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Materials and Methods

Cell culture

All mammalian cells were cultured at 37°C with 5% CO;, and were maintained in high glucose
DMEM (Gibco cat. no. 11965) supplemented with 10% FBS and 1X Pen/Strep (Gibco cat. no.
15140122; 100U/ml penicillin, 100 pg/ml streptomycin). Cells were trypsinized with 0.25%
trypsin-EDTA (Gibco cat. no. 25200-056) and split 1:10 three times per week.

Nuclei isolation and fixation from cell lines

All cell lines were trypsinized, spun down at 300xg for 5 min (4°C) and washed once in 1X ice-
cold PBS. 5M cells were combined and lysed using 1 mL ice-cold cell lysis buffer (10 mM Tris-
HCI, pH 7.4, 10 mM NaCl, 3 mM MgCI2 and 0.1% IGEPAL CA-630 from (/92), modified to also
include 1% SUPERase In RNase inhibitor and 1% BSA). The filtered nuclei were then transferred
to a new 15 ml tube (Falcon) and pelleted by centrifuge at 500xg for 5 min at 4°C and washed
once with 1 ml ice-cold cell lysis buffer. The nuclei were fixed in 4 ml ice-cold 4%
paraformaldehyde (EMS) for 15 min on ice. After fixation, the nuclei were washed twice in 1 ml
nuclei wash buffer (cell lysis buffer without IGEPAL), and re-suspended in 500 ul nuclei wash
buffer. The samples were split to 5 tubes with 100 ul in each tube and flash frozen in liquid
nitrogen.

Tissue procurement and storage

Human fetal tissues were obtained by the UW Birth Defects Research Laboratory (BDRL) under
a protocol approved by the University of Washington Institutional Review Board. Gestational age,
reported as the number of weeks post-fertilization, was estimated from fetal foot length. Tissues
of interest were isolated and rinsed in 1 X HBSS (with Ca2+ and Mg2+) then blotted dry on a semi-
damp gauze. Dried tissue was placed on a heavy-duty foil or in cryotube, snap frozen in liquid
nitrogen, and then stored at -80°C.

Nuclei isolation and fixation of frozen fetal tissues

On the day of pulverization, we pre-cooled pre-labeled tubes and a hammer on dry ice with a cloth
towel between the dry ice and metal. We created a “padding” by taking an 18 x 18 heavy duty
foil, folded in half twice creating a rectangle and then folded twice to create a square. The frozen
tissue was placed inside the foil “padding” then inside a pre-chilled 4 mm plastic bag to prevent
tissue from falling out onto the dry ice in case the foil ruptured. We chilled the tissue packet
between two slabs of dry ice. Using the pre-chilled hammer, we manually pulverized the tissue
inside the packet with 3 to 5 impacts, avoiding a grinding motion. When necessary, we re-chilled
the sample to avoid thawing and repeated the procedure until we generated small, uniform
fragments. We then aliquoted the pulverized tissue into the pre-labeled and pre-chilled 1.5 ml
LoBind and nuclease-free snap cap 1.5 ml tubes (Eppendorf cat. no. 022431021) and stored at -
80°C until further processing. A subset of these aliquots were used for sci-RNA-seq3, and others
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for sci-ATAC-seq3, as described in the companion paper.

On the day of nuclei isolation, aliquots of tissue powder (0.1-1g) were first incubated with 1 mL
ice-cold cell lysis buffer (10 mM Tris-HCI, pH 7.4, 10 mM NacCl, 3 mM MgCI2 and 0.1% IGEPAL
CA-630 from (/92), modified to also include 1% SUPERase In (Thermo Fisher Scientific,
AM?2696) and 1% BSA (NEB, B9000S)) and then transferred to the top of a 40 um cell strainer
(VWR, 10199-654). Tissues were homogenized through the strainer with the rubber tip of a
syringe plunger (VWR, BD309646) in 4 ml cell lysis buffer. The filtered nuclei were then
transferred to a new 15 ml tube (VWR, 21008-936) and pelleted by centrifuge at 500xg for 5 min
and washed once with 1 ml cell lysis buffer. The nuclei were fixed in 5 ml ice-cold 4%
paraformaldehyde (EMS, 15-4-100) for 15 min on ice. After fixation, the nuclei were washed twice
in 1 ml nuclei wash buffer (cell lysis buffer without IGEPAL), and re-suspended in 500 pl nuclei
wash buffer. The samples were split into two tubes with 250 pl in each tube and flash frozen in
liquid nitrogen. For human cell extraction in renal and digestive organs (kidney, pancreas,
intestine, and stomach) and paraformaldehyde fixation, we followed the procedure described in
(13).

