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Supplemental Methods: 
Generation of full redox networks using RDKit 

To generate the reactions, we used the RDKit cheminformatics software to design SMILES             
(simplified molecular-input line-entry system) (1) reaction templates (reaction strings), which, when           
applied to a compound, will reduce it according to the functional groups detected. Reaction strings were                
created for the three redox categories of interest: reduction of carboxylic acids to aldehydes, reduction of                
aldehydes/ketones to alcohols, and reduction of alcohols to hydrocarbon. These templates are designed to              
be generic enough that they can be applied to any compound with the target functional group, but also                  
with enough specificity to only generate a reaction belonging to the correct redox category.  

As an illustrative example, we consider the reduction of pyruvate. Pyruvate contains two types of               
functional groups that can be reduced: a carboxylic acid and a ketone. The carboxylic acid can be reduced                  
to an aldehyde, or the ketone can be reduced to a hydroxyl. To accomplish this we applied the appropriate                   
SMILES reaction strings. The SMILES reaction string used for the ketone reduction of pyruvate to lactate                
is shown below. This reaction string can be visualized as a generic reduction of a ketone to a hydroxyl.                   
The ReactionFromSmarts function in RDkit is used to generate a reaction object from the reaction string.  

 

 

https://paperpile.com/c/sIFvDT/dRD8


 

The molecular transformation encoded by the SMILES reaction string is shown above. The substrate and               
compound of each reaction are represented as strings and concatenated into a reaction string as follows:                
[#6:1][CX3:2](=O)[#6:3]>>[#6:1][CX4H1:2]([#6:3])[OX2H1] 

 
This reaction object can be applied to any compound with a ketone functional group in order to                 

reduce it to a hydroxyl. For cases in which the compound contains multiple target functional groups (e.g.                 
dicarbonyls), every possible product will be generated. To generate the full network or redox reactions,               
these reaction strings were run iteratively, starting with the fully oxidized unbranched, carbon chain              
compounds of length 2 to 6 carbons. For example the seed compound for the redox chemical space of                  
6-carbon straight-chain molecules (i.e. the fully oxidized 6-carbon linear chain seed compound) is shown              
below:  

 
Once a fully oxidized seed compound had been reduced one step at every possible carbon atom in                 

the initial iteration, the function was repeatedly applied on the resulting products. This continues              
iteratively until the fully reduced n-carbon hydrocarbon chain is obtained. Any duplicate reactions and              
products generated from this approach were eliminated during each iteration. Thus, a network of all               
possible redox reactions originating from the fully oxidized seed compound can be generated.  

SMILES reaction strings 

 
Increase in size of redox chemical space with additional chemical transformations 
 
In this section, we calculate how the number of compounds to consider would expand by including the                 
following types of additional reactions: carboxylation and decarboxylation, keto-enol tautomerization,          
carbon-carbon double-bond formation, intramolecular redox reactions, and different stereoisomers. In all           
cases, in order to avoid over-counting we take into consideration molecular symmetry under 180-degree              
rotation about the central axis. That is, we only count unique (accounting for symmetry) carbon atom sites                 
for a given chemical reaction. Also if a molecule can undergo a given transformation in more than one                  
site (carbon atom), we count all possibilities as separate products.  
 

Reaction category Reaction strings 

Carboxylic acids to aldehydes [CX3:1](=O)[OX2H1]>>[CX3H1:1](=O) 

Aldehydes to alcohols [CX3H1:2](=O)[#6:1] >>[#6:1][CX4H2:2][OX2H1] 

Ketones to alcohols [#6:1][CX3:2](=O)[#6:3]>>[#6:1][CX4H1:2]([#6:3])[OX2H1] 

Alcohols to hydrocarbons (middle)  [CX4H2:2][OX2H1]>>[CX4H3:2] 

Alcohols to hydrocarbons (edge) [#6:1][#6H1:2]([#6:3])[OX2H1]>>[#6:1][#6H1:2][#6:3] 



 

