Site ⁵ 0.024 0.027 0.024 0.033	d: Shrub in Site 0.152 0.151 0.150 0.143	sd: Residual 0.308 0.310 0.311 0.317	AICc 2175 2220 2221 2299	delta 0 45 46 124	weight 1 0 0 0	predictor p-value 0.000 0.000 0.000 0.000	Intercept p-value 0.000 0.000 0.000 0.000	R ² m 0.031 0.019 0.019 0.004	R ² c 0.225 0.211 0.209 0.181
model DJF_pA MAM_pA pSON_pA pSON JJA_pA	Intercept 0.933 0.943 0.933 0.943 0.943	β 0.076 0.058 0.068 0.027 0.040	lower Cl 0.065 0.048 0.056 0.018 0.028	upper Cl 0.087 0.069 0.079 0.035 0.052	SE 0.006 0.005 0.006 0.004 0.006	df 7558 7558 7558 7558 7558 7558	t-value 13.3 11.3 11.2 6.2 6.5	sd: Site ⁵ 0.024 0.027 0.024 0.033 0.028	6d: Shrub in Site 0.152 0.151 0.150 0.143 0.147	sd: Residual 0.308 0.310 0.311 0.317 0.314	AICc 2175 2220 2221 2299 2299	delta 0 45 46 124 124	weight 1 0 0 0 0	predictor p-value 0.000 0.000 0.000 0.000 0.000	Intercept p-value 0.000 0.000 0.000 0.000 0.000	R ² m 0.031 0.019 0.019 0.004 0.006	R ² c 0.225 0.211 0.209 0.181 0.191
model DJF_pA MAM_pA pSON_pA pSON JJA_pA MAM	Intercept 0.933 0.943 0.933 0.943 0.94 0.94	β 0.076 0.058 0.068 0.027 0.040 0.019	lower Cl 0.065 0.048 0.056 0.018 0.028 0.009	upper Cl 0.087 0.069 0.079 0.035 0.052 0.029	SE 0.006 0.005 0.006 0.004 0.006 0.005	df 7558 7558 7558 7558 7558 7558 7558	t-value 13.3 11.3 11.2 6.2 6.5 3.9	sd: Site ⁵ 0.024 0.027 0.024 0.033 0.028 0.031	ad: Shrub in Site 0.152 0.151 0.150 0.143 0.147 0.141	sd: Residual 0.308 0.310 0.311 0.317 0.314 0.319	AICc 2175 2220 2221 2299 2299 2321	delta 0 45 46 124 124 124 147	weight 1 0 0 0 0 0	predictor p-value 0.000 0.000 0.000 0.000 0.000 0.000	Intercept p-value 0.000 0.000 0.000 0.000 0.000 0.000	R ² m 0.031 0.019 0.019 0.004 0.006 0.002	R ² c 0.225 0.211 0.209 0.181 0.191 0.172
model DJF_pA MAM_pA pSON_pA pSON JJA_pA MAM pFAD	Intercept 0.933 0.943 0.933 0.943 0.94 0.946 0.945	β 0.076 0.058 0.068 0.027 0.040 0.019 -0.014	lower Cl 0.065 0.048 0.056 0.018 0.028 0.009 -0.021	upper Cl 0.087 0.069 0.079 0.035 0.052 0.029 -0.006	SE 0.006 0.005 0.006 0.004 0.006 0.005 0.004	df 7558 7558 7558 7558 7558 7558 7558 755	t-value 13.3 11.3 11.2 6.2 6.5 3.9 -3.5	sd: Site ⁵ 0.024 0.027 0.024 0.033 0.028 0.031 0.032	ad: Shrub in Site 0.152 0.151 0.150 0.143 0.147 0.141 0.142	sd: Residual 0.308 0.310 0.311 0.317 0.314 0.319 0.318	AICc 2175 2220 2221 2299 2299 2321 2324	delta 0 45 46 124 124 124 147 150	weight 1 0 0 0 0 0 0	predictor p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.001	Intercept p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000	R ² m 0.031 0.019 0.004 0.004 0.006 0.002 0.001	R ² c 0.225 0.211 0.209 0.181 0.191 0.172 0.174