Immunohistochemistry

Fetal tissues were fixed in formalin and embedded in paraffin. Sections of 4-5 pm thickness were
cut and placed on Superfrost Plus slides (12-550-17, FisherBrand). For Immunohistochemistry,
sections were subjected to heat mediated antigen retrieval (pH6.0) followed by blocking with
normal serum. Primary antibodies were incubated overnight at 4°C. The primary antibody we used:
GYPA (R&D, MAB1228, 1:250), CD34 (R&D, AF7227, 1:250), CD34 (Novus, NBP2-32933,
1:250), ANXA1 (R&D, AF3770, 1:500), TNFRS10C (R&D, MAB6301, 1:500), AFP (Novus,
NBP1-76275, 1:400), ALB (R&D, MAB1455, 1:10K), AHSG (R&D, AF1184, 1:400), and
APOA1 (R&D, MAB36641, 1:250). Species and subtype-appropriate fluorescent dye-labelled
secondary antibodies were used (Alexa Fluor 488 and 594, 1:400, Jackson ImmunoResearch Lab)
or biotinylated secondary antibody were used followed by ABC Elite Systems (PK-6100, Vector
Lab) for DAB chromogen staining.

sci-RNA-seq3 library construction and sequencing
The paraformaldehyde fixed nuclei were processed similarly to the published sci-RNA-seq3
protocol (/1) with slight modifications. A detailed version of the full sci-RNA-seq3 workflow

including estimated hands-on time per step and established stopping points is available at
protocols.io (http://dx.doi.org/10.17504/protocols.io.9yih7ue). Briefly, thawed nuclei were
permeabilized with 0.2% TritonX-100 (in nuclei wash buffer) for 3 min on ice, and briefly

sonicated (Diagenode, 12 sec on low power mode) to reduce nuclei clumping. The nuclei were
then washed once with nuclei wash buffer and filtered through 1 ml Flowmi cell strainer (VWR,
10204-924). Filtered nuclei were spun down at 500xg for 5 min and resuspended in nuclei wash
buffer. Nuclei from each sample were then distributed into several individual wells in four 96-well
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plates. The links between well id and tissue id were recorded for downstream data processing. For
each well, 80,000 nuclei (16 pL) were mixed with 8 pl of 25 pM anchored oligo-dT primer (5'-
/5Phos/CAGAGCNNNNNNNN[10bp barcode]TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT-3',
where “N” is any base; IDT) and 2 uL 10 mM dNTP mix (Thermo Fisher Scientific, R0192),
denatured at 55°C for 5 min and immediately placed on ice. 14 pL of first-strand reaction mix,
containing 8 pL 5X Superscript IV First-Strand Buffer (Invitrogen, 18090200), 2 pl 100 mM DTT
(Invitrogen, 18090200), 2 ul SuperScript IV reverse transcriptase (200 U/ul, Invitrogen,
18090200), 2 uL. RNaseOUT Recombinant Ribonuclease Inhibitor (Invitrogen, 10777019), was
then added to each well. Reverse transcription was carried out by incubating plates by gradient
temperature (4°C 2 minutes, 10°C 2 minutes, 20°C 2 minutes, 30°C 2 minutes, 40°C 2 minutes,
50°C 2 minutes and 55°C 10 minutes).

After reverse transcription reaction, 60 pL nuclei dilution buffer (10 mM Tris-HCL, pH 7.4, 10
mM NaCl, 3 mM MgCI2 and 1% BSA) was added into each well. Nuclei from all wells were
pooled together and spun down at 500xg for 10 min. Nuclei were then resuspended in nuclei wash
buffer and redistributed into another four 96-well plates with each well including 20 pL. Quick
ligase buffer (NEB, M2200L), 2 uL Quick DNA ligase (NEB, M2200L), 10 pL nuclei in nuclei
wash buffer, 8uL. barcoded ligation adaptor (100 uM, 5’- GCTCTGI[9 bp or 10 bp barcode
A]/dideoxyU/ACGACGCTCTTCCGATCT|[reverse complement of barcode A]-3"). The ligation
reaction was conducted at 25°C for 10min. After the ligation reaction, 60 pL nuclei dilution buffer
(10 mM Tris-HCI, pH 7.4, 10 mM NaCl, 3 mM MgCI2 and 1% BSA) was added into each well.
Nuclei from all wells were pooled together and spun down at 600xg for 10min.

Nuclei were washed once with nuclei wash buffer, filtered with 1 ml Flowmi cell strainer (VWR,
10204-924) once, counted and redistributed into eight 96-well plates with each well including
2,500 nuclei in 5 pL nuclei wash buffer and 3 pL elution buffer (Qiagen, 19086). 1.33 ul mRNA
Second Strand Synthesis buffer (NEB, E7550S) and 0.66 pl mRNA Second Strand Synthesis
enzyme (NEB, E7550S) were then added to each well, and second strand synthesis was carried out
at 16°C for 180 min.

