OMTN, Volume 23

Supplemental Information

circDCUN1D4 suppresses tumor metastasis

and glycolysis in lung adenocarcinoma

by stabilizing TXNIP expression

Yingkuan Liang, Hui Wang, Bing Chen, Qixing Mao, Wenjie Xia, Te Zhang, Xuming Song, Zeyu Zhang, Lin Xu, Gaochao Dong, and Feng Jiang

Supplementary Materials and Methods

Actinomycin D and RNase R treatment

Cells were planted into six-well plates. Up to 60% confluency after 24 h, cells were treated with 5µg/ml Actinomycin D at indicated time points.

Total RNA ($2\mu g$) was incubated with 3 U/ μg of RNase R (Sigma) for 15 min at 37 °C. After treatment with Actinomycin D or RNase R, the RNA expression levels of circDCUN1D4 and other mRNAs were analyzed by qRT-PCR.

Transwell migration and invasion assay

 4×10^4 cells, suspended in medium without FBS, were seeded into transwell chambers (Corning), with or without Matrigel (Sigma-Aldrich) coating. The lower chamber contained medium with 10% FBS as chemokine. Twenty-four hours later, the migratory or invasive cells on the lower surface of the chamber were photographed and counted in 10 random microscopic fields after crystal violet staining.

Wound-healing assay

The transfected cells were cultured in 6-well plates. After the cells reached 90% confluence, a standard 200µl pipette tip was subsequently utilized to scratch linear wounds. In addition, the cell monolayers were cultivated in FBS-free medium. After scratching, the images of the wound closure were captured at 0, and 24h.

Real-time cell analysis

The CIM-plate16 contains 16 wells, each a modified Boyden chamber, which can be used independently but simultaneously to measure cell migration in real-time through 8µm pores of a polyethylene terephthalate membrane on to gold electrodes on the underside of the membrane using the xCELLigence system (ACEA Biosciences, USA). Experiments were set up according to the manufacturer's instructions with the membrane uncoated (migration) or coated with growth-factor-reduced-matrigel (invasion) (BD BioSciences, UK) ($20 \mu l$ 1:40 diluted matrigel per well on the upper surface). Cell index (electrical impedance) was monitored every 30 min for the duration of the experiment. Traces show the average of quadruplicate wells.

RNA-Fluorescence in situ hybridization assay and Fluorescence immunocytochemical staining

RNA-Fluorescence in situ hybridization (FISH) assays were performed using a RNA-FISH kit (GenePharma, China) according to the manufacturer's instructions. Cy3labeled antisense probe was synthesized by GenePharma company (Suzhou, China) against circDCUN1D4. The sequence is listed in Table S2. In briefly, A549 cells were fixed with 4% paraformaldehyde. After pre-hybridization with 1× PBS/0.5% Triton X-100, cells were blocked and hybridized in hybridization buffer with Cy3-labeled antisense probe at 37 °C overnight. Then cells were incubated with specific antibodies for HuR (ab200342, 1:200 dilution) at 4 °C overnight. Cells were treated with tyramideconjugated goat anti-rabbit IgG (Invitrogen 1:10000 dilution) and DAPI (300 nmol/L) staining. The images were photographed under a Nikon A1Si Laser Scanning Confocal Microscope (Nikon Instruments Inc, Japan).

Luciferase reporter assay

Human HuR luciferase reporter was constructed according to the previous article[2]. The TXNIP binding sites of circDCUN1D4 were analyzed by StarBase (http://starbase.sysu.edu.cn/index.php). The different fragment sequences were synthesized and then inserted into the psiCHECK-2 vector (Promega). All vectors were verified by sequencing and luciferase activity was assessed using the Dual Luciferase Assay Kit (Promega) according to the manufacturer's instructions. The sequences were provided in Table S2

Microarray assay

The Agilent human mRNA array was designed with 8 identical arrays per slide (8×60 K format), with each array containing probes interrogating approximately 27958 Entrez Gene RNAs and 7419 long intergenic noncoding RNA. The array also contains 1280 Agilent control probes. Total RNA containing small RNA was extracted from cells by using TRIzol reagent (Invitrogen) according to the manufacturer's protocol. The purity and concentration of RNA were determined from optical density 260/280 readings using a spectrophotometer (NanoDrop ND-1000). RNA integrity was determined by 1% formaldehyde denaturing gel electrophoresis.

