
Supplementary Methods 

ScRNA-seq data collection and processing 

We systematically collected cancer-related scRNA-seq datasets with more than 100 cells, 

including mRNA and lncRNA expression profiles, from CancerSEA 

(http://biocc.hrbmu.edu.cn/CancerSEA/) (1), which were used for single-cell 

lncRNA-associated ceRNA network construction. A total of 20 single-cell datasets across 12 

cancer types were obtained from CancerSEA. We also collected cancer-related ‘scRNA-seq’ 

datasets from GEO with the following keywords: (‘single cell’ OR ‘single-cell’ OR ‘single cells’ 

OR ‘single-cells’) AND (‘transcriptomics’ OR ‘transcriptome’ OR ‘RNA-seq’ OR 

‘RNA-sequencing’ OR ‘RNA sequencing’ OR ‘scRNA-seq’ OR ‘scRNA seq’) AND (‘tumour’ OR 

‘cancer’ OR ‘carcinoma’ OR ‘neoplasm’ OR ‘neoplastic’). We selected datasets wherein the 

number of cancer cells were over a 100, after quality control, and the expression profiles of the 

cells could be annotated and divided into mRNA and lncRNA expression profiles using 

GENCODE (release 34, GRCh38). If the original papers included malignant and 

non-malignant cells, we only retained the malignant cells. Considering the high technical noise 

of single cell expression profiles, we controlled for the quality of the single cells included in the 

database. We excluded cells that expressed fewer than 1,000 genes. Genes with a detectable 

expression in at least 1% of cells were retained. Finally, a total of 94,605 cancer cells derived 

from 40 single-cell datasets across 25 cancer types were used for the construction of 

single-cell ceRNA networks. For each dataset, we showed the cluster map of cell populations, 

constructed cellular-specific lncRNA-associated ceRNA networks for all cells in the dataset, 

showed the sub-cellular localisations of these ceRNAs, and characterised the functional state 

of each cell.  

http://biocc.hrbmu.edu.cn/CancerSEA/


Functional annotation data collection 

To distinguish the functional states of different cancer cells, we downloaded the characteristic 

gene sets corresponding to the 14 functional states from CancerSEA, including stemness, 

invasion, metastasis, proliferation, EMT, angiogenesis, apoptosis, cell cycle, differentiation, 

DNA damage, DNA repair, hypoxia, inflammation, and quiescence (1). Based on these 

signatures, the functional state of each cancer cell in the datasets were evaluated using GSVA 

package in R (2). The sub-cellular and extracellular vesicle locations of lncRNAs, miRNAs, 

and mRNAs were collected from related databases (3-7) and published literature. For pathway 

annotation, a total of 1,329 biological pathway gene sets from Kyoto Encyclopedia of Genes 

and Genomes, BioCarta, Reactome, and other biological pathway databases were collected 

from MSigDB (8). For annotation of biological function, a total of 5,917 gene sets representing 

different functional terms were collected from Gene Ontology (9). Ten classic cancer hallmark 

processes, including Self-Sufficiency in Growth Signals, Insensitivity to Antigrowth Signals, 

Evading Apoptosis, Limitless Replicative Potential, Sustained Angiogenesis, Tissue Invasion 

and Metastasis, Genome Instability and Mutation, Tumour Promoting Inflammation, 

Reprogramming Energy Metabolism, and Evading Immune Detection, were derived from a 

previous study (10). We manually curated gene sets of the ten cancer hallmark processes 

from the corresponding GO terms.  

Construction of single cell ceRNA networks 

We collected candidate ceRNA pairs from two databases: starBase v2.0 (11) and LncACTdb 

2.0 (12), and used the common ceRNAs as candidates for regulation. A total of 108,668 

candidate ceRNA regulations were collected. To verify whether these ceRNA pairs were 



associated with each other in a single cell, we used a published method for cell-specific 

network construction based on probability theory to identify ceRNA networks in single cells 

(Figure S2A) (13). We assume that a ceRNA pair may have an association in some cells but 

not in other cells due to differences in cell types. 