(1) Carboxylations: We assume that any carbon atom in an aldehyde/ketone, alcohol, or hydrocarbon              
oxidation state can undergo carboxylation. We restrict ourselves to linear carbon chain products, and              
therefore only consider edge carbon atoms (i.e. atoms 1 and 4 in a 4-carbon compound) as possible                 
carboxylation sites. 
(2) Decarboxylations: We assume that any carbon atom in carboxylic acid oxidation state can be a site of                  
decarboxylation.  
(3) Keto-enol tautomerization: We assume that any ketone or aldehyde next to an hydrocarbon or alcohol                
functional group can undergo keto-enol tautomerization.  
(4) Carbon-carbon double-bond formation: In redox biochemistry, carbon double-bond compounds occur           
as intermediates between alcohol and hydrocarbon oxidation states (e.g. fumarate is an intermediate             
between malate and succinate). We assume that any alcohol group with a neighboring carbon atom in a                 
hydrocarbon or alcohol oxidation state can undergo dehydration to become a double bond. Note that an                
alcohol group next to a ketone/aldehyde or carboxylic acid cannot undergo dehydration into a              
carbon-carbon double bond.  
(5) Intramolecular redox reactions: These transformations do not increase the number of compounds in              
the molecular network. Rather they consist of 2-electron exchanges between neighboring carbon atoms in              
a molecule, and therefore just add connections between compounds in the same molecular oxidation level               
(i.e. columns in Fig. 1).  
(6) Stereoisomers: All inner carbon atoms (e.g. carbons 2 or 3 in a 4-carbon linear chain compound) in the                   
alcohol oxidation level with unique carbon side-chains are stereocenters. For each such stereocenter, the              
molecule can exist as two different stereoisomers. Therefore a molecule with N alcohol group              
stereocenters can exist as 2N unique stereoisomers.  
 
Table S1: Number of new compounds introduced by considering additional chemical                     
transformations. Each row corresponds to an n-carbon redox chemical space. The last two columns                           
show the total new number of compounds introduced as well as the fold-increase in the size of the                                   
compound set relative to the redox chemical spaces considered in this work. *Note that the numbers                               
under the intramolecular redox reactions column (light grey) correspond to new redox connections                         
introduced, not compounds.  
 

 
Computing network degree distributions 

The degree of a compound in the redox network is defined as the number of redox reactions -                  
oxidations and reductions - that connect it to molecules with higher or lower oxidation level. We used the                  
network analysis library NetworkX (2) in Python to compute the degree distribution of compounds in the                
full redox networks.  

 
keto 
-enol 

double 
-bond 

de- 
carboxylation 

 carboxylation intra- 
molecular* 

stereo- 
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total  
new 

fold- 
increase 

2C 2 2 4 12 2* 0 20 2.0 

3C 15 11 12 36 35* 12 86 2.9 

4C 54 42 36 108 133* 104 344 4.4 

5C 189 151 108 324 534* 458 1230 5.3 

https://paperpile.com/c/sIFvDT/PIvZ


 

 
Comparison against KEGG database 

In order to classify compounds in the full redox networks as biological or non-biological, we               
looked for matches in the KEGG database of metabolic compounds. We did this in several steps. In order                  
to match biological compounds against the n-carbon network, we filtered out metabolites in KEGG              
containing n-carbon atoms. Then, using the RDKit toolbox, we matched molecules in the networks              
against KEGG metabolites using their canonicalized smiles string representation (3). In order to             
additionally capture KEGG compounds that have alcohol functional groups substituted by amine or a              
phosphate functional groups, we visually inspected all remaining n-carbon molecules in KEGG. Finally,             
to capture compounds with carboxylic acids activated by Coenzyme A, we generated a list of all KEGG                 
compounds with n-carbon atoms plus a covalently attached Co-A molecule. Manual search of this list led                
to the final set of biological metabolites matching compounds in our full redox networks. 
 
Computing the null distribution for the expected number of n-gram (single, pair and triplet)              
functional group patterns 

Borrowing terminology from natural language processing, we call the set of all possible             
sequences of one, two, and three carbon functional groups the set of oxidation level n-grams. The goal is                  
to count the number of times that each n-gram appears in the set of biological (or non biological)                  
compounds (where N is the total number of biological compounds), and compare that against properly               
generated random sets of compounds (the null distribution).  
 