Tissue microarray and in situ hybridization assay

Tissue microarray (TMA) was obtained from Outdo Biotech Co. Ltd. (Shanghai, China). Ninety-two pairs of LUAC tissues and their paired peripheral normal lung tissues were used to construct the TMA. Special biotin labelled probe against circDCUN1D4 was synthesized by GenePharma company (Suzhou, China). The sequence is provided in Table S2. After incubating with the biotin labelled probe, the TMA was then stained with DAB and hematoxylin, dehydrated and covered. The TMA staining scores were evaluated by two independent observers blinded to the clinicopathological data. The staining scores were based on two indicators: the proportion of positively stained cells and the staining intensity. The proportion of positively stained cells was evaluated with five scoring levels: 0, <10%; 1, 10-25%; 2, 25-50%; 3, 50-75%; and 4, >75%. The staining intensity was scored with the following point system: 0 (no staining), 1(yellow), 2 (yellow-brown) and 3 (dark brown). The products of the above two indicators were considered the total score.

Files uploaded separately in Excel Format:

Additional Dataset 1. Fold enrichment of 152 circRNA in HuR CLIP.

Additional Dataset 2. 661 genes altered by circDCUN1D4.

Supplementary Figures

Fig. S1 Characterization of circDCUN1D4. A The full length of circDCUN1D4. **B** Conservative analysis of circDCUN1D4 between humans and mice. **C** qRT-PCR assay detected the expression of circDCUN1D4 in a variety of LUAD cell lines and a normal lung cell line HBE. (mean \pm SD, n = 4) **D** qRT-PCR for the abundance of circDCUN1D4 and DCUN1D4 in H1975 cells treated with RNase R compared with the mock group. (mean \pm SD, n = 4) **E** qRT-PCR for the abundance of circDCUN1D4 in H975 cells treated with Actinomycin D at the indicated time point. (mean \pm SD, n = 4) **F** Random hexamer or oligo (dT)18 primers were used in the reverse transcription experiment. The relative RNA levels were analyzed by qRT-PCR and normalized to the value using random hexamer primers. (mean \pm SD, n = 4) **G** qRT-PCR for the distribution of circDCUN1D4, GAPDH, and U6 in the cytoplasmic and nuclear fractions of H1975 cells. **H** The 18S and U6 were applied as positive control for

cytoplasm and nucleus respectively in RNA-FISH assay. Student's t test and analysis of variance compared the difference in C, D, and E. *P < 0.05 vs. HBE, mock, mDCUN1D4.

Fig. S2 Effects of circDCUN1D4 on the invasion of cancer cells. A qRT-PCR assay showing the transcript levels of EIF4A3, QKI, and ADAR1 in cancer cells stably transfected with si-scb, or siEIF4A3, or siQKI, or siADAR1, respectively. (mean \pm SD, n = 4) **B** qRT-PCR and western blot assays showing the transcript and protein levels of DCUNID4 in cancer cells stably transfected with mock, circDCUN1D4, sh-Scb, or sh-DCUN1D4. (mean \pm SD, n = 4)**C-F** Representative images and quantification of transwell (C), matrigel (D), C-plate (E) and wounding healing (F) assays showing the invasion of H1299 cells stably transfected with sh-scb or sh-DCU1ND4 (mean \pm SD,

n=4). Scale bar: 100 μ m. **G** Representative images (left panel) and quantification (right panel) of immunofluorescence staining assay showing the expression of Vimentin or N-cadherin of A549 and H1299 cells stably transfected with mock, circDCUN1D4, scramble shRNA (sh-scb), or sh-circDCUN1D4 (mean ± SD, n=4). **H** The body weight of mice after tail vein injection of A549 cells stably transfected with mock and circDCUN1D4 (n=4 for each group). Student's t test and analysis of variance compared the difference in A-G. *P < 0.05 vs. si-scb, mock, sh-scb.

Fig. S3 Effects of circDCUN1D4 on the expression of HuR, CYP2J2 or GPC3 in cancer cells. A The sequences of circDCUN1D4 interacts with HuR protein. B qRT-PCR assay showing the expression of circDCUN1D4 in cancer cells stably transfected with mock, HuR, sh-scb, or sh-HuR. (mean \pm SD, n=4) C qRT-PCR and western blot assays showing the transcript and protein levels of HuR in cancer cells stably transfected with mock, circDCUN1D4, sh-Scb, or sh-DCUN1D4. (mean \pm SD, n=4) D qRT-PCR and western blot assays showing the transcript and protein levels of HuR in center cells of HuR in cancer cells stably transfected with mock, circDCUN1D4, sh-Scb, or sh-DCUN1D4. (mean \pm SD, n=4) D qRT-PCR and western blot assays showing the transcript and protein levels of HuR in center cells of HuR in total lysates