For tagmentation, each well was mixed with 11 pL Nextera™ TD buffer (Illumina) and 1 pL i7
only TDE1 enzyme (62.5 nM, Illumina, diluted in Nextera™ TD buffer (Illumina)), and then
incubated at 55°C for 5 min to carry out tagmentation. The reaction was then stopped by adding
24 pL. DNA binding buffer (Zymo Research, D4004-1-L) per well and incubating at room
temperature for 5 min. Each well was then purified using 1.5x AMPure XP beads (Beckman
Coulter, A63882). In the elution step, each well was added with 8 pL nuclease free water, 1 pL
10X USER buffer (NEB, M5505L), 1 uL USER enzyme (NEB, M5505L) and incubated at 37°C
for 15 min. Another 6.5 pL elution buffer was added into each well. The AMPure XP beads were
removed by magnetic stand and the elution product (16 pL) was transferred into a new 96-well
plate.
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For PCR amplification, each well (16 pL product) was mixed with 2 uL. of 10 uM indexed P5

primer (5'-
AATGATACGGCGACCACCGAGATCTACAC[15]JACACTCTTTCCCTACACGACGCTCTT
CCGATCT-3 IDT), 2 pL of 10 uM P7 primer (5'-

CAAGCAGAAGACGGCATACGAGATI[i7]GTCTCGTGGGCTCGG-3', IDT), and 20 pL
NEBNext High-Fidelity 2X PCR Master Mix (NEB, M0541L). Amplification was carried out
using the following program: 72°C for 5 min, 98°C for 30 sec, 12-16 cycles of (98°C for 10 sec,
66°C for 30 sec, 72°C for 1 min) and a final 72°C for 5 min.

After PCR, samples were pooled and purified using 0.8 volumes of AMPure XP beads. Library
concentrations were determined by Qubit (Invitrogen, Q32854) and the libraries were visualized
by electrophoresis on a 6% TBE-PAGE gel (Invitrogen, EC6265BOX). All libraries were
sequenced on an Illumina NovaSeq™ 6000 sequencer (Read 1: 34 cycles, Read 2: 100 cycles,
Index 1: 10 cycles, Index 2: 10 cycles).

For paraformaldehyde fixed cells, they were processed similarly to the fixed nuclei with slight
modifications: frozen fixed cells were thawed on 37°C water bath, spun down at 500xg for 5 min,
and incubated with 500ul PBSI (1 x PBS, pH 7.4, 1% BSA, 1% SuperRnaseln) including 0.2%
Triton X-100 for 3min on ice. Cells were pelleted and resuspended in 500ul nuclease free water
including 1% SuperRnaseln. 3ml 0.1N HCI were added into the cells for Smin incubation on ice
(17). 3.5ml Tris-HCI (pH = 8.0) and 35ul 10% Triton X-100 were added into cells to neutralize
HCI. Cells were pelleted and washed with 1ml PBSR. Cells were pelleted and resuspended in
100ul PBSI. The following steps were similar with the above sci-RNA-seq3 protocol (with
paraformaldehyde fixed nuclei) with slight modifications: (1) We distributed 20,000 fixed cells
(instead of 80,000 nuclei) per well for reverse transcription. (2) We replaced all nuclei wash buffer
in following steps with PBSI. (3) All nuclei dilution buffer were replaced with PBS + 1% BSA.

Processing of sequencing reads

Read alignment and gene count matrix generation for the single cell RNA-seq was performed using
the pipeline that we developed for sci-RNA-seq3 (//) with minor modifications: base calls were
converted to fastq format using Illumina’s bcl2fastq/v2.16 and demultiplexed based on PCR i5
and 17 barcodes using maximum likelihood demultiplexing package deML (/93) with default
settings. Downstream sequence processing and single cell digital expression matrix generation
were similar to sci-RNA-seq (/8) except that RT index was combined with hairpin adaptor index,
and thus the mapped reads were split into constituent cellular indices by demultiplexing reads
using both the RT index and ligation index (ED < 2, including insertions and deletions). Briefly,
demultiplexed reads were filtered based on RT index and ligation index (ED < 2, including
insertions and deletions) and adaptor clipped using trim_galore/v0.4.1 with default settings.
Trimmed reads were mapped to the human reference genome (hg19) for human fetal nuclei, or a
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chimeric reference genome of human hg19 and mouse mm10 for HEK293T and NIH/3T3 mixed
nuclei, using STAR/v 2.5.2b (194) with default settings and gene annotations (GENCODE V19
for human; GENCODE VM11 for mouse). Uniquely mapping reads were extracted, and duplicates
were removed using the unique molecular identifier (UMI) sequence (ED < 2, including insertions
and deletions), reverse transcription (RT) index, hairpin ligation adaptor index and read 2 end-
coordinate (i.e. reads with UMI sequence less than 2 edit distance, RT index, ligation adaptor index
and tagmentation site were considered duplicates). Finally, mapped reads were split into
constituent cellular indices by further demultiplexing reads using the RT index and ligation hairpin
(ED < 2, including insertions and deletions). For mixed-species experiment, the percentage of
uniquely mapping reads for genomes of each species was calculated. Cells with over 85% of UMIs
assigned to one species were regarded as species-specific, with the remaining cells classified as
mixed cells or “collisions”. To generate digital expression matrices, we calculated the number of
strand-specific UMIs for each cell mapping to the exonic and intronic regions of each gene with
python/v2.7.13 HTseq package (/95). For multi-mapped reads, reads were assigned to the closest
gene, except in cases where another intersected gene fell within 100 bp to the end of the closest
gene, in which case the read was discarded. For most analyses we included both expected-strand
intronic and exonic UMIs in per-gene single-cell expression matrices.

