Supplementary Methods

ScRNA-seq data collection and processing

We systematically collected cancer-related scRNA-seq datasets with more than 100 cells,

including MRNA and IncRNA expression profiles, from CancerSEA

(http://biocc.hrbmu.edu.cn/CancerSEA/) (1), which were used for single-cell

IncRNA-associated ceRNA network construction. A total of 20 single-cell datasets across 12

cancer types were obtained from CancerSEA. We also collected cancer-related ‘scRNA-seq’

datasets from GEO with the following keywords: (‘single cell’ OR ‘single-cell’ OR ‘single cells’

OR fsingle-cells’) AND (‘transcriptomics’ OR ‘transcriptome’ OR ‘RNA-seq’ OR

‘RNA-sequencing’ OR ‘RNA sequencing’ OR ‘scRNA-seq’ OR ‘scRNA seq’) AND (‘tumour’ OR

‘cancer’ OR ‘carcinoma’ OR ‘neoplasm’ OR ‘neoplastic’). We selected datasets wherein the

number of cancer cells were over a 100, after quality control, and the expression profiles of the

cells could be annotated and divided into mMRNA and IncRNA expression profiles using

GENCODE (release 34, GRCh38). If the original papers included malignant and

non-malignant cells, we only retained the malignant cells. Considering the high technical noise

of single cell expression profiles, we controlled for the quality of the single cells included in the

database. We excluded cells that expressed fewer than 1,000 genes. Genes with a detectable

expression in at least 1% of cells were retained. Finally, a total of 94,605 cancer cells derived

from 40 single-cell datasets across 25 cancer types were used for the construction of

single-cell ceRNA networks. For each dataset, we showed the cluster map of cell populations,

constructed cellular-specific IncRNA-associated ceRNA networks for all cells in the dataset,

showed the sub-cellular localisations of these ceRNAs, and characterised the functional state

of each cell.


http://biocc.hrbmu.edu.cn/CancerSEA/

Functional annotation data collection

To distinguish the functional states of different cancer cells, we downloaded the characteristic

gene sets corresponding to the 14 functional states from CancerSEA, including stemness,

invasion, metastasis, proliferation, EMT, angiogenesis, apoptosis, cell cycle, differentiation,

DNA damage, DNA repair, hypoxia, inflammation, and quiescence (1). Based on these

signatures, the functional state of each cancer cell in the datasets were evaluated using GSVA

package in R (2). The sub-cellular and extracellular vesicle locations of INncCRNAs, miRNAs,

and mRNAs were collected from related databases (3-7) and published literature. For pathway

annotation, a total of 1,329 biological pathway gene sets from Kyoto Encyclopedia of Genes

and Genomes, BioCarta, Reactome, and other biological pathway databases were collected

from MSigDB (8). For annotation of biological function, a total of 5,917 gene sets representing

different functional terms were collected from Gene Ontology (9). Ten classic cancer hallmark

processes, including Self-Sufficiency in Growth Signals, Insensitivity to Antigrowth Signals,

Evading Apoptosis, Limitless Replicative Potential, Sustained Angiogenesis, Tissue Invasion

and Metastasis, Genome Instability and Mutation, Tumour Promoting Inflammation,

Reprogramming Energy Metabolism, and Evading Immune Detection, were derived from a

previous study (10). We manually curated gene sets of the ten cancer hallmark processes

from the corresponding GO terms.

Construction of single cell ceRNA networks

We collected candidate ceRNA pairs from two databases: starBase v2.0 (11) and LncACTdb

2.0 (12), and used the common ceRNAs as candidates for regulation. A total of 108,668

candidate ceRNA regulations were collected. To verify whether these ceRNA pairs were



associated with each other in a single cell, we used a published method for cell-specific
network construction based on probability theory to identify ceRNA networks in single cells
(Figure S2A) (13). We assume that a ceRNA pair may have an association in some cells but
not in other cells due to differences in cell types.