or subcellular fractions of H1299 cells stably transfected with mock, circDCUN1D4, sh-scb, or sh-circDCUN1D4 vectors. **F** qRT-PCR detection of CYP2J2 or GPC3 in cancer cells stably transfected with mock, circDCUN1D4, scramble shRNA (sh-scb), or sh-circDCUN1D4 (mean \pm SD, n=4). **G** The correlation between the relative expression of CYP2J2 or GPC3 and circDCUN1D4 in 34 LUAD tissues. **H** Kaplan-Meier curves indicating the overall (OS) survival of TXNIP in lung cancer cases derived from Kaplam-Meier Plotter. Student's t test and analysis of variance compared the difference in A-F. ***P<0.001, **P<0.01, *P<0.05 vs. mock, sh-scb.

Fig. S4 circDCUN1D4 suppresses metastasis depend on TXNIP pathway. A qRT-PCR assay showing the expression of TXNIP in cancer cells stably transfected with Mock, TXNIP, si-scb, si-TXNIP-1, si-TXNIP-2, and si-TXNIP-3. (mean ± SD, n=4). **B** IGV showing the peaks localized in 3'UTP of TXNIP which interacts with HuR protein. C Dual-luciferase assay indicating the interacted region between 3'UTR region of TXNIP and HuR in H1299 cells stably transfected with mock, HuR, si-scb, or si-HuR (mean \pm SD, n=4). **D** The expression level of TXNIP was significantly positive relative to the expression level of HuR. E Representative images (left panel) and quantification (right panel) of transwell, matrigel, and in vivo assays showing the invasion of H1299 cells stably transfected with sh-scb, sh-circDCUN1D4 or sh-circDCUN1D4 plus TXNIP (mean \pm SD, n=4). Scale bar: 100 μ m. F RIP assay showing that the RNA binding protein Ago2 could not interacts with circDCUN1D4. G Kaplan-Meier curves indicating the overall (OS) survival of DCUN1D4 in lung cancer cases derived from Kaplam-Meier Plotter. Student's t test and analysis of variance compared the difference in A, E and F. ***P<0.001, *P < 0.05 vs. mock, sh-scb, sh-circDCUN1D4, AND IgG. Log-rank test for survival comparison in G.

Supplementary Tables

Supplementary Table S1 Primer sets used for RT-PCR, qRT-PCR, and RIP

Primer set	Primers	Sequence	Application	
has size 0001212	Forward	5' -GTGAAGCGAGACAGTGGTGA-3'		
	Reverse	5' -ACCACAACCAGCTGACAAAA-3'	- QRI-PCR	
L	Forward	5' -GTGGTGTGCAGGTGAACAAG-3'		
nsa_circ_0002343	Reverse	5' -ACAACACGCCAACTACCACA-3'	- QRI-PCR	
h	Forward	5' -CCCGGACAGCTATGAAACTC-3'		
nsa_circ_0007386	Reverse	5' -AGGAGCATAACCCTCGATCA-3'	- QRI-PCR	
hsa_circ_0007928	Forward	5'- GTTGAACCAGAAAACATTTTC-3	qRT-PCR,	
(circDCUN1D4)	Reverse	5'- AGACTTCCTGTTTGGTGATC -3'	RIP RT-PCR	
baa aira 0012265	Forward	5'-GGTTCCTAAGCCTGTACCACC -3'		
	Reverse	5'-GCTGGTGCCAAGAATCTCCT-3'		
	Forward	5'-TGCAGGCAGTGGACAAGAAA-3'	qRT-PCR	
MDCUNID4	Reverse	5'-GGATCTTGCTGACCACGACA-3'	RT-PCR	
	Forward	5'-ATGTTCTCTCGGTTTGGGCG-3'		
HUR	Reverse	5'-GTTCTGGTTGGGGTTGGCTG-3'		
18S	Forward	5' -CGAACGTCTGCCCTATCAACTT-3'		
	Reverse	5' -ACCCGTGGTCACCATGGTA-3'	- QRI-PCR	
U6	Forward	5' -CTCGCTTCGGCAGCACA-3'		
	Reverse	5' -AACGCTTCACGAATTTGCG-3'		
GAPDH	Forward	5' -AGAAGGCTGGGGCTCATTTG-3'	qRT-PCR	
	Reverse	5' -AGGGGCCATCCACAGTCTTC-3'	RT-PCR	
DHX9	Forward	5' -TGCCTCCAAGAAAGTCCA-3'		
	Reverse	5' -TCCGCTTCCATTGTCGTAT-3'	- QRI-PCR	
	Forward	5' -GGGGCATCTACGCTTACGG-3'		
EIF4A3	Reverse	5' -GCGATGACATCTCTCCCTTTGA-3'		
	Forward	5' -CAAACGGAACTCCTCACCC-3'		
QKI	Reverse	5' -GCCACCGCACCTAATACAC-3'	- QRI-PCR	
	Forward	5' -CGAGAA TCCCAAACAAGGAA-3'		
	Reverse	5' -CTGGATTCCACAGGGATTGT-3'		
	Forward	5' -TGTGTGAAGTTACTCGTGTCAAA-3'		
	Reverse	5' -GCAGGTACTCCGAAGTCTGT-3'	GRT-FCR	
CYP2J2	Forward	5' -TCCATCCTCGGACTCTCCTAC-3'		
	Reverse	5' -GTCACCAAGCTCCAAGCTAAAA-3'	YN FCK	
CDC2	Forward	5' -CAGTAAGGACTGTGGCCGAAT-3'		
6763	Reverse	5' -AGCAGTACGTTCTCCATGTCAT-3'		
pre-TXNIP	Forward	5' -AGAAGTTGACTTAGACGGATTGCT-3'	qRT-PCR	