After the single cell gene count matrix was generated, cells with fewer than 250 UMIs were filtered
out. Each cell was assigned to its original human fetal sample based on the RT barcode. Reads
mapping to each fetus individual were aggregated to generate “pseudobulk RNA-seq” datasets.
For sex assignments, we counted reads mapping to female-specific non-coding RNA (7SZX and
XIST) or chrY genes (except genes TBL1Y, RP11-424G14.1, NLGN4Y, AC010084.1, CD24P4,
PCDHI1Y, and TTTY14, which are detected in both males and females). Fetuses were readily
separated into females (more reads mapping to 7SZX and XIST than chrY genes) and males (more
reads mapping to chrY genes than 7SZX and XIST).

Clustering analysis of pseudobulk transcriptomes was done with Monocle 3/alpha (/7). Briefly,
an aggregated gene expression matrix was constructed as described above for human fetal organs
from each individual. Samples with over 5,000 total UMIs were selected. The dimensionality of
the data was reduced by PCA (10 components), first on the top 500 most highly dispersed genes
and then with UMAP (max_components =2, n_neighbors = 10, min_dist = 0.5, metric = 'cosine").

Cell filtering, clustering and marker gene identification

For the detection of potential doublet cells, we first split the dataset into subsets for each organ
and individual, and then applied the scrublet/v0.1 pipeline (/89) to each subset with parameters
(min_count = 3, min_cells = 3, vscore _percentile = 85, n_pc = 30, expected doublet rate = 0.06,
sim_doublet ratio = 2, n_neighbors = 30, scaling method = 'log") for doublet score calculation.
Cells with doublet score over 0.2 were annotated as detected doublets. We detected 6.4% potential
doublet cells in the whole data set, which corresponds to an overall estimated doublet rate of 12.6%
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(including both within- and between-cluster doublets).

For detection of doublet-derived subclusters for cells from each organ, we used an iterative
clustering strategy as shown before (/7). Briefly, gene count mapping to sex chromosomes were
removed before clustering and dimensionality reduction. Preprocessing steps were similar to the
approach used by ref (/96). Briefly, genes with no count were filtered out and each cell was
normalized by the total UMI count per cell. The top 1,000 genes with the highest variance were
selected and the digital gene expression matrix was renormalized after gene filtering. The data was
log transformed after adding a pseudocount, and scaled to unit variance and zero mean. The
dimensionality of the data was reduced by PCA (30 components) first and then with UMAP,
followed by Louvain clustering performed on the 30 principal components with default
parameters. For Louvain clustering, we first fitted the top 30 PCs to compute a neighborhood graph
of observations with local neighborhood number of 50 by scanpy.api.pp.neighbors function in
scanpy/v1.0 (1/97). We then cluster the cells into sub-groups using the Louvain algorithm
implemented as scanpy.api.tl.louvain function (/97). For UMAP visualization, we directly fit the
PCA matrix into scanpy.api.tlumap function(/97) with min_distance of 0.1. For subcluster
identification, we selected cells in each major cell type and applied PCA, UMAP, Louvain
clustering similarly to the major cluster analysis. Subclusters with a detected doublet ratio (by
Scrublet) over 15% were annotated as doublet-derived subclusters.

For data visualization, cells labeled as doublets (by Scrublet) or from doublet-derived subclusters
were filtered out. For each cell, we only retain protein-coding genes, lincRNA genes and
pseudogenes. Genes expressed in less than 10 cells and cells expressing less than 100 genes were
further filtered out. The downstream dimension reduction and clustering analysis were done by
Monocle 3/alpha (/7). The dimensionality of the data was reduced by PCA (50 components) first
on the top 5,000 most highly dispersed genes and then with UMAP (max_components = 2,
n_neighbors =50, min_dist =0.1, metric = 'cosine"). Cell clusters were identified using the Louvain
algorithm implemented in Monocle 3 (louvain_res = 1e-04). Clusters were assigned to known cell
types based on cell type-specific markers (Table S3). We found the above Scrublet and iterative
clustering based approach is limited in marking cell doublets between abundant cell clusters and
rare cell clusters (e.g. less than 1% of total cell population). To further remove such doublet cells,
we took the cell clusters identified by Monocle 3 and first computed differentially expressed genes
across cell clusters (within-organ) with the differentialGeneTest() function of Monocle 3. We then
selected a gene set combining the top ten gene markers for each cell cluster (ordered by g-value
and fold expression difference between first and second ranked cell cluster). Cells from each main
cell cluster were selected for dimension reduction by PCA (10 components) first on the selected
gene set of top cluster specific gene markers, and then by UMAP (max components = 2,
n_neighbors = 50, min_dist = 0.1, metric = 'cosine'), followed by clustering identification using
the density peak clustering algorithm implemented in Monocle 3 (rho_thresh = 5, delta thresh =
0.2 for most clustering analysis). Subclusters showing low expression of target cell cluster specific
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markers and enriched expression of non-target cell cluster specific markers were annotated as
doublets derived subclusters and filtered out in visualization and downstream analysis.
Differentially expressed genes across cell types (within-organ) were re-computed with the
differentialGeneTest() function of Monocle 3 after removing all doublets or cells from doublet-
derived subclusters.