model DJF_pA MAM_pA pSON_pA pSON JJA_pA MAM pFAD DJF	Intercept 0.933 0.943 0.933 0.943 0.943 0.944 0.946 0.945 0.948	β 0.076 0.058 0.068 0.027 0.040 0.019 -0.014 0.016	lower Cl 0.065 0.048 0.056 0.018 0.028 0.009 -0.021 0.007	upper Cl 0.087 0.069 0.079 0.035 0.052 0.029 -0.006 0.026	SE 0.006 0.005 0.006 0.004 0.006 0.005 0.004 0.005	df 7558 7558 7558 7558 7558 7558 7558 755	t-value 13.3 11.3 11.2 6.2 6.5 3.9 -3.5 3.3	sd: Site ⁵ 0.024 0.027 0.024 0.033 0.028 0.031 0.032 0.029	ad: Shrub in Site 0.152 0.151 0.150 0.143 0.147 0.141 0.142 0.142	sd: Residual 0.308 0.310 0.311 0.317 0.314 0.319 0.318 0.319	AICc 2175 2220 2221 2299 2299 2321 2324 2325	delta 0 45 46 124 124 147 150 151	weight 1 0 0 0 0 0 0 0 0	predictor p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001	Intercept p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	R ² m 0.031 0.019 0.004 0.006 0.002 0.001 0.001	R ² c 0.225 0.211 0.209 0.181 0.191 0.172 0.174 0.171
model DJF_pA MAM_pA pSON_pA pSON JJA_pA MAM pFAD DJF JJA	Intercept 0.933 0.943 0.933 0.943 0.943 0.944 0.946 0.945 0.948 0.946	β 0.076 0.058 0.068 0.027 0.040 0.019 -0.014 0.016 0.013	lower Cl 0.065 0.048 0.056 0.018 0.028 0.009 -0.021 0.007 0.005	upper Cl 0.087 0.069 0.079 0.035 0.052 0.029 -0.006 0.026 0.021	SE 0.006 0.005 0.006 0.004 0.006 0.005 0.004 0.005 0.004	df 7558 7558 7558 7558 7558 7558 7558 755	t-value 13.3 11.3 11.2 6.2 6.5 3.9 -3.5 3.3 3.2	sd: Site ⁵ 0.024 0.027 0.024 0.033 0.028 0.031 0.032 0.029 0.032	ad: Shrub in Site 0.152 0.151 0.150 0.143 0.147 0.141 0.142 0.142 0.142	sd: Residual 0.308 0.310 0.311 0.317 0.314 0.319 0.318 0.319 0.319 0.319	AICc 2175 2220 2221 2299 2321 2324 2325 2326	delta 0 45 46 124 124 147 150 151 151	weight 1 0 0 0 0 0 0 0 0 0 0 0 0 0	predictor p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001	Intercept p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	R ² m 0.031 0.019 0.004 0.006 0.002 0.001 0.001	R ² c 0.225 0.211 0.209 0.181 0.191 0.172 0.174 0.171 0.172
model DJF_pA MAM_pA pSON_pA pSON JJA_pA MAM pFAD DJF JJA LRD	Intercept 0.933 0.943 0.943 0.943 0.944 0.946 0.945 0.948 0.946 0.946 0.946	β 0.076 0.058 0.068 0.027 0.040 0.019 -0.014 0.016 0.013 0.008	lower Cl 0.065 0.048 0.056 0.018 0.028 0.009 -0.021 0.007 0.005 0.001	upper Cl 0.087 0.069 0.079 0.035 0.052 0.029 -0.006 0.026 0.021 0.015	SE 0.006 0.005 0.006 0.004 0.006 0.005 0.004 0.005 0.004 0.004	df 7558 7558 7558 7558 7558 7558 7558 755	t-value 13.3 11.3 11.2 6.2 6.5 3.9 -3.5 3.3 3.2 2.2	sd: Site ⁵ 0.024 0.027 0.024 0.033 0.028 0.031 0.032 0.029 0.032 0.033	ad: Shrub in Site 0.152 0.151 0.150 0.143 0.147 0.141 0.142 0.142 0.142 0.142 0.141	sd: Residual 0.308 0.310 0.311 0.317 0.314 0.319 0.318 0.319 0.319 0.319 0.319	AICc 2175 2220 2221 2299 2321 2324 2325 2326 2332	delta 0 45 46 124 124 147 150 151 151 157	weight 1 0 0 0 0 0 0 0 0 0 0 0 0 0	predictor p-value 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.029	Intercept p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.029	R ² m 0.031 0.019 0.004 0.006 0.002 0.001 0.001 0.001 0.000	R ² c 0.225 0.211 0.209 0.181 0.191 0.172 0.174 0.171 0.172 0.171