	Reverse	5' -ACAGACTATTTCAGTTCAGGTAAGA-3'		
	Forward	5' -ACGCTTCTTCTGGAAGACCA-3'		
TXNIP-1	Reverse	5' -AGGGGTATTGACATCCACCA-3'	qRT-PCR	
	Forward	5' -GCAAGCCTAATGGCTACTCG-3'		
TXNIP-2	Reverse	5' -AGGGGTATTGACATCCACCA-3'	qRT-PCR	
	Forward	5' -GAGTGTGGGTCCACCTTAGC-3'		
3° UTR (TXINIP)	Reverse	5' -AGGGGTATTGACATCCACCA-3'	qRI-PCR	
DEVO	Forward	5' -AAAGAGGAACGAGCGTTAAACA(-3'		
BEX2	Reverse	5' -TCACTAACATTCAAAGGTAGGGC-3'		
DDVG	Forward	5' -ATGGGTCTGTCCAGTCAAAATG-3'		
ν	Reverse	5' -GGTGGTCATACTCTGTGCTTG-3'	QRT-PCR	
EDVW9	Forward	5' -TTCTTTCTCTGACGGACTTGC-3'		
ΓΔΑ₩Ζ	Reverse	5' -GCTTGAGGAGAGTCTCTAGGTT-3'	YKT-PCK	
EVP1	Forward	5' -GAGAGAAGATTTAATGGGCCTGG-3'		
	Reverse	5' -GCTCAATGGCGGTAACTCCA-3'	qitt-FCK	
НК 9	Forward	5' -GAGCCACCACTCACCCTACT-3'		
	Reverse	5' -CCAGGCATTCGGCAATGTG-3'	qitti teit	
IFI6	Forward	5' -GGTCTGCGATCCTGAATGGG-3'	aRT-PCR	
11,10	Reverse	5' -TCACTATCGAGATACTTGTGGGT-3'	qitti i cit	
LOX	Forward	5' -CGGCGGAGGAAAACTGTCT-3'		
	Reverse	5' -TCGGCTGGGTAAGAAATCTGA-3'	qitti i olt	
MGAT5	Forward	5' -CTTCACTCCGTGGAAGTTGTC-3'		
	Reverse	5' -TGGATGGTAAAGTGCAGAAGC-3'	qitti i olt	
PCDH9	Forward	5' -CTGCTCTGATTGCCTGTTTAAGG-3'	aRT-PCR	
	Reverse	5' -ACCAGTCTGTAGACAAGGCTG-3'	qitt i oit	
PLIN2	Forward	5' -ATGGCATCCGTTGCAGTTGAT-3'	aRT-PCR	
	Reverse	5' -GGACATGAGGTCATACGTGGAG-3'		
PML	Forward	5' -CGCCCTGGATAACGTCTTTT-3'		
	Reverse	5' -CTCGCACTCAAAGCACCAGA-3'		
SMAD2	Forward	5' -CGTCCATCTTGCCATTCACG-3'		
	Reverse	5' -CTCAAGCTCATCTAATCGTCCTG-3'		
STXBP4	Forward	5' -CCTTGGCCTGAAGGTACTAGG-3'		
	Reverse	5' -AGCAGATTCTAACCTCAACTTGG-3'		
ZNF680	Forward	5' -TGGGTGCTCCAGCCTTACT-3'	aRT-PCR	
	Reverse	5' -GCAGGCCAGTTAAAAACATTGC-3'		
UQCRB	Forward	5' -GGTAAGCAGGCCGTTTCAG-3'	qRT-PCR	
	Reverse	5' -AGGICCAGIGCCCICITAAIG-3'		
SMC2	Forward	5' -ACAACACCAGAGTACAGGATCT-3'	qRT-PCR	
	Reverse	5' -CGGCCCIGCATGATGAGAA-3'		
DCUN1D4-intron2	Forward	5' -CAGATGCAGGGTGTACAAGG-3'		
	Reverse	5' -TCAGTAAACAGAGGGGGCAACT-3'	1	