Adjudication of the 15 initially unannotated cell types

As noted in the main text, our first round of annotation was performed on a tissue-by-tissue basis
by comparing observed cell types to those expected from prior knowledge of the same tissue. In
general, we recovered all or nearly all main cell types identified by previous atlasing efforts
directed at the same organs, despite differences with respect to species, stage of development
and/or technology. In addition, we identified 15 cell types that we did not at least initially expect
to observe in a given tissue. We labeled these based on the top enriched differentially expressed
gene markers within that tissue, e.g. CSH1 CSH2 positive cells. Unsurprisingly, the initially
unannotated cell types were rarer than annotated cell types (median 0.5% vs. median 2.2%,
respectively, of all profiled cells within an organ), and a few exhibited low specificity scores upon
intra-dataset cross-validation with an SVM classifier.

Subsequent to the initial round of annotation, we reexamined these 15 cell types based on their
distribution in the global UMAP, whether they matched annotated cell types in mouse atlases, their
distribution across tissues derived from different individuals, and their potential for maternal
origin. Our updated interpretations are summarized below. We have grouped them into 8 to which
we have assigned preliminary annotations based on these additional analyses, 4 that would be
better characterized as subtypes of other cell types, and 3 that have high specificity scores but
remain ambiguous. SS = within-tissue specificity score.

Annotated based on additional analyses and/or review

AFP_ALB positive cells (placenta: 0.29% of cells, SS 0.99; spleen: 0.71% of cells, SS 0.98). These
cells are highly correlated and cluster with hepatoblasts (Fig. 3A; expressing high levels of serum
albumin, alpha fetoprotein, and apolipoproteins), which are of course expected in the liver but
unexpected in the placenta and spleen. Of note, although observed in at least two samples of each
organ, their abundance was highly variable. Furthermore, at least in the placenta, similar
hepatoblast-like, AFP+, ALB+ cells were observed in the mouse and were matched to these in cell
type correlation analysis (Fig. S13A). Finally, followup immunostaining studies confirmed the
presence of AFP-positive cells within human fetal splenic tissue (Fig. 3D). We believe that these
cells correspond to hepatoblasts that are potentially circulating.

CSH1_CSH2 positive cells (adrenal: 0.024%, SS 0.87; lung: 0.0073%, SS 0.77): These cells
express high levels of placental lactogen, chorionic gonadotropin, and aromatase, and in the global
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analysis, are closely related to trophoblasts (Fig. 3A). We infer they correspond to trophoblasts
that have entered fetal circulation and are present in sufficient numbers in at least the fetal adrenal
gland and fetal lung, which were two of the most deeply sampled organs, to cluster independently
of other cell types. Of note, although observed in at least two samples of each organ, their
abundance was highly variable. Finally, followup immunostaining studies confirmed ANXAI-
positive cells (these cells are also marked by high levels of ANXAI expression) in human fetal
adrenal tissue, consistent with these cells corresponding to circulating trophoblasts (Fig. 3C).

IGFBP1_DKKI1 positive cells (2.3% of cells in placenta, SS 1.0): In males, /IGFBPI+, DKK I+
cells in the placenta expressed appreciable levels of XIST or 7SLX (Fig. 12B). In the companion
single cell atlas of chromatin accessibility, a corresponding placental cluster was identified, and
shown by two methods to be dominated by maternally derived cells (/2). Together with the fact
that these cells are most strongly marked by expression of insulin-like growth factor binding
protein-1 (/IGFBPI), we conclude that these likely correspond to maternally-derived decidualized
stromal cells (35).

PAEP_MECOM positive cells (0.96% of cells in placenta, SS 0.99): In males, PAEP+, MECOM+
cells in the placenta expressed appreciable levels of XIST or 7SIX (Fig. 12B). In the companion
single cell atlas of chromatin accessibility, a corresponding placental cluster was identified, and
shown by two methods to be dominated by maternally derived cells (/2). On cell type correlation
analysis with the corresponding mouse tissue, they are strongly matched to labyrinth trophoblasts
(Fig. S13B). Together with the fact that these cells are most strongly marked by expression of
glycodelin (PAEP), we conclude that these likely correspond to maternally-derived endometrial
epithelial cells (35).