We determined whether IncRNAs and mRNAs were related in a cell by testing the statistical
independence of the candidate ceRNA expression values in the same cell. For a ceRNA pair

of x(mRNA) and y(IncRNA) in cell k, we calculated the following statistic:
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where n is the total number of cells. n, and ny(k) are predetermined integers. We set
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predetermined n “ and n,™, and then we have the third box, which is simply the

intersection of the previous two boxes (Figure S2B). Thus, we can obtain the value of nxy(k)

by counting the plots in the third box.

If x and y are independent of each other, this statistic follows a standard normal distribution
and the mean value and variance for the n cells are 0 and 1, respectively. Therefore, we can
determine the significance of the x, y correlation with this statistic. edgexy("’ is set to 1 in the
network of cell k with a false discovery rate (FDR) < 0.05. We retained pairs that meet FDR <
0.05 for network construction in a single cell. The algorithm requires that single-cell datasets
must have both mMRNA and IncRNA expression profiles, and the number of cells is greater than
100. However, there is no strict requirement for the data type of scRNA-seq array. This
method is not sensitive to the normalisation method and is suitable for various types of gene

expression matrices.



In scRNA-seq data, the statistic may result in zero due to experimental errors, and is
meaningless in biology and may produce errors in the data analysis. Hence, we treat the zeros
in the following way (13): (1) If we cannot distinguish whether or not the zeros result from zero
expression or the experimental errors, edgexy(k’ issettoOwhen X, =0 or y, =0 without
the consideration of the statistic. (2) If we know that the zeros result from the zero expression,

edge,,

is determined by the statistic.

Classification of cancer single cells

Using the Seurat package in R (14,15), we clustered cells according to gene expression and
ceRNA occurrence profiles. When clustering cells according to gene expression, we merged
the mRNA and IncRNA expression profiles and clustered the cells with this combined
expression profile. When clustering cells according to the ceRNA occurrence as the
characteristic value, if a certain ceRNA pair showed a significant correlation to the cell type,
the log(p) value was used instead. On the contrary, when the ceRNA pair showed no
significant correlation to the cell type, the characteristic value was assigned to 0. Then, we
obtained the characteristic matrix for clustering, wherein the rows indicated ceRNA pairs, and

the columns indicated cells.

Manual curation of experimentally supported IncRNA-ceRNA regulations and IncRNA
biomarkers
To collect high-confidence IncRNA-ceRNA associations and IncRNA biomarkers, we retrieved

published literature from PubMed related to INcRNAs, ceRNAs, and biomarkers. We used the



following combination of key words “(miRNA sponge OR ceRNA OR miRNA decoy OR

competing RNA OR antagomir OR miRNA mediated) AND (IncRNA)” to search the PubMed

database. The experimentally supported IncRNA-ceRNA regulations were manually curated

from these published articles by at least two researchers. Further, we used the following

combination of key words “(circulating OR drug-resistant OR prognostic OR immune OR

metastasis OR recurrence OR cell growth OR EMT OR apoptosis OR autophagy) AND

(IncRNA)” to collect biomarker records. A biomarker was selected if the IncRNA had been

experimentally verified to be related to a circulating, drug-resistant, or prognostic process. In

this study, we manually collected experimentally supported ceRNAs and biological biomarkers

through several steps, as previously described (12,16). Only datasets supported by evidence

from high-confidence experiments, such as PCR, western blot, or luciferase reporter assay,

and other reliable methods were considered. Finally, a total of 2,154 experimentally supported

IncRNA-ceRNA regulations and 9,306 IncRNA biomarkers associated with drug resistance,

circulation, survival, immunity, metastasis, recurrence, cell growth, EMT, apoptosis, and

autophagy were manually curated from literature, and integrated into the LnCeCell database.