model DJF_pA MAM_pA pSON_pA pSON JJA_pA MAM pFAD DJF JJA LRD null model	Intercept 0.933 0.943 0.943 0.943 0.944 0.946 0.945 0.948 0.946 0.946 0.946 0.946 0.947	β 0.076 0.058 0.068 0.027 0.040 0.019 -0.014 0.016 0.013 0.008 n.a.	lower Cl 0.065 0.048 0.056 0.018 0.028 0.009 -0.021 0.007 0.005 0.001 0.916	upper Cl 0.087 0.069 0.079 0.035 0.052 0.029 -0.006 0.026 0.021 0.015 0.978	SE 0.006 0.005 0.006 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.004 0.004 0.016	df 7558 7558 7558 7558 7558 7558 7558 755	t-value 13.3 11.3 11.2 6.2 6.5 3.9 -3.5 3.3 3.2 2.2 59.8	sd: Site ⁵ 0.024 0.027 0.024 0.033 0.028 0.031 0.032 0.029 0.032 0.033 0.033	ad: Shrub in Site 0.152 0.151 0.150 0.143 0.147 0.141 0.142 0.142 0.142 0.142 0.141 0.140	sd: Residual 0.308 0.310 0.311 0.317 0.314 0.319 0.318 0.319 0.319 0.319 0.319 0.319 0.320	AICc 2175 2220 2221 2299 2321 2324 2325 2326 2332 2334	delta 0 45 46 124 124 147 150 151 151 157 160	weight 1 0 0 0 0 0 0 0 0 0 0 0 0 0	predictor p-value 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.029 0.000	Intercept p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.029 n.a.	R ² m 0.031 0.019 0.004 0.006 0.002 0.001 0.001 0.001 0.000 0.000	R ² c 0.225 0.211 0.209 0.181 0.191 0.172 0.174 0.171 0.172 0.171 0.172 0.171

increasers

Table S13. Comparison of best sea ice versus best overall linear mixed effect (LME) models fitted to each site separately using all shrubs (n=19,061 ring-width values in total), instead of chronologies, for common period (1980-2008) per site and species. A random intercept for year was included in each model. Response variable was represented by RWI after dRCS detrending and square root transformation. See Table S9 for full names of predictors used in LME models. SE - standard error; Δ AIC - difference between a null model and best model for each site; R²m - marginal R²; R²c - conditional R². All predictor variables were transformed to z-scores prior the analysis. Grey font indicates nonsignificant models.

Chronology ID	Responder	Species	# shrubs	Best sea ice MODEL	ΔAIC	β	SE	p-value	R ² m	R ² c	Best MODEL	ΔAIC	β	SE	p-value	R ² m	R ² c
AF_SAR	increaser	Salix arctica	29	pSON_pA	3	-0.071	0.031	0.030	0.03	0.14	SPEI_JJA	8	-0.151	0.043	0.002	0.05	0.14
BL_BGL	decreaser	Betula glandulosa	44	MAM_pA	15	0.120	0.025	0.000	0.09	0.21	MAM_pA	15	0.120	0.025	0.000	0.09	0.21
BS_BGL	increaser	Betula glandulosa	39	pSON_pA	20	-0.242	0.042	0.000	0.19	0.32	pSON_pA	20	-0.242	0.042	0.000	0.19	0.32
BT_BGL	increaser	Betula glandulosa	76	JJA	10	-0.159	0.042	0.001	0.11	0.32	JJA	10	-0.159	0.042	0.001	0.11	0.32
DE_SGL	decreaser	Salix glauca	15	pSON_pA	13	0.102	0.023	0.000	0.07	0.09	pSON_pA	13	0.102	0.023	0.000	0.07	0.09