DCUN1D4-intron6	Forward	5' - CTTCGTGCCCCTCAGTAGTT-3'	
	Reverse	5' - CATACCATTGCACTCCAGCC-3'	YKI-PCK

Supplementary Table S2 Oligonucleotide sets used for constructs, guide DNA, and

probe				
Oligo Set	Sequences			
pcDNA3.1(+)-	5'-tactaatgactttttttttatacttcagATTTTCAGCTGAACTCTCAT-3'(sense)			
circDCUN1D4 (positive)	5'-gcctaattcttttccttgcttcttacGTTTTCTGGTTCAACACCAA-3' (antisense)			
sh-circDCUN1D4-1	5'- CACCGCAGAAAACATTTTCAGCTGAATTCAAGAGATTCAGCTGAAAAT GTTTTCTGTTTTTTG-3' (sense)			
	5'- GATCCAAAAAACAGAAAACATTTTCAGCTGAATCTCTTGAATTCAGCT GAAAATGTTTTCTGC-3' (antisense)			
sh_circDCUN1D4-2	5'- CACCGCAAACATTTTCAGCTGAACTCAAGAGAAGUUCAGCUGAAAA UGTTTTCTTTTTG-3' (sense)			
sh-circDCUN1D4-2	5'- GATCCAAAAAACAAACATTTTCAGCTGAACTCTCTTGAAAGTTCAGCT GAAAATGTTTTC-3' (antisense)			
sh_circDCUN1D4_3	5'- CACCGCCCAGAAAACATTTTCAGCTTCAAGAGAAGCTGAAAATGTTT CTGGTTTTTTG-3' (sense)			
sh-circDCUN1D4-3	5'- GATCCAAAAAACCCAGAAAACATTTTCAGCTCTCTTGAAAGCUGAAA ATGTTTCTGGC-3' (antisense)			
sh-scb	5'- CACCGCTTCTCCGAACGTGTCACGTTTCAAGAGAACGTGACACGTT CGGAGAATTTTTTG-3' (sense)			
	5'- GATCCAAAAAACTTCTCCGAACGTGTCACGTTTCAAGAGAACGTGAC ACGTTCGGAGAAC-3' (antisense)			
sh-HuR	5'- CACCGCCCATCACAGTGAAGTTTGCATTCAAGAGATGCAAACTTCAC TGTGATGGGTTTTTTG-3' (sense)			
	5'- GATCCAAAAAACCCATCACAGTGAAGTTTGCATCTCTTGAATGCAAAC TTCACTGTGATGGGC-3' (antisense);			
psiCHECK2-HuR-Rluc	5'- TCGAGTGGATACCGTTCGTTGTTAACCGTTGATAGCCTTGGTTTTTA AGCCGTATATGGCTGTAAATAATTGC-3' (sense)			
	5'- GGCCGCAATTATTTACAGCCATATACGGCTTAAAAACCAAGGCTATC AACGGTTAACAACGAACGGTATCCAC-3' (antisense)			
	5'-CCGGAATTCATGTCTAATGGTTATGAAGACC-3' (sense);			
pcDNA3.1(+)-Flag-HuR	5'-CCGCTCGAGTTATTTGTGGGACTTGTTGGTT-3' (antisense)			