Functional analysis of IncRNA-associated ceRNAs

The CeRNA-Function and CeRNA-Hallmark sections were developed, as part of LnCeCell, to

perform functional analyses of IncRNAs based on a “guilt-by-association” strategy. For

IncRNAs, the corresponding downstream mRNA targets were used to perform a function

enrichment analysis. LnCeCell performs a hypergeometric test to evaluate the significant

enrichment in different functional contexts. If there are a total of N genes in the genome, of



which S is involved in the gene set under investigation, and there are a total of M interesting
target genes for analysis, of which x are involved with the same function, then the P value can

be calculated as:

5 ﬂ_i(f)(u)?
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Significantly enriched functions were defined at a level of P < 0.05 and were further illustrated

as a bar graph of the —log10(P) values.

Survival analysis of ceRNA regulations

The CeRNA-Survival section performs Cox regression analyses and provides Kaplan-Meier
survival curves for IncRNAs, miRNAs, mRNAs, and their contribution to the ceRNA networks.
LnCeCell derives clinical follow-up information of 10,141 patients from TCGA and performs a
univariate Cox regression analysis to evaluate the association between survival state and the
expression level of each INncRNA-miRNA-mRNA member in a ceRNA interaction. A risk score
model, which takes into account both the strength and positive/negative association between
each competing RNA and probability of survival, was developed to evaluate the association
between survival and expression in a certain cancer (12). For each patient, the risk score was
calculated by linearly combining the ceRNA expression values weighted by the Cox regression

coefficients:

Risk score=>" BExp(c;)
i=1

where f. is the Cox regression coefficient of an IncRNA, miRNA, or mRNA in a ceRNA

interaction (indicated as C;), n is the number of competing RNAs (n=3 in this study), and



Exp(c;) is the expression value of competing RNA C, in the corresponding sample. The

median and mean risk scores were used to divide the samples into high - and low-risk groups.
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Figure S1. ScCRNA-seq meta-data information of LnCeCell.
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Figure S2. Single cell ceRNA networks construction and our statistical model. (A) Single cell
ceRNA networks construction. (i) Scatter diagrams for every ceRNA pair, wherein each point
represents a cell, and x- and y-values are the expression values of mRNA and IncRNA
respectively in the n cells. Then N ceRNA pairs lead to N scatter diagrams. (ii) In the scatter
diagram of mRNA (x) and IncRNA (y), a red plot signifies an edge between x and y in the
cell-specific network, based on our statistical model, and a blue plot signifies no edge. We can

then construct n cell-specific networks corresponding to n cells. (ii) We get the ceRNA

occurrence profile, comprised of N rows and n columns. If pair i is connected in cellk, p,_ =1;

orelse, P, =0.(B) Our statistical model for the edge between mRNA: x and IncRNA: y. Near



the plot or cell k, the light and medium grey boxes represent the neighbourhood of X, and

Y respectively. The intersection of the two boxes is the dark grey box, which represents the

neighbourhood of (x,,y, ). The number of plots in the light, medium and dark grey boxes is

n @, ny(k) and nxy(k’ respectively. The statistic is designated as p, “’.If x and y are

X

independent of each other, the statistic follows standard normal distribution. If the statistic

ny(k) is significantly larger, there is an edge between x and y in cell k; otherwise there is no

edge.
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Figure S3. Comparison analysis of cells and ceRNAs across all 40 single-cell datasets. The

bar graph indicates the number of ceRNAs and cells in different cancers. The links indicate the

ceRNA overlap between different cancers.
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Figure S6. Sub-cellular locations of the ceRNAs in single cell. (A) A global view of possible
sub-cellular locations of all ceRNAs which were associated with this cell. (B) Detailed
sub-cellular location information including ceRNA names/IDs, possible locations, identified

tissues/cell lines and data source.
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Identify ceRNA related cancer hallmarks such as Insensitivity to Antigrowth Signals, Tissue Invasion and Metastasis etc
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Figure S8. A screenshot of the CeRNA-Hallmark tool in LnCeCell. Using this tool, users can
identify ceRNA-related cancer hallmarks such as "Insensitivity to Antigrowth Signals" and