DK_BNA	increaser	Betula nana	15	DJF	13	-0.135	0.031	0.000	0.12	0.28	DJF	13	-0.135	0.031	0.000	0.12	0.28
EB_SPO	increaser	Salix polaris	10	JJA_pA	2	-0.112	0.055	0.052	0.04	0.24	TEMP_JJA	11	0.147	0.019	0.000	0.11	0.24
GR_BGL	increaser	Betula glandulosa	17	DJF_pA	10	-0.093	0.023	0.000	0.08	0.16	DJF_pA	10	-0.093	0.023	0.000	0.08	0.16
HE_SAR	decreaser	Salix arctica	24	JJA_pA	18	0.229	0.044	0.000	0.09	0.09	JJA_pA	18	0.229	0.044	0.000	0.09	0.09
HE_SRI	decreaser	Salix richardsonii	17	DJF_pA	27	0.126	0.019	0.000	0.08	0.08	DJF_pA	27	0.126	0.019	0.000	0.08	0.08
KG_BNA	decreaser	Betula nana	42	DJF_pA	10	0.105	0.028	0.001	0.07	0.21	DJF_pA	10	0.105	0.028	0.001	0.07	0.21
KG_SGL	decreaser	Salix glauca	32	DJF_pA	7	0.087	0.027	0.003	0.05	0.14	DJF_pA	7	0.087	0.027	0.003	0.05	0.14
KY_BNA	decreaser	Betula nana	19	MAM_pA	7	0.075	0.024	0.004	0.04	0.11	MAM_pA	7	0.075	0.024	0.004	0.04	0.11
KY_SPU	decreaser	Salix pulchra	19	not sig.	0	n.a.	n.a.	n.a.	n.a.	n.a.	not sig.	0	n.a.	n.a.	n.a.	n.a.	n.a.
LA_SAR	increaser	Salix arctica	19	pSON	3	-0.155	0.070	0.035	0.05	0.33	SPEI_JJA	7	-0.199	0.062	0.003	0.10	0.33
LB_SRI	increaser	Salix lanata	29	MAM_pA	8	-0.109	0.031	0.002	0.09	0.22	TEMP_JJA	30	0.127	0.008	0.000	0.20	0.22
PL_SAR	increaser	Salix arctica	10	pSON_pA	3	-0.091	0.038	0.024	0.03	0.11	pSON_pA	3	-0.091	0.038	0.024	0.03	0.11
RE_SAR	increaser	Salix arctica	31	not sig.	0	n.a.	n.a.	n.a.	n.a.	n.a.	PRECIP_JJA	4	-0.068	0.014	0.000	0.02	0.10
TL_BNA	increaser	Betula nana	29	LRD	6	-0.083	0.028	0.006	0.04	0.12	TEMP_JJA	15	0.094	0.011	0.000	0.07	0.12
UM_BGL	increaser	Betula glandulosa	25	LRD	7	-0.063	0.020	0.003	0.03	0.07	TEMP_JJA	8	0.054	0.010	0.000	0.04	0.07
VA_SRI	decreaser	Salix lanata	39	pSON	5	0.126	0.045	0.010	0.11	0.44	TEMP_JJA	16	0.145	0.007	0.000	0.23	0.44
ZA_SAR	increaser	Salix arctica	34	LRD50	2	-0.039	0.020	0.063	0.01	0.05	TEMP_JJA	1	0.034	0.011	0.003	0.01	0.05

Table S14. Linear mixed-effect models for double detrended series. Parameter estimates (β) with their associated 95% confidence intervals for linear mixed-effect (LME) models for *increasers* (top) and *decreasers* (bottom) fitted to each responder group using all shrubs, instead of chronologies for common period (1980-2008), and double detrended series (both RWI for each shrub and sea ice-related predictors time-series). A random intercept for a site was included in each model. For the source data and the abbreviations, see Table S9. SE - standard error; AICc - Akaike's information criteria with small sample bias adjustment; R²m - marginal R²; R²c - conditional R². Not significant values are marked in grey italics. Note various number of df (i.e., pairs tested) within each model, as a results of AR detrending where some series were shortened. Therefore, model rank should be taken with caution.