We determined whether lncRNAs and mRNAs were related in a cell by testing the statistical 

independence of the candidate ceRNA expression values in the same cell. For a ceRNA pair 

of x(mRNA) and y(lncRNA) in cell k, we calculated the following statistic: 

where n is the total number of cells. 
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If x and y are independent of each other, this statistic follows a standard normal distribution 

and the mean value and variance for the n cells are 0 and 1, respectively. Therefore, we can 

determine the significance of the x, y correlation with this statistic. 
)(k

xyedge  is set to 1 in the 

network of cell k with a false discovery rate (FDR) < 0.05. We retained pairs that meet FDR < 

0.05 for network construction in a single cell. The algorithm requires that single-cell datasets 

must have both mRNA and lncRNA expression profiles, and the number of cells is greater than 

100. However, there is no strict requirement for the data type of scRNA-seq array. This 

method is not sensitive to the normalisation method and is suitable for various types of gene 

expression matrices. 
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In scRNA-seq data, the statistic may result in zero due to experimental errors, and is 

meaningless in biology and may produce errors in the data analysis. Hence, we treat the zeros 

in the following way (13): (1) If we cannot distinguish whether or not the zeros result from zero 

expression or the experimental errors, 
)(k

xyedge  is set to 0 when 0kx  or 0ky  without 

the consideration of the statistic. (2) If we know that the zeros result from the zero expression, 

)(k

xyedge  is determined by the statistic. 

 

Classification of cancer single cells 

Using the Seurat package in R (14,15), we clustered cells according to gene expression and 

ceRNA occurrence profiles. When clustering cells according to gene expression, we merged 

the mRNA and lncRNA expression profiles and clustered the cells with this combined 

expression profile. When clustering cells according to the ceRNA occurrence as the 

characteristic value, if a certain ceRNA pair showed a significant correlation to the cell type, 

the log(p) value was used instead. On the contrary, when the ceRNA pair showed no 

significant correlation to the cell type, the characteristic value was assigned to 0. Then, we 

obtained the characteristic matrix for clustering, wherein the rows indicated ceRNA pairs, and 

the columns indicated cells. 

 

Manual curation of experimentally supported lncRNA-ceRNA regulations and lncRNA 

biomarkers 

To collect high-confidence lncRNA-ceRNA associations and lncRNA biomarkers, we retrieved 

published literature from PubMed related to lncRNAs, ceRNAs, and biomarkers. We used the 



following combination of key words “(miRNA sponge OR ceRNA OR miRNA decoy OR 

competing RNA OR antagomir OR miRNA mediated) AND (lncRNA)” to search the PubMed 

database. The experimentally supported lncRNA-ceRNA regulations were manually curated 

from these published articles by at least two researchers. Further, we used the following 

combination of key words “(circulating OR drug-resistant OR prognostic OR immune OR 

metastasis OR recurrence OR cell growth OR EMT OR apoptosis OR autophagy) AND 

(lncRNA)” to collect biomarker records. A biomarker was selected if the lncRNA had been 

experimentally verified to be related to a circulating, drug-resistant, or prognostic process. In 

this study, we manually collected experimentally supported ceRNAs and biological biomarkers 

through several steps, as previously described (12,16). Only datasets supported by evidence 

from high-confidence experiments, such as PCR, western blot, or luciferase reporter assay, 

and other reliable methods were considered. Finally, a total of 2,154 experimentally supported 

lncRNA-ceRNA regulations and 9,306 lncRNA biomarkers associated with drug resistance, 

circulation, survival, immunity, metastasis, recurrence, cell growth, EMT, apoptosis, and 

autophagy were manually curated from literature, and integrated into the LnCeCell database. 

 

Functional analysis of lncRNA-associated ceRNAs 

The CeRNA-Function and CeRNA-Hallmark sections were developed, as part of LnCeCell, to 

perform functional analyses of lncRNAs based on a “guilt-by-association” strategy. For 

lncRNAs, the corresponding downstream mRNA targets were used to perform a function 

enrichment analysis. LnCeCell performs a hypergeometric test to evaluate the significant 

enrichment in different functional contexts. If there are a total of N genes in the genome, of 



which S is involved in the gene set under investigation, and there are a total of M interesting 

target genes for analysis, of which x are involved with the same function, then the P value can 

be calculated as: 
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Significantly enriched functions were defined at a level of P < 0.05 and were further illustrated 

as a bar graph of the –log10(P) values. 

 

Survival analysis of ceRNA regulations 

The CeRNA-Survival section performs Cox regression analyses and provides Kaplan-Meier 

survival curves for lncRNAs, miRNAs, mRNAs, and their contribution to the ceRNA networks. 