"Tissue Invasion and Metastasis".
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Perform COX regressicn analysis and survival curves for ceRNAs across more than 30 types of malignant cancers.
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[ copy ] eca | csv ] ror ] search:
10 Name cox coefficient HR (95%CT) cox P-value # of Patients
ENSG00000251562 MALAT1 -0.2554 0.7746(0.5812-1,0324) 0.0814 79
MIMAT0000416 hsa-miR-1-3p -0.1105 0.8954(0.5394-1.4864) 0.6692 79
ENSG00000133703 KRAS 10287 2.7975(1.4162-5.5262) 0.0031 79
ceRNA 0.9294 2.533(1.4853-4.3195) 6e-04 79
Kaplan-Meier survival curves of in ACC :
MALAT1 hsa-miR-1-3p KRAS ceRNA
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Figure S9. A screenshot of the CeRNA-Survival tool in LnCeCell. Using this tool, users can
perform Cox survival analysis and obtain Kaplan-Meier curves of a ceRNA interaction across

33 types of TCGA cancers.



LnCeOell HOTAIR

Cell Map: cell and ceRNA distributions on map of cell clusters.
Cell Location: sub-cellular locations of ceRNAs.
Cell Network: Build a ceRNA network in a single cell.

= CeRNA Survival: Perform survival analysis curves for ceRNAs.

Figure S10. A screenshot of ‘QUICK SEARCH'’ page in LnCeCell.
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Figure S11. An example of ceRNA MALAT1-KRAS in pan-cancers. The layer with blue bars
indicates the percentage of cells in which the MALAT1-KRAS can be identified in different
cancer datasets. The layers with red and yellow bars indicate the number of ceRNAs and cells

across different datasets, respectively. The inner links indicate the ceRNA overlap between
different cancers.



Acute myeloid leukern

Disease

LncRNA

mRNA

MIRNA

Accession

Cells type

Associating Cells

Tissue

Data Source

Experimental verification

of a ceRNA regulation

ALAT1 KRAS
. L ]
Acute myeloid leukemia
MALATI[ENSGO0000251562]
KRAS[ENSGO0000133703]
2miRNAs
GSETI0493
all cells

B The confidence values of a ceRNA in different cells

Fan J. Genome Res. 2018 (Bone marrow_Smart)

LncRNA mRHA
MALAT1 KRAS
+ MALATT Kias
MALAT KRAS
MALATI KRAS
MALAT] KRS
MALAT1 KRAS
MALAT KRAS

Detailed associating cells table

Cell name P-Value FDR Cell detail
MM34 27 4.09E-2 443E-2 '
MM34_47 3.228-2 3.948-2 '
MM34.59 7.34E-3 167E-2 '
MM34.61 8.25E-3 181E-2 '
MM34.85 1832 26562 ®
MM34EM_03 6.32E-4 3.66E-3 ‘
MM34EM_14 4.00E-2 A438-2 .

C The experimental verification of a ceRNA regulation

Detailed experimental verification table -]
Specied.  Cell line Fhenotype Experimental methods Fubmed
Musm... GbcsdAnd 3g.. Gallbladder Can... luciferase reporter assays,gRI1-PCRWestern blot assay 2091262
+ Hemeos... Gbc-SdAnd Sg.. Gallbladder Can... luciferase reporter assays,qRT-PCR:Western blot assay angez
Hemeos.. Panc-1.Aspc-1,.. Pancreatic Duct.. gPCR Luciferase report assay etc. 28701723
Hemos... Gbc-Sd. Sge-99.. Gallbladder Can.. gPCR RNAQ Western blot. Flow cytometry assay. Cell proliferation assay etc. 2/191202

4 Detail Info %&

Figure S12. Related annotation of ceRNA regulation. (A) Detailed information of a ceRNA

regulation. (B) The confidence values of a ceRNA in different cells. (C) The experimental

verification of a ceRNA regulation.
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