								ncreasers	j -							
model	Intercept	β	lower Cl	upper CI	SE	df	t-value	sd: Site	sd: Residual	AICc	delta	weight	predictor p-value	Intercept p-value	R ² m	R ² c
pFAD	0.006	0.041	0.010	0.071	0.015	10215	2.6	0.000	0.980	26454	0	1	0.009	0.699	0.002	0.002
pSON	-0.003	-0.041	-0.072	-0.010	0.016	10354	-2.6	0.000	0.982	26822	369	0	0.010	0.864	0.002	0.002
pLRD	0.001	-0.019	-0.048	0.010	0.015	10423	-1.3	0.000	0.982	27008	555	0	0.199	0.958	0.000	0.000
DJF	0.004	-0.008	-0.037	0.021	0.015	10662	-0.5	0.000	0.979	27618	1164	0	0.587	0.797	0.000	0.000
pSON_pA	-0.005	-0.110	-0.139	-0.081	0.015	10692	-7.4	0.000	0.973	27625	1172	0	0.000	0.718	0.012	0.012
JJA_pA	-0.002	-0.074	-0.103	-0.046	0.015	10692	-5.1	0.000	0.976	27654	1200	0	0.000	0.885	0.006	0.006
LRD	0.01	-0.119	-0.147	-0.090	0.014	10708	-8.2	0.000	0.972	27670	1217	0	0.000	0.516	0.014	0.014
DJF_pA	0.002	0.012	-0.018	0.041	0.015	10692	0.8	0.000	0.979	27679	1226	0	0.431	0.899	0.000	0.000
JJA	-0.006	-0.099	-0.129	-0.070	0.015	10737	-6.7	0.000	0.975	27788	1335	0	0.000	0.708	0.009	0.009
MAM	0.004	0.013	-0.016	0.042	0.015	10730	0.9	0.000	0.981	27834	1381	0	0.384	0.811	0.000	0.000
MAM_pA	0.006	0.072	0.044	0.100	0.014	10821	5.0	0.000	0.979	28079	1625	0	0.000	0.679	0.005	0.005
null model	0.003	n.a.	-0.027	0.032	0.015	10822	0.2	0.000	0.982	28102	1648	0	n.a.	0.859	0.000	0.000
							(decreaser	S							
model	Intercept	β	lower Cl	upper CI	SE	df	t-value	decreasers sd: Site	sd: Residual	AICc	delta	weight	predictor p-value	Intercept p-value	R ² m	R ² c
model	Intercept	β 0.023	lower Cl -0.011	upper CI 0.058	SE 0.018	df 7105	t-value	decreasers sd: Site 0.000	sd: Residual 0.966	AICc 18390	delta 0	weight	predictor p-value 0.189	Intercept p-value 0.686	R²m 0.001	R²c
model pFAD pLRD	Intercept -0.007 0.001	β 0.023 -0.015	lower Cl -0.011 -0.048	upper CI 0.058 0.017	SE 0.018 0.017	df 7105 7242	t-value 1.3 -0.9	decreasers sd: Site 0.000 0.000	sd: Residual 0.966 0.972	AICc 18390 18861	delta 0 471	weight 1 0	predictor p-value 0.189 0.361	Intercept p-value 0.686 0.945	R²m 0.001 0.000	R²c 0.001 0.000
model pFAD pLRD pSON	Intercept -0.007 0.001 0.000	β 0.023 -0.015 0.047	lower Cl -0.011 -0.048 0.012	upper CI 0.058 0.017 0.081	SE 0.018 0.017 0.018	df 7105 7242 7309	t-value 1.3 -0.9 2.7	decreasers sd: Site 0.000 0.000 0.000	s sd: Residual 0.966 0.972 0.974	AICc 18390 18861 19063	0 471 672	weight 1 0 0	predictor p-value 0.189 0.361 0.008	Intercept p-value 0.686 0.945 0.985	R ² m 0.001 0.000 0.002	R ² c 0.001 0.000 0.002
model pFAD pLRD pSON LRD	Intercept -0.007 0.001 0.000 -0.001	β 0.023 -0.015 0.047 0.008	lower Cl -0.011 -0.048 0.012 -0.024	upper CI 0.058 0.017 0.081 0.041	SE 0.018 0.017 0.018 0.017	df 7105 7242 7309 7459	t-value 1.3 -0.9 2.7 0.5	decreasers sd: Site 0.000 0.000 0.000 0.000	sd: Residual 0.966 0.972 0.974 0.979	AICc 18390 18861 19063 19539	delta 0 471 672 1149	weight 1 0 0 0	predictor p-value 0.189 0.361 0.008 0.617	Intercept p-value 0.686 0.945 0.985 0.953	R ² m 0.001 0.000 0.002 0.000	R ² c 0.001 0.000 0.002 0.000