PDEI11A FAMI19A2 positive cells (1.6% of cells in eye, SS 0.75): These cells specifically express
a phosphodiesterase, encoded by PDE1A4, a gene marking the non-pigmented epithelial cells in
the ciliary body of the eye (/98). Although rare, these cells were observed in all eye tissues
sampled. On cell type correlation analysis with mouse retinal tissue, they are strongly matched to
a cell type annotated by MCA as RIMS+ amacrine cells (Fig. S13C).

MUCI13_DMBT1 positive cells (6.5% of cells in stomach, SS 0.95): In global analyses, these cells
are highly correlated with intestinal epithelial cells (Fig. 3A) and were observed in all stomach

tissues sampled. On cell type correlation analysis with mouse stomach tissue, they are strongly
matched to a cell type annotated by MCA as tuft cells (Fig. S13D).

CCL19_CCL21 positive cells (0.45% of cells in pancreas, SS 1.0): These cells are highly
correlated with mesenchymal cells from other tissues (Fig. 3A). They specifically express FDCSP,
which encodes follicular dendritic cell secreted protein, suggesting these cells may be follicular
dendritic cells, which are thought to be of mesenchymal origin (/99). These cells were observed
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in all pancreatic tissues sampled.

STC2_TLXI1 positive cells (34% of cells in spleen, SS 0.94): These cells are amongst the most
common cell type observed in the spleen, and specifically express the glycoprotein STC2, as well
as the transcription factors 7LX1 and NKX2-3, all associated with mesenchymal precursor or stem
cells (103—105). These cells were observed in all splenic tissues sampled.

Low specificity scores

CLC_IL5RA positive cells (0.10% of cells in heart, SS 0.07): The cells are highly correlated with
cardiomyocytes (thus their low specificity score) but express a distinct program that may reflect a
specialized role, with specific expression of immune cell-related receptors, including interleukin
5 receptor Subunit Alpha (/L5RA) and hematopoietic-specific transmembrane protein 4 (MS4A43).
These cells were observed in all hearts sampled. Of note, one of the top differentially expressed
genes in this cell type encodes oncostatin M (OSM), which has reported to mediate cardiomyocyte
dedifferentiation and remodeling during both acute and chronic cardiac diseases (200)

ELF3_AGBL2 positive cells (0.16% of cells in heart, SS 0.19): The cells are highly correlated
with cardiomyocytes (thus their low specificity score) but express a distinct program that may
reflect a specialized role, with specific expression of many genes associated with pulmonary
alveolar surfactant secreting cells, including pulmonary secretory protein 1 (SCGB3A42),
pulmonary surfactant-associated protein B (SF'7PB) and pulmonary surfactant-associated protein
C (SFTPC). These cells were observed in all hearts sampled.

PDEIC_ACSM3 positive cells (0.64% of cells in stomach, SS 0.75): The cells are highly
correlated with goblet cells in the stomach (thus their modest specificity score), but express a
distinct program that may reflect a specialized role, with specific expression of NOX4, PDEIC,
and ACSM3. These cells were observed in all stomach tissues sampled.

SLC26A4 PAEP positive cells (0.018% of cells in adrenal, SS 0.0): In both the tissue-specific and
global analyses (Fig. 3A), these cells are most closely related to adrenocortical cells, and their very
low specificity score follows from that together with their rarity. As compared to other cells in the
adrenal gland, these cells specifically expressed pendrin (SLC26A44) and a sodium-independent
chloride-iodide exchanger, glycodelin (PAEP). Glycodelin produced by the maternal endometrium
is a key regulator of fetomaternal tolerance during pregnancy (2017). A fetal source of glycodelin
is potentially interesting. These cells were observed in all adrenal glands sampled.

High specificity score but ambiguous

SLC24A4 PEXSL positive cells (1.8% of cells in cerebellum, SS 1.0): These cells express high
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levels of GABAergic neuron markers GAD1 and GAD2 (202), as well as glutamate NMDA
receptor subunit 3A (GluN3A, encoded by GRIN3A), a gene specifically expressed in a subtype of
interneurons of the cerebellum (203). Notably, in the global analysis these cells cluster separately
from all other neurons. These cells were observed in all cerebellar tissues sampled.

SATB2_LRRCT7 positive cells (0.31% of cells in heart, SS 1.0): These cells overwhelmingly derive
from a single heart sample and are strongly correlated with CNS excitatory neurons (Fig. 3A).
Although this most likely reflects contamination of that sample with a fragment of brain during
dissection, it is notable that other neuronal cell types were not identified within the same tissue

sample.

SKOR2 NPSRI positive cells (0.86% of cells in cerebrum, SS 1.0): In the global analysis, these
cells are highly correlated with Purkinje neurons from the cerebellum, which are not to our
knowledge expected in the cerebrum. These cells are not uniformly distributed across the 8
cerebral tissues sampled, but are clearly observed in 5 of these tissue samples. This could reflect
contamination, but of note we did not observe other cerebellar cell types in those same tissue
samples.