pcDNA3.1(+)-Flag-	5'-CCGGAATTCATGTCTAATGGTTATGAAGACC-3' (sense);			
HuR(ΔRRM3)	5'-CCGCTCGAGCCAGCCGGAGGAGGCGTTTCCT-3' (antisense)			
pcDNA3.1(+)-Flag- HuR	5'-CCGGAATTCATCAAAGACGCCAACTTGTACA-3' (sense);			
(RRM2 + Hinge)	5'-CCGCTCGAGCCAGCCGGAGGAGGCGTTTCCT-3' (antisense)			
pcDNA3.1(+)-Flag- HuR	5'-CCGGAATTCAACAAAAACGTGGCACTCCTCT-3' (sense);			
(Hinge)	5'-CCGCTCGAGCCAGCCGGAGGAGGCGTTTCCT-3' (antisense)			
	GCATGTGGAAGAAAGAAGCAGCTTTACCTACTTGTTTCTTTTGTCTCTCTTC			
	CTGGACACTCACTTTTTCAGAGACTCAACAGTCTCTGCAATGGAGTGTGGGTCC			
	ACCTTAGCCTCTGACTTCCTAATGTAGGAGGTGGTCAGCAGGCAATCTCCTGGG			
	CCTTAAAGGATGCGGACTCATCCTCAGCCAGCGCCCATGTTGTGATACAGGGGT			
	GTTTGTTGGATGGGTTTAAAAATAACTAGAAAAACTCAGGCCCATCCAT			
	CAGATCTCCTTGAAAATTGAGGCCTTTTCGATAGTTTCGGGTCAGGTAAAAATG			
	GCCTCCTGGCGTAAGCTTTTCAAGGTTTTTTGGAGGCTTTTTGTAAATTGTGAT			
	AGGAACTTTGGACCTTGAACTTACGTATCATGTGGAGAAGAGCCAATTTAACAA			
	ACTAGGAAGATGAAAAGGGAAATTGTGGCCAAAACTTTGGGAAAAGGAGGTTCT			
	ТААААТСАGTGTTTCCCCTTTGTGCACTTGTAGAAAAAAAAAAAAAA			
	GAGCTGATTTGATGGACAATGGAGAGAGCTTTCCCTGTGATTATAAAAAAGGAA			
	GCTAGCTGCTCTACGGTCATCTTTGCTTAGAGTATACTTTAACCTGGCTTTTAA			
	AGCAGTAGTAACTGCCCCACCAAAGGTCTTAAAAGCCATTTTTGGAGCCTATTG			
	CACTGTGTTCTCCTACTGCAAATATTTTCATATGGGAGGATGGTTTTCTCTTCA			
NIUC	TGTAAGTCCTTGGAATTGATTCTAAGGTGATGTTCTTAGCACTTTAATTCCTGT			
	CAAATTTTTTGTTCTCCCCTTCTGCCATCTTAAATGTAAGCTGAAACTGGTCTA			
	CTGTGTCTCTAGGGTTAAGCCAAAAGACAAAAAAATTTTACTACTTTGAGAT			
	TGCCCCAATGTACAGAATTATATAATTCTAACGCTTAAATCATGTGAAAGGGTT			
	GCTGCTGTCAGCCTTGCCCACTGTGACTTCAAACCCAAGGAGGAACTCTTGATC			
	AAGATGCCCAACCCTGTGATCAGAACCTCCAAATACTGCCATGAGAAACTAGAG			
	GGCAGGTCTTC ATAAAAGCCCTTTGAACCCCCTTCCTGCCCTGTGTTAGGAGAT			
	AGGGATATTGGCCCCTCACTGCAGCTGCCAGCACTTGGTCAGTCA			
	ATAGCACTTTGTTCACTGTCCTGTGTCAGAGCACTGAGCTCCACCCTTTTCTGA			
	GAGTTATTACAGCCAGAAAGTGTGGGCTGAAGATGGTTGGT			
	ATTATGTATCTTTTTGTATGGTAAAGACTATATTTTGTACTTAACCAGATATAT			
	TTTTACCCCAGATGGGGATATTCTTTGTAAAAAATGAAAATAAAGTTTTTTAA			
	ТССАААААААА			