model pFAD pLRD pSON LRD JJA	-0.007 0.001 0.000 -0.001 0.005	β 0.023 -0.015 0.047 0.008 0.079	-0.011 -0.048 0.012 -0.024 0.046	upper CI 0.058 0.017 0.081 0.041 0.112	SE 0.018 0.017 0.018 0.017 0.017	df 7105 7242 7309 7459 7471	t-value 1.3 -0.9 2.7 0.5 4.7	decreaser: sd: Site 0.000 0.000 0.000 0.000 0.000 0.000	sd: <u>Residual</u> 0.966 0.972 0.974 0.979 0.977	AICc 18390 18861 19063 19539 19559	delta 0 471 672 1149 1169	weight 1 0 0 0 0	predictor p-value 0.189 0.361 0.008 0.617 0.000	Intercept p-value 0.686 0.945 0.985 0.953 0.786	R ² m 0.001 0.000 0.002 0.000 0.006	R ² c 0.001 0.000 0.002 0.000 0.006
model pFAD pLRD pSON LRD JJA DJF_pA	-0.007 0.001 0.000 -0.001 0.005 0.006	β 0.023 -0.015 0.047 0.008 0.079 0.095	-0.011 -0.048 0.012 -0.024 0.046 0.061	upper CI 0.058 0.017 0.081 0.041 0.112 0.129	SE 0.018 0.017 0.018 0.017 0.017 0.017	df 7105 7242 7309 7459 7471 7481	t-value 1.3 -0.9 2.7 0.5 4.7 5.5	decreaser: sd: Site 0.000 0.000 0.000 0.000 0.000 0.000 0.000	sd: <u>Residual</u> 0.966 0.972 0.974 0.979 0.977 0.974	AICc 18390 18861 19063 19539 19559 19601	delta 0 471 672 1149 1169 1211	weight 1 0 0 0 0 0 0	predictor p-value 0.189 0.361 0.008 0.617 0.000 0.000	Intercept p-value 0.686 0.945 0.985 0.953 0.786 0.706	R ² m 0.001 0.000 0.002 0.000 0.006 0.009	R ² c 0.001 0.000 0.002 0.000 0.006 0.009
model pFAD pLRD pSON LRD JJA DJF_PA pSON_pA	-0.007 0.001 0.000 -0.001 0.005 0.006 0.006	β 0.023 -0.015 0.047 0.008 0.079 0.095 0.089	lower Cl -0.011 -0.048 0.012 -0.024 0.046 0.061 0.055	upper CI 0.058 0.017 0.081 0.041 0.112 0.129 0.123	SE 0.018 0.017 0.018 0.017 0.017 0.017 0.017	df 7105 7242 7309 7459 7471 7481 7481	t-value 1.3 -0.9 2.7 0.5 4.7 5.5 5.1	decreaser: sd: Site 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	sd: <u>Residual</u> 0.966 0.972 0.974 0.979 0.977 0.974 0.974 0.974	AICc 18390 18861 19063 19539 19559 19601 19605	delta 0 471 672 1149 1169 1211 1215	weight 1 0 0 0 0 0 0 0 0	predictor p-value 0.189 0.361 0.008 0.617 0.000 0.000 0.000	Intercept p-value 0.686 0.945 0.985 0.953 0.786 0.706 0.717	R ² m 0.001 0.000 0.002 0.000 0.006 0.009 0.007	R ² c 0.001 0.000 0.002 0.000 0.006 0.009 0.007
model pFAD pLRD pSON LRD JJA DJF_pA pSON_pA JJA_pA	-0.007 0.001 0.000 -0.001 0.005 0.006 0.006 0.002	β 0.023 -0.015 0.047 0.008 0.079 0.095 0.089 0.006	-0.011 -0.048 0.012 -0.024 0.046 0.061 0.055 -0.027	upper CI 0.058 0.017 0.081 0.041 0.112 0.129 0.123 0.039	SE 0.018 0.017 0.018 0.017 0.017 0.017 0.017 0.017	df 7105 7242 7309 7459 7459 7471 7481 7481 7481 7481	t-value 1.3 -0.9 2.7 0.5 4.7 5.5 5.1 0.4	decreasers sd: Site 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	s sd: <u>Residual</u> 0.966 0.972 0.974 0.979 0.977 0.974 0.974 0.978	AICc 18390 18861 19063 19539 19559 19601 19605 19631	delta 0 471 672 1149 1169 1211 1215 1241	weight 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	predictor p-value 0.189 0.361 0.008 0.617 0.000 0.000 0.000 0.000 0.714	Intercept p-value 0.686 0.945 0.985 0.953 0.786 0.706 0.717 0.907	R ² m 0.001 0.000 0.002 0.000 0.006 0.009 0.007 0.000	R ² c 0.001 0.000 0.002 0.000 0.006 0.009 0.007 0.000