Clustering analysis of cells across organs

For clustering analysis of 77 main cell types across 15 organs, we sampled 5,000 cells from each
cell type (or all cells for cell types with fewer than 5,000 cells in a given organ). The dimensionality
of the data was reduced first by PCA (50 components) on the gene set combining top cell type-
specific gene markers identified above (Table S5, qval = 0) and then with UMAP
(max_components = 2, n_neighbors = 50, min dist = 0.1, metric = 'cosine'). Differentially
expressed genes across cell types were identified with the differentialGeneTest() function of

Monocle 3. For annotating cell type-specific gene features, we intersected the cell type-specific
genes identified above with the predicted secreted and membrane protein coding gene sets from
the Human Protein Atlas (/90), as well as the TF set annotated in the “motifAnnotations hgnc”
data from package RcisTarget/v1.2.1 (191).

For clustering analysis of blood cell across 15 organs, we extracted all blood cells corresponding
to annotated clusters of myeloid cells, lymphoid cells, thymocytes, megakaryocytes, microglia,
antigen presenting cells, erythroblasts, and hematopoietic stem/progenitor cells. The
dimensionality of the data was reduced first by PCA (40 components) on the expression of a gene
set combining the top 3,000 blood cell type-specific gene markers (Table S5, only genes
specifically expressed in at least one blood cell type were selected (q-value < 0.05, fold expression
difference between first and second ranked cell cluster > 2) and ordered by median qval across
organs) and then with UMAP (max components = 2, n_neighbors = 50, min_dist = 0.1, metric =
'cosine'). Cell clusters were identified using the Louvain algorithm implemented in Monocle 3
(louvain_res = 1e-04). Clusters were assigned to known cell types based on cell type-specific
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markers. We then co-embedded the human fetal blood cells and a scRNA-seq atlas of blood cells
from the fetal liver (108), using the Seurat v3 integration method (FindAnchors and IntegrateData)
(15) with a chosen dimensionality of 30 on the top 3,000 highly variable genes with shared gene
names in both datasets.

We then applied a similar analysis strategy as above for clustering analysis of endothelial or
epithelial cells across organs. For endothelial cells, we first extracted cells corresponding to
annotated clusters of vascular endothelial cells, lymphatic endothelial cells and endocardial cells
across organs. The dimensionality of the data was reduced first by PCA (30 components) on the
gene set combining top 1,000 endothelial cell type-specific gene markers identified above (Table
S5, only genes specifically expressed in at least one endothelial cell type were selected (q-value <
0.05, fold expression difference between first and second ranked cell cluster > 2) and ordered by
median qval across organs) and then with UMAP with the same parameters used for blood cells.
Cell clusters were identified using the Louvain algorithm implemented in Monocle 3 (louvain_res
= le-04), and then annotated based on the tissue origin of endothelial cells. For epithelial cells, we
first extracted cells from the epithelial cell cluster in Fig. S4B, followed by dimension reduction
first by PCA (50 components) first on the top 5,000 most highly dispersed genes and then with
UMAP (max_components =2, n_neighbors = 50, min_dist = 0.1, metric = 'cosine'). For validating
the tissue specific endothelial cells, we then co-embedded the human fetal endothelial cells and a
scRNA-seq atlas of endothelial cells from mouse adult tissues (/39), using the Seurat v3
integration method (FindAnchors and IntegrateData) (/5) with a chosen dimensionality of 30 on
the top 3,000 highly variable genes with shared gene names in both datasets.

Intra-dataset cross-validation analysis

For cells from each organ, we randomly sampled up to 2,000 cells from each main cell type. We
then followed the same process (/01). Briefly, we combined all sampled cells from each organ and
evaluated cell type specificity by applying a 5-fold cross-validation to the dataset, with a support
vector machine (SVM) classifier (with linear kernel). Whole transcriptomes were used in cell type
prediction. We then computed the cross-validation F-1 value as cell type specificity score. As
control, we randomly permuted the cell type labels, followed by the same analysis pipeline. For
cell type specificity analysis across all organs, we applied the same analysis strategy to the full
dataset after sampling up to 2,000 cells of each main cell type.

Sub-clustering analysis

For each main cell type (with over 1,000 cells) in each organ, we applied Harmony/v1.0 for batch
correction and dimension reduction (/02). Briefly, the dimensionality of the data was reduced by
PCA (30 components, or 10 components for cell types with less than 5,000 cells) first on the top
3,000 (or 1,000 for cell types with less than 5,000 cells) most highly variable genes, followed by
batch correction on sample ID. Cell clusters were identified using the Louvain algorithm
implemented in Seurat/v3.1.4 (15) (resolution = 0.5). We then applied the intra-dataset cross-
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validation approach to evaluate the specificity of sub-clusters within each main cell type. For every
sub-cluster pair, A and B, we computed the number of A cells mislabeled as B cells in cross-
validation analysis with the true dataset (mislabeled cell number: n) or the permuted dataset
(mislabeled cell number: m). A large n value suggests the two sub-clusters are not well separated
by the full transcriptome. We thus iteratively merged similar sub-cluster pairs (n > m), and
identified a total of 657 subtypes across 15 organs. The intra-dataset cross validation approach was
applied to evaluating subtype specificity within each main cell type in each organ. To annotate the
identity of subtypes, we applied the same cell type correlation analysis strategy described in (/7)
to compare cell subtypes from this study to cell types of the same organ from the Microwell-seq
based Mouse Cell Atlas (MCA) (16). A similar comparison was performed for all subtypes from
the brain against cell types annotated in a recent mouse brain atlas (MBCA) (50).