	GCATGTGGAAGAAAGAAGCAGCTTTACCTACTTGTTTCTTTTGTCTCTCTTC
	CTGGACACTCACTTTTTCAGAGACTCAACAGTCTCTGCAATGGAGTGTGGGTCC
	ACCTTAGCCTCTGACTTCCTAATGTAGGAGGTGGTCAGCAGGCAATCTCCTGGG
	CCTTAAAGGATGCGGACTCATCCTCAGCCAGCGCCCATGTTGTGATACAGGGGT
	GTTTGTTGGATGGGTTTAAAAATAACTAGAAAAACTCAGGCCCATCCAT
	CAGATCTCCTTGAAAATTGAGGCCTTTTCGATAGTTTCGGGTCAGGTAAAAATG
	GCCTCCTGGCGTAAGCTTTTCAAGGTTTTTTGGAGGCTTTTTGTAAATTGTGAT
	AGGAACTTTGGACCTTGAACTTACGTATCATGTGGAGAAGAGCCAATTTAACAA
	ACTAGGAAGATGAAAAGGGAAATTGTGGCCAAAACTTTGGGAAAAGGAGGTTCT
	TAAAATCAGTGTTTCCCCTTTGTGCACTTGTAGAAAAAAAA
	GAGCTGATTTGATGGACAATGGAGAGAGCTTTCCCTGTGATTATAAAAAAGGAA
	GCTAGCTGCTCTACGGTCATCTTTGCTTAGAGTATACTTTAACCTGGCTTTTAA
	AGCAGTAGTAACTGCCCCACCAAAGGTCTTAAAAGCCATTTTTGGAGCCTATTG
psiCHECK2-TXNIP-Mut-	CACTGTGTTCTCCTACTGCAAATATTTTCATATGGGAGGATGGTTTTCTCTTCA
Rluc	TGTAAGTCCTTGGAATTGATTCTAAGGTGATGTTCTTAGCACTTTAATTCCTGT
	CAAATTTTTTGTTCTCCCCTTCTGCCATCTTAAATGTAAGCTGAAACTGGTCTA
	CTGTGTCTCTAGGGTTAAGCCAAAAGACAAAAAAATTTTACTACTTTGAGAT
	TGCCCCAATGTACAGAATTATATATTCTAACGCTTAAATCATGTGAAAGGGTT
	GCTGCTGTCAGCCTTGCCCACTGTGACTTCAAACCCAAGGAGGAACTCTTGATC
	AAGATGCCCAACCCTGTGATCAGAACCTCCAAATACTGCCATGAGAAACTAGAG
	AAACCTTTTC
	AGGGATATTGGCCCCTCACTGCAGCTGCCAGCACTTGGTCAGTCA
	ATAGCACTTTGTTCACTGTCCTGTGTCAGAGCACTGAGCTCCACCCTTTTCTGA
	GAGTTATTACAGCCAGAAAGTGTGGGCTGAAGATGGTTGGT
	ATTATGTATCTTTTTGTATGGTAAAGACTATATTTTGTACTTAACCAGATATAT
	TTTTACCCCAGATGGGGATATTCTTTGTAAAAAATGAAAATAAAGTTTTTTAA
	TGGAAAAAAAA
	GCTTACATTTTTATTGCCTAATATATATGCAAACATACTTTACTTCAAGTTGAG
psiCHECK2-AluJo-WT-	GCTGCGCGTAGTGGCCCACACCTTTAA <mark>TCCCAAC</mark> ATTTTGGGAGGCTGAGGCAG
Rluc	GAGGATCACTTGAACCCAGGAGTTCAAGACCAGCCTGGGAAACATAGAAAGACC
	CTGTCTCTACAAGAAAAAAAAAAAAAAAAATTAGCTGTGCATGATGGTGCACAC

psiCHECK2-AluJo-Mut- Rluc	GCTTACATTTTTATTGCCTAATATATATGCAAACATACTTTACTTCAAGTTGAG GCTGCGCGTAGTGGCCCACACCTTTAA <mark>AGGGTTG</mark> ATTTTGGGAGGGCTGAGGCAG GAGGATCACTTGAACCCAGGAGTTCAAGACCAGCCTGGGAAACATAGAAAGACC CTGTCTCTACAAGAAAAAAAAAA
psiCHECK2-AluSc-WT- Rluc	GTAGCTGGGACTACAGGTGTGCGCCACCATGCTTGGCTAATGTTTTTGTATTT TAGTAGAGATGGGATTTCACCATGTTGGCCAGATGTCTCTATCTCCTGACCTTG TGATCTGCCCGGCTCAGCC <mark>TCCCAAA</mark> GTGCTGGGATTATAGGCGTGAGCCACAG CACCCGGCCATGATTGCTTTTTATAATGTAAAAGCCCTAGGTATTTAT