LnCeCell derives clinical follow-up information of 10,141 patients from TCGA and performs a 

univariate Cox regression analysis to evaluate the association between survival state and the 

expression level of each lncRNA-miRNA-mRNA member in a ceRNA interaction. A risk score 

model, which takes into account both the strength and positive/negative association between 

each competing RNA and probability of survival, was developed to evaluate the association 

between survival and expression in a certain cancer (12). For each patient, the risk score was 

calculated by linearly combining the ceRNA expression values weighted by the Cox regression 

coefficients: 
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where i  is the Cox regression coefficient of an lncRNA, miRNA, or mRNA in a ceRNA 

interaction (indicated as ic ), n is the number of competing RNAs (n=3 in this study), and 



( )iExp c  is the expression value of competing RNA ic  in the corresponding sample. The 

median and mean risk scores were used to divide the samples into high - and low-risk groups. 

 

  



Supplementary Figures 

 
Figure S1. ScRNA-seq meta-data information of LnCeCell. 



 

Figure S2. Single cell ceRNA networks construction and our statistical model. (A) Single cell 

ceRNA networks construction. (i) Scatter diagrams for every ceRNA pair, wherein each point 

represents a cell, and x- and y-values are the expression values of mRNA and lncRNA 

respectively in the n cells. Then N ceRNA pairs lead to N scatter diagrams. (ii) In the scatter 

diagram of mRNA (x) and lncRNA (y), a red plot signifies an edge between x and y in the 

cell-specific network, based on our statistical model, and a blue plot signifies no edge. We can 

then construct n cell-specific networks corresponding to n cells. (iii) We get the ceRNA 

occurrence profile, comprised of N rows and n columns. If pair i is connected in cell k, 1ikP ; 

or else, 0ikP . (B) Our statistical model for the edge between mRNA: x and lncRNA: y. Near 



the plot or cell k, the light and medium grey boxes represent the neighbourhood of kx  and 

ky  respectively. The intersection of the two boxes is the dark grey box, which represents the 

neighbourhood of ),( kk yx . The number of plots in the light, medium and dark grey boxes is 

)(

x
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n , 
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xyn respectively. The statistic is designated as ）（k

xy .If x and y are 

independent of each other, the statistic follows standard normal distribution. If the statistic 

）（k

xy  is significantly larger, there is an edge between x and y in cell k; otherwise there is no 

edge. 



 

Figure S3. Comparison analysis of cells and ceRNAs across all 40 single-cell datasets. The 

bar graph indicates the number of ceRNAs and cells in different cancers. The links indicate the 

ceRNA overlap between different cancers. 

 



 

Figure S4. A screenshot of LnCeCell ‘HOME’ page. 

  



 

Figure S5. Cell location results of LnCeCell database. (A) Global map of different cell 

populations clustered by ceRNA occurrence in cells. (B) Location of the input cell in different 

populations clustered by ceRNA occurrence. (C) Global map of different cell populations 

clustered by gene expression in cells. (D) Location of the input cell in different populations 

clustered by gene expression. 

  



 

Figure S6. Sub-cellular locations of the ceRNAs in single cell. (A) A global view of possible 

sub-cellular locations of all ceRNAs which were associated with this cell. (B) Detailed 

sub-cellular location information including ceRNA names/IDs, possible locations, identified 

tissues/cell lines and data source.  



 

Figure S7. A screenshot of the CeRNA-Function tool in LnCeCell. Using this tool, users can 

infer ceRNA functions based on biological pathways and GO terms. 

 

  



 

Figure S8. A screenshot of the CeRNA-Hallmark tool in LnCeCell. Using this tool, users can 

identify ceRNA-related cancer hallmarks such as "Insensitivity to Antigrowth Signals" and 

"Tissue Invasion and Metastasis". 

  



 

Figure S9. A screenshot of the CeRNA-Survival tool in LnCeCell. Using this tool, users can 

perform Cox survival analysis and obtain Kaplan-Meier curves of a ceRNA interaction across 

33 types of TCGA cancers. 

  



 

Figure S10. A screenshot of ‘QUICK SEARCH’ page in LnCeCell. 

  



 

Figure S11. An example of ceRNA MALAT1-KRAS in pan-cancers. The layer with blue bars 

indicates the percentage of cells in which the MALAT1-KRAS can be identified in different 

cancer datasets. The layers with red and yellow bars indicate the number of ceRNAs and cells 

across different datasets, respectively. The inner links indicate the ceRNA overlap between 

different cancers. 

  



 

Figure S12. Related annotation of ceRNA regulation. (A) Detailed information of a ceRNA 

regulation. (B) The confidence values of a ceRNA in different cells. (C) The experimental 

verification of a ceRNA regulation. 
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