The analytical null distribution for single functional group patterns (1-grams) 

We first note that a given n-gram can appear more than once in a single molecule. For example,                  
the metabolite succinate has the functional group sequence {carboxylic acid, hydrocarbon, hydrocarbon,            
carboxylic acid}. Thus it contains two instances of the {carboxylic acid, hydrocarbon} 2-gram. In general,               
a 4-carbon linear-chain compound can have up to 4 instances of a 1-gram, up to 3 instances of a 2-gram,                    
and up to 2 instances of a 3-gram. 

Let be the number of molecules in the full redox network with k instances of 1-gram g. (k; )n g                 
For example, is the total number of compounds in the network with a single hydroxyl  (1; ydroxyl)n h              
functional group. Assume a set of N molecules are randomly sampled without replacement from the               
network. Let be the total number of instances of the 1-gram in this random set. These  (g)m          g       (g)m
instances can come from different sampling configurations of molecules, each with instances of the           k    
1-gram . We call be the number of molecules in the random sample with instances of the g    (k; )m g            k    
1-gram .g  

To give a concrete example, assume a random set of size molecules contains 16 instances           0N = 3     
of the n-gram g; thus . One of the very many sampling configuration that can lead to this value     (g) 6m = 1               
of is sampling 17 molecules with zero instances of , 10 molecules with 1 instance of , and 3 (g)m         g        g    
molecule with two instances of . Thusg   

(0; ) 7, m(1; ) 0, m(2; )m g = 1  g = 1  g = 3  
The total number of instances of the 1-gram  in the sample is given by:g   

(g) 0 (0; ) (1; ) (2; ) (3; ) 16m =  · m g + 1 · m g + 2 · m g + 3 · m g =    

https://paperpile.com/c/sIFvDT/l7Ye


 

Note that the following constraint is satisfied:  
(0; ) (1; ) (2; ) (3; ) 0 m g + m g + m g + m g = 3  

In order to compute the probability of having instances of the 1-gram , we need to        (g)m      g     
account for all such possible sampling configurations that add up to . The number of ways of           (g)m       
sampling molecules with instances of is given by . In general, given a sample size (k; )m g    k    g     ( )n(k;g)

m(k;g)        

and value of for n-gram , the number of all possible sampling configurations that lead to thatN     (g)m    g             
value of m(g) is given by:  

(m(g), N ) ( )P  =  ∑
 

constraints
∏
 

k
 n(k;g)

m(k;g)   

Where the summation is over terms that satisfy the following two constraints:  
(g) (0; ) 1 (1; ) (2; ) (3; )m = 0 · m g +  · m g + 2 · m g + 3 · m g  

 (0; ) (1; ) (2; ) (3; ) N = m g + m g + m g + m g  
Normalizing each value of over the sum of all values leads to the probability of observing    (m(g), N )P               

instances of the 1-gram g in a sample of size , . We numerically obtain the value of(g)m            N  (m(g), )p N        
for and g = {carboxylic acid, aldehyde/ketone, hydroxyl, and hydrocarbon}.(k; )n g    0, 1, 2, 3, 4k =                

We then numerically compute the value of by obtaining all sampling configurations that       (m(g), N )P        
satisfy the constraints. We take to be equal to the number biological compounds in the full redox     N             
network.  
 
The empirical null distributions for functional group pair and triplet patterns (2- and 3-grams) 

Obtaining the proper null distribution for oxidation level pair and triplet patterns (2-grams and              
3-grams) requires accounting for (or normalizing) for the observed single functional group statistics             
(1-grams). For example, the 2-gram pattern [carbonyl-carbonyl] seems to appear infrequently in the             
biological set of metabolites. Is this due to selection against this specific 2-gram pattern, or is it simply                  
due to the general depletion of aldehydes/ketones (carbonyls) (the 1-gram pattern) in the biological              
compounds? In order to address this, one needs to generate random sets of compounds that control for             N     
or conserve the 1-gram statistics of the biological set of compounds. We numerically generate random               
molecules that conserve 1-gram statistics. In the case of 4-carbon linear chain molecules, we randomly               
choose the identity of the functional group at positions by sampling from a discrete         1, , , )n = ( 2 3 4      
distribution  

g / (4N )pg =  N  
Where is the number of instances of 1-gram in the biological set, and is the number of gN        g      N      
molecules in the biological set. Importantly, in order to avoid sampling carboxylic acids in the inner                
carbon atoms of a molecule (positions ), we obtain separate functional group distributions for       and 3n = 2         
the inner and the outer carbon atom positions.  
 