model pFAD pLRD pSON LRD JJA DJF_PA pSON_pA JJA_PA MAM	-0.007 0.001 0.000 -0.001 0.005 0.006 0.006 0.002 0.001	β 0.023 -0.015 0.047 0.008 0.079 0.095 0.089 0.006 0.038	lower Cl -0.011 -0.048 0.012 -0.024 0.046 0.061 0.055 -0.027 0.006	upper Cl 0.058 0.017 0.081 0.041 0.112 0.129 0.123 0.039 0.071	SE 0.018 0.017 0.018 0.017 0.017 0.017 0.017 0.017 0.017	df 7105 7242 7309 7459 7471 7481 7481 7481 7481	t-value 1.3 -0.9 2.7 0.5 4.7 5.5 5.1 0.4 2.3	decreaser: sd: Site 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	sd: <u>Residual</u> 0.966 0.972 0.974 0.979 0.977 0.974 0.974 0.978 0.981	AICc 18390 18861 19063 19539 19559 19601 19605 19631 19650	delta 0 471 672 1149 1169 1211 1215 1241 1260	weight 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	predictor p-value 0.189 0.361 0.008 0.617 0.000 0.000 0.000 0.714 0.022	Intercept p-value 0.686 0.945 0.985 0.953 0.786 0.706 0.717 0.907 0.955	R ² m 0.001 0.002 0.000 0.006 0.009 0.007 0.000 0.002	R ² c 0.001 0.000 0.002 0.000 0.006 0.009 0.007 0.000 0.002
model pFAD pLRD pSON LRD JJA DJF_PA pSON_pA JJA_pA MAM DJF	-0.007 0.001 0.000 -0.001 0.005 0.006 0.006 0.002 0.001 0.007	β 0.023 -0.015 0.047 0.008 0.079 0.095 0.089 0.006 0.038 0.022	lower Cl -0.011 -0.048 0.012 -0.024 0.046 0.061 0.055 -0.027 0.006 -0.012	upper CI 0.058 0.017 0.081 0.041 0.112 0.129 0.123 0.039 0.071 0.055	SE 0.018 0.017 0.018 0.017 0.017 0.017 0.017 0.017 0.017 0.017	df 7105 7242 7309 7459 7471 7481 7481 7481 7481 7504	t-value 1.3 -0.9 2.7 0.5 4.7 5.5 5.1 0.4 2.3 1.3	decreaser: sd: Site 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	sd: <u>Residual</u> 0.966 0.972 0.974 0.979 0.977 0.974 0.974 0.978 0.981 0.980	AICc 18390 18861 19063 19539 19559 19501 19601 19605 19631 19650 19714	delta 0 471 672 1149 1169 1211 1215 1241 1260 1323	weight 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	predictor p-value 0.189 0.361 0.008 0.617 0.000 0.000 0.000 0.714 0.022 0.204	Intercept p-value 0.686 0.945 0.985 0.953 0.786 0.706 0.717 0.907 0.955 0.704	R ² m 0.001 0.002 0.000 0.006 0.009 0.007 0.000 0.002 0.000	R ² c 0.001 0.002 0.000 0.006 0.009 0.007 0.000 0.002 0.000
model pFAD pLRD pSON LRD JJA DJF_PA pSON_PA JJA_PA MAM DJF MAM_PA	Intercept -0.007 0.001 0.000 -0.001 0.005 0.006 0.006 0.002 0.001 0.007 0.008	β 0.023 -0.015 0.047 0.008 0.079 0.095 0.089 0.006 0.038 0.022 0.109	-0.011 -0.048 0.012 -0.024 0.046 0.061 0.055 -0.027 0.006 -0.012 0.077	upper CI 0.058 0.017 0.081 0.041 0.112 0.129 0.123 0.039 0.071 0.055 0.142	SE 0.018 0.017 0.018 0.017 0.017 0.017 0.017 0.017 0.017 0.017	df 7105 7242 7309 7459 7471 7481 7481 7481 7481 7504 7534	t-value 1.3 -0.9 2.7 0.5 4.7 5.5 5.1 0.4 2.3 1.3 6.6	decreaser: sd: Site 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	sd: <u>Residual</u> 0.966 0.972 0.974 0.979 0.977 0.974 0.974 0.974 0.978 0.981 0.980 0.980	AICc 18390 18861 19063 19539 19559 19559 19601 19605 19631 19650 19714 19772	delta 0 471 672 1149 1169 1211 1215 1241 1260 1323 1381	weight 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	predictor p-value 0.189 0.361 0.008 0.617 0.000 0.000 0.000 0.714 0.022 0.204 0.000	Intercept p-value 0.686 0.945 0.985 0.953 0.786 0.706 0.717 0.907 0.955 0.704 0.620	R ² m 0.001 0.002 0.000 0.006 0.009 0.007 0.000 0.002 0.000 0.012	R ² c 0.001 0.002 0.000 0.006 0.009 0.007 0.000 0.002 0.000 0.002 0.000 0.012

SI References:

- 1. N. Boulanger-Lapointe, E. Lévesque, S. Boudreau, G. Henry, N. Schmidt, Population structure and dynamics of Arctic willow (Salix arctica) in the High Arctic. *J. Biogeogr.* **41**, 1967-1978, (2014).