psiCHECK2-AluSc-WT- Rluc	GTAGCTGGGACTACAGGTGTGCGCCACCATGCTTGGCTAATGTTTTTGTATTT TAGTAGAGATGGGATTTCACCATGTTGGCCAGATGTCTCTATCTCCTGACCTTG TGATCTGCCCGGCTCAGCC <mark>AGGGTTT</mark> GTGCTGGGATTATAGGCGTGAGCCACAG CACCCGGCCATGATTGCTTTTTATAATGTAAAAGCCCTAGGTATTTAT
CircDCUN1D4 junction probe (northern blot)	5'- GTTGAGAGATGAGAGTTCAGCTGAAAATGTTTTCTGGTTCAACACCA ATGTCTTC- DIG-3'
CircDCUN1D4 junction probe (pull down)	5'- GTTGAGAGATGAGAGTTCAGCTGAAAATGTTTTCTGGTTCAACACCA ATGTCTTC-3'
CircDCUN1D4 Scramble probe	5'-GTGTAACACGTCTATACGCCCA-3'
CircDCUN1D4 FISH Probe	5'-GAAAACAUUUUCAGCUGAATT-3' (sense)
	5'-UUCAGCUGAAAAUGUUUUCUG-3' (antisense)
CircDCUN1D4 ISH Probe	5'- GTTGAGAGATGAGAGTTCAGCTGAAAATGTTTTCTGGTTCAACACCA ATGT CTTC-3'

Oligo Set	Target sequences
si-ADAR1-1	GCAGAGTCAGCATATATGA
si-ADAR1-2	GGCCCGAGATATAAATGCT
si-ADAR1-3	GGCTCTCCGTGTCTTGATT
si-DHX9-1	CGAACACCATTGCATGAAA
si-DHX9-2	GGACTAGTAGCAACATTGA
si-DHX9-3	GCATGGACCTCAAGAATGA
si-QKI-1	GAAGCTGGTTTAATCTATA
si-QKI-2	GACCTATTGTTCAGTTACA
si-QKI-3	GAAACCGGATGTAAAATCA
si-EIF4A3-1	CGAGCAATCAAGCAGATCA
si-EIF4A3-2	GCTGGATTACGGACAGCAT
si-EIF4A3-3	CTCTCGGTGACTACATGAA
si-TXNIP-1	CAACATCCTTCGAGTTGAA
si-TXNIP-2	ACACGCTTCTTCTGGAAGA
si-TXNIP-3	GTCTGTCTGCTCGAATT

Supplementary Table S3 Target sequences of siRNA

Supplementary Table S4 candidate targets of circDCUN1D4					
BEX2	CYP2J2	DDX6			
FBXW2	FXR1	GPC3			
HK2	IFI6	LOX			
MGAT5	PCDH9	PLIN2			
PML	SMAD2	SMC2			
STXBP4	TXNIP	UQCRB			
ZNF680					

T 7 ' 1 1	Cases(n)	circDCUN1D4		D 1	
Variables	(total n=92)	Low(n)	High(n)	P value	
Age(yes)					
≤60	38	14	24	0.721	
>60	54	18	36	0.731	
Gender					
Male	51	22	29	0.062	
Female	41	10	31	0.062	
Tumor size					
≤5cm	69	23	46	0.618	
>5cm	23	9	14		
Lymph node inv	asion				
Present	41	15	26	0.008	
Absent	51	17	34	0.008	
TNM stage					
I	7	3	4		
П-Ш	85	29	56	0.045	
EGFR mutation					
Present	22	9	13	0.405	
Absent	70	23	47	0.495	

Table S5 Pathological and clinical data of lung cancer cases in tissue microarray

Donomotono	Univariate analysis			Multivariable analysis		
Parameters	HR	95%CI	P value	HR	95%CI	P value
Age(>60)	2.701	1.466-4.975	0.001	2.383	1.266-4.483	0.007
Gender(Male)	1.501	0.60-1.865	0.869	_	_	_
Lymph node metastasis(Positive)	3.297	1.857-5.855	<0.0001	2.002	1.034-3.875	0.039
Pathological grading(G2-G4)	4.709	3.144-6.366	<0.0001	3.805	2.540-5.091	0.002
Tumor diameter(>5cm)	4.150	2.185-7.884	0.031	1.676	0.756-3.716	0.204
EGFR mutation(positive)	4.563	2.427-8.577	0.215	1.405	0.636-3.107	0.401
circDCUN1D4 level(low)	2.250	1.285-3.940	0.005	1.593	1.205-2.922	0.033

Table S6 Univariate analysis and Multivariable analysis