Cheminformatic prediction of solubility (logS) 

We used the cheminformatics software ChemAxon (Marvin 17.7.0, 2017, ChemAxon) to predict            
the pH-dependent solubility, logS(pH), of biological and non-biological compounds in the full redox             
networks. Specifically, we use the calculator plugin cxcalc logs. The cxcalc solubility calculator is based               



 

on a parametrized fragment-based model (the atom-contribution approach) fit to sets of experimental logS              
data (4, 5).  
 
Predicting standard redox potentials with calibrated quantum chemistry approach 

Our method relies on computing the electronic structure and energy of the fully protonated              
species of each metabolite. We obtain the smiles string for the fully protonated species and generate initial                 
geometric conformation (with up to 10 initial conformers per metabolite) using ChemAxon (Marvin             
17.7.0, 2017, ChemAxon). 

All quantum chemistry calculations were performed using the Orca quantum chemistry software            
(6) version 3.0.3. We first perform a geometry optimization using density functional theory with the               
B3LYP functional (7), with Orca’s DefBas-2 basis set, COSMO implicit solvation (8), and D3 dispersion               
correction (9). We then perform an additional electronic single point energy (SPE) using the              
double-hybrid functional B2PLYP (10, 11) (with the DefBas-5 Orca basis set, COSMO implicit solvation              
(8), and D3 dispersion correction (9)). We note that the model chemistry selected - the combination of                 
DFT functional, basis set, implicit solvent model, and dispersion correction for both the geometry              
optimization and the single point energy - was done based on a combinatorial exploration of different                
options.  

We Boltzmann average the electronic energies of compounds, and obtain the difference in             
electronic energies of products and substrates for all redox reactions in the full redox networks. Every                
redox reaction (in the direction of reduction) was balanced by a hydrogen molecule H2 in the substrate                 
side of the equation. Reductions of carboxylic acids to aldehydes and reductions of alcohols to               
hydrocarbons were balanced with a water molecule H2O in the product side of the equation.  

The difference in product and substrate electronic energies is an estimate of the chemical redox               
potential for the fully protonated species, Eo(fully protonated species). In order to convert this chemical               
potential to the biochemical potential at pH = 7, Eo’(pH=7), we use pKa estimates from Chemaxon                
(Marvin 17.7.0, 2017, ChemAxon) and the Alberty Legendre transform.  

Our approach relies on several approximations, such as ignoring vibrational enthalpy and entropy             
contributions to the formation Gibbs energy of compounds. In order to correct for systematic in the                
quantum chemistry methodology and the empirical pKa estimates used, we calibrate predictions against             
available experimental data using linear regression.  

 
Predicting standard redox potentials with the group contribution method 

The group contribution method relies on a fragment-based decomposition of compounds into            
group, each of which is assigned a group energy based on available experimental data (12–15). Reaction                
energy estimates are obtained by taking the difference of the group energy vectors of products and                
substrates. We used the group contribution method as implemented by Noor et al. (15) to estimate the                 
redox potentials of the set of linear-chain carbon redox reactions with experimental values. 

  
Determining statistical significance 

For all tests of statistical significance (i.e. differences in solubilities, n-gram counts, octanol-water             
partition coefficients, Gibbs energies of biological vs. non-biological compounds) we performed Welch’s            
unequal variance t-test, which is an adaptation of Student’s t-test that does not assume equal variance.  
 

https://paperpile.com/c/sIFvDT/8fVO+SCjs
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Figure S1: Enrichment and depletion of functional group pair and triplet patterns in 4-carbon linear-chain               
redox chemical space. A) The number of times each possible pattern of nearest neighbor functional group pairs                 
appears in the set of biological metabolites are shown as pairs of colored circles. Gray squares correspond to the                   
empirically-derived null distributions for randomly sampled sets of molecules from the network. The null              
distributions account for the single functional group (1-mer) statistics (SI Appendix, Supplemental Methods). The              
pattern hydrocarbon-alcohol is depleted in the biological compounds, but with weak statistical significance (p =               
0.05). B) The number of times each possible pattern of functional group triplets appears in the set of biological                   
metabolites. No patterns are significantly enriched or depleted in the set of biological metabolites.  