- 2. P. Ropars, E. Lévesque, S. Boudreau, S. How do climate and topography influence the greening of the forest-tundra ecotone in northern Quebec? A dendrochronological analysis of Betula. *J. Ecol.* **103**, 679-690 (2015).
- 3. I. H. Myers-Smith et al., Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change 5, 887-891 (2015).
- 4. J. Hollesen, A. Buchwal, G. Rachlewicz, B. U. Hansen, M. O. Hansen, O. Stecher, B. Elberling, Winter warming as an important codriver for Betula nana growth in Western Greenland during the past century. *Glob. Change Biol.* **21**, 2410-2423 (2015).
- 5. A. Buchwal, G. Rachlewicz, P. Fonti, P. Cherubini, H. Gärtner, Temperature modulates intra-plant growth of Salix polaris from a high Arctic site (Svalbard). *Polar Biol.* **36**, 1305-1318 (2013).
- 6. C. M. Gamm, P. F. Sullivan, A. Buchwal, R. J. Dial, A. B. Young, D. A. Watts, S. M. P. Cahoon, J. M. Welker, E. Post, Declining growth of deciduous shrubs in the warming climate of continental western Greenland. *J. Ecol.* **106**, 640-654 (2018).
- 7. D. Blok, U. Sass-Klaassen, G. Schaepman-Strub, M.M.P.D. Heijmans, P. Sauren, F. Berendse, What are the main climate drivers for shrub growth in Northeastern Siberian tundra? *Biogeosciences* **8**, 1169-1179 (2011).
- 8. M. Macias-Fauria, B. C. Forbes, P. Zetterberg, P., T. Kumpula, Eurasian Arctic greening reveals teleconnections and the potential for structurally novel ecosystems. *Nat. Clim. Change* **2**, 613-618 (2012).
- 9. A. Buchwal, S. Weijers, D. Blok, B. Elberling, Temperature sensitivity of willow dwarf shrub growth from two distinct High Arctic sites. *Inter. J. Biometeorol.* **63**, 167-181 (2019).
- 10. B. C. Forbes, M. Macias-Fauria, P. Zetterberg, P. Russian Arctic warming and `greening' are closely tracked by tundra shrub willows. *Glob. Change Biol.* **16**, 1542-1554 (2010).
- 11. P. F. Sullivan, A. Z. Csank, Contrasting sampling designs among archived datasets: implications for synthesis efforts. *Tree Physiol.* **36**, 1057-1059 (2016).
- 12. J. C. Stroeve, A. D. Crawford, S. Stammerjohn, Using timing of ice retreat to predict timing of fall freeze-up in the Arctic. *Geophys. Res. Lett.* **43**, 6332-6340 (2016).
- 13. S. M. Vicente-Serrano, S. Beguería, J. I. López-Moreno, A Multi-scalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index SPEI. *J. Clim.* **23**, 1696 (2010).
- 14. S. Beguería, S. M. Vicente-Serrano, SPEI: Calculation of the standardised precipitation-evapotranspiration index. Version 1.7, R package. http://cran.r-project.org/web/packages/SPEI/index.html (2017).