 

 
Figure S2: Octanol water partition coefficients of biological vs. non-biological compounds in 4-carbon             
linear-chain redox chemical space. Comparison of predicted octanol-water partition coefficient log(P) at pH=7 for              
biological and non-biological compounds in the 4-carbon linear-chain redox network. This is also known as the                
distribution coefficient (logD). biological compounds have significantly lower logP(pH=7) than the non-biological            
set (p < 0.01). 
 
 



 

 

Figure S3: Accuracy of group contribution method and calibrated quantum chemistry redox potential             
predictions. Experimental data was obtained from the NIST database for Thermodynamics of Enzyme-Catalyzed             
Reactions (TECRDB) A) Group contribution method prediction accuracies for reduction potentials of carboxylic             
acids, aldehydes/ketones, and alcohol functional groups in linear chain compounds. A) Calibrated quantum             
chemistry prediction accuracies for reduction potentials of carboxylic acids, aldehydes/ketones, and alcohol            
functional groups in linear chain compounds. Quantum chemistry calculations were performed using density             
functional theory with a double hybrid functional (B2PLYP), and calibrated against experimental data using linear               
regression.  



 

 
 
Figure S4: Thermodynamic landscape of 4-carbon linear chain redox network at pH=7 and cofactor potential               
E(cofactor) = -315 mV. Gibbs energies are normalized relative to the metabolite with the lowest energy (butane).                 
Thus the cumulative Gibbs energies of a metabolite is obtained by summing up the Gibbs reaction energies of all                   
reactions leading to it from the reference metabolite. Compounds within a column (i.e. with the same molecular                 
oxidation state) are sorted according to their energies. The three compounds - butane, butanoic acid, and succinate -                  
which are local minima in the thermodynamic landscape are shown. These local minima have lower energy than any                  
of their neighboring molecules which are accessible by either a reduction or an oxidation.   
 



 

 
Figure S5: Thermodynamic landscape of the 4-carbon network at a fixed value of pH and a range of values of                    
electron donor potential (-550 mV to 0 mV). Relative Gibbs energies of compounds is color-coded with blue (low                  
energies) to red (high energies). Higher values of the electron donor potential energetically drive the redox chemical                 
space towards more oxidized compounds, while lower values energetically drive the redox chemical space towards               
more reduced compounds.  
 



 

 
 
Figure S6: Thermodynamic landscape of the 4-carbon network at a fixed value of electron donor potential                
and a range of values of pH (4-9). Relative Gibbs energies of compounds is color-coded with blue (low energies)                   
to red (high energies). Acidic pH drives the landscape towards more reduced compounds, while basic pH drives the                  
landscape to more oxidized compounds.  



 

 
Figure S7: 2-carbon redox chemical space. A) The subset of molecules in 2-carbon linear-chain redox chemical                
space that match biological metabolites in the KEGG database. Carbon atoms are represented as colored circles,                
with each color corresponding to an oxidation state: yellow = carboxylic acid; orange = aldehyde/ketone; blue =                 
hydroxycarbon; gray = hydrocarbon. Only the fully reduced hydrocarbon ethane does not match a biological               
metabolite. B) Pourbaix phase diagram for the 2-carbon linear chain redox chemical space. Molecules that are local                 
minima in the energy landscape at each region of pH vs. E(electron donor/acceptor) phase space are shown. At low                   
pH and E(electron donor/acceptor) values, ethane is both the global and the only local minimum energy compound,                 
while at high pH and E(electron donor/acceptor) values, the fully oxidized oxalate is both the global and the only                   
local minimum energy compound. The dashed circle highlights the region of phase space where the dicarboxylic                
acid oxalate and the 2-carbon fatty-acid acetate (along with ethane) are the local minima.  



 

Figure S8: 3-carbon redox chemical space. A) The subset of molecules in 3-carbon linear-chain redox chemical                
space that match biological metabolites in the KEGG database. Carbon atoms are represented as colored circles,                
with each color corresponding to an oxidation state: yellow = carboxylic acid; orange = aldehyde/ketone; blue =                 
hydroxycarbon; gray = hydrocarbon. B) Enrichment and depletion of functional groups in the set of biological                
compounds. The vertical position of each colored circle corresponds to the number of times each functional group                 
appears in the set of biological compounds. The light gray squares show the corresponding expected null                
distributions for random sets of molecules sampled from redox chemical space. C) Pourbaix phase diagram for the                 
3-carbon linear chain redox chemical space. Molecules that are local minima in the energy landscape at each region                  
of pH vs. E(electron donor/acceptor) phase space are shown. At low pH and E(electron donor/acceptor) values,                
propane is both the global and the only local minimum energy compound, while at high pH and E(electron                  
donor/acceptor) values, the fully oxidized 3-carbon compound (oxomalonate) is both the global and the only local                
minimum energy compound. The dashed circle highlights the region of phase space where the dicarboxylic acid                
malonate and the 3-carbon fatty-acid propionate (along with propane) are the only local minima.  



 

 
Figure S9: Solubility and octanol-water partition coefficients of biological and non-biological compounds in             
3-carbon redox chemical space. Comparison of predicted aqueous solubility log(S) at pH=7 for biological and               
non-biological compounds in the 3-carbon linear-chain redox chemical space. Although the biological compounds in              
the 3-carbon redox chemical space tend to have higher solubilities and lower octanol-water partition coefficients at                
pH=7, the differences are not statistically significant (Welch’s t-test).  
 
 
 
 
 
 
 
 
 
 
 



 

 
Figure S10: Relative energies of biological and non-biological compounds in 3-carbon redox chemical space.              
Relative Gibbs energies of biological and non-biological compounds in the 3-carbon redox chemical space for a                
range of pH and E(electron donor/acceptor) values. At each value of pH and E(electron donor/acceptor), Gibbs                
energies are normalized relative to the compound with the lowest energy. Although biological metabolites tend to                
have, on average, lower energies than the non-biological compounds, the differences are not statistically significant               
(Welch’s t-test, p>0.05). The low energy of the fully reduced propane across conditions tends to bring down the                  
average relative energy of the non-biological compounds.  
 
 
 
 
 



 

 
Figure S11: 5-carbon linear-chain redox chemical space. A) The subset of molecules in 5-carbon linear-chain               
redox chemical space that match biological metabolites in the KEGG database. Carbon atoms are represented as                
colored circles, with each color corresponding to an oxidation state: yellow = carboxylic acid; orange =                
aldehydes/ketones; blue = hydroxycarbon; gray = hydrocarbon. B) Enrichment and depletion of functional groups in               
the set of biological compounds. The vertical position of each colored circle corresponds to the number of times                  
each functional group appears in the set of biological compounds. The light gray squares show the corresponding                 
expected null distributions for random sets of molecules sampled from redox chemical space.  
 
 
 



 

 
Figure S12: Pourbaix phase diagram for 5-carbon linear chain redox chemical space. Molecules that are local                
minima in the energy landscape at each region of pH vs. E(electron donor/acceptor) phase space are shown. At low                   
pH and E(electron donor/acceptor) values, pentane is both the global and the only local minimum energy compound,                 
while at high pH and E(electron donor/acceptor) values, the fully oxidized 5-carbon compound             
(2,3,4-trioxoglutarate) is both the global and the only local minimum energy compound. The dashed circle               
highlights the region of phase space where the dicarboxylic acid glutarate and the 5-carbon fatty-acid valerate (along                 
with pentane) are the only local minima.  
 
 
 
 



 

 
 
Figure S13: Solubility and octanol-water partition coefficients of biological and non-biological compounds in             
5-carbon linear-chain redox chemical space. Comparison of predicted aqueous solubility log(S) and predicted             
octanol-water partition coefficient log(P) at pH=7 for biological and non-biological compounds in the 5-carbon              
linear-chain redox chemical space. biological compounds have statistically significantly higher solubilities (Welch’s            
t-test) than the non-biological set (p < 0.05). 
 



 

 
Figure S14: Relative energies of biological and non-biological compounds in 5-carbon linear-chain redox             
chemical space. Relative Gibbs energies of biological and non-biological compounds in 5-carbon redox chemical              
space for a range of pH and E(electron donor/acceptor) values. At each value of pH and E(electron donor/acceptor),                  
Gibbs energies are normalized relative to the compound with the lowest energy. An asterisk indicates a statistically                 
significant difference in the average values (Welch’s t-test) (p<0.05). 
 
 