Validating erythropoiesis in the adrenal tissues from newborn mice
Adrenals and kidneys were harvested from CD1 Swiss albino mice (Charles River) on the day of
birth (P0), and bone marrow cells were flushed from the femurs of the dams. Solid tissues were

dissociated using collagenase and stained for imaging flow cytometry using the markers Ter119
(AF488), CD117 (PE-CF594), CD71 (PE), CD45 (EF450), and DRAQS5. Gating of maturing
erythroblast populations was performed using published methods (/28) and analyzed with IDEAS
(Luminex) software.

Comparison of human and mouse developmental atlases

We first applied a slightly modified version of the strategy described in (//) to identify correlated
cell types between this human fetal cell atlas and the mouse organogenesis cell atlas (MOCA) (11).
We first aggregated cell type-specific UMI counts, normalized by the total count, multiplied by
100,000, and log-transformed after adding a pseudo-count. We then applied non-negative least
squares (NNLS) regression to predict the gene expression of target cell type (T) in dataset A with
the gene expression of all cell types (@) in dataset B:

mz = Poa t+ BlaMb|

where @and @ represent filtered gene expression for target cell type from data set A and all cell
types from data set B, respectively. To improve accuracy and specificity, we selected cell type-
specific genes for each target cell type by: 1) ranking genes based on the expression fold-change
between the target cell type vs. the median expression across all cell types, and then selecting the
top 200 genes. 2) ranking genes based on the expression fold-change between the target cell type
vs. the cell type with maximum expression among all other cell types, and then selecting the top
200 genes. 3) merging the gene lists from step (1) and (2). is the correlation coefficient
computed by NNLS regression.

Similarly, we then switch the order of datasets A and B, and predict the gene expression of target
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cell type (@) in dataset B with the gene expression of all cell types (@) in dataset A:

Ty = Bop + B1pMg]

Thus, each cell type a in dataset A and each cell type b in dataset B are linked by two correlation
coefficients from the above analysis: for predicting cell type a using b, and for predicting
cell type b using a. We combine the two values by:

B_=Bab!* Brd

and find Elreﬂects the matching of cell types between two data sets with high specificity. For
each cell type in dataset A, all cell types in dataset B are ranked by [land the top cell type (with
B 1>0.06) is identified as the matched cell type. We compared all human cell types from this study
to 10 main cell trajectories and 56 sub-trajectories from the mouse embryonic cell atlas (MOCA)
(11).

As a different approach, we co-embedded the human fetal cell atlas and the mouse organogenesis
cell atlas (MOCA) (/1) using the Seurat v3 integration method (FindAnchors and IntegrateData)
(15) with a chosen dimensionality of 30 on the top 3,000 highly variable genes with shared gene
names in both human and mouse. We first integrated 65,000 human fetal cells (up to 1,000 cells
randomly sampled from each of 77 cell types) and 100,000 mouse embryonic cells (randomly
sampled from MOCA) with default parameters. We then applied the same integrative analysis
strategy to extracted human and mouse cells from the hematopoietic, endothelial and epithelial
trajectories.

For the co-embedded human and mouse hematopoietic cells, we annotated each mouse cell based
on its k nearest neighbours of human cells. We chose a small k value (k = 3) such that rare cell
types were also annotated. Differentially expressed genes across mouse hematopoietic cells were
computed with the differentialGeneTest() function of Monocle 3/alpha.

Pseudotemporal ordering of mouse macrophage/microglia cells was done with Monocle 3/alpha
with the reduction method of “DDRTree”. Briefly, the top 3 principal components on the top 500
highly variable genes were used to construct the DDRTree pseudotime trajectory with UMI
number per cell as a covariate (param.gamma = 120, norm method = “log”,
residualModelFormulaStr = "~ sm.ns(Total mRNAs, df = 3)"). The cells are separated into three
branch trajectories in the DDRTree space. Differentially expressed genes across the three branches
were computed with the differentialGeneTest() function of Monocle 3/alpha. We then clustered
cells with k means clustering (k = 10) and computed the average development time for each cluster.
The progenitor cell group was annotated based on the lowest average development time and
appeared at the center of the three branches. Each cell was assigned a pseudotime value based on
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its distance from the progenitor cells.

Using the Garnett models trained on this human cell atlas for cell type classification

The R package Garnett for Monocle 3 (version 0.2.9) was used to generate cell type classifiers for
each of the 15 tissues. Marker genes for each cell type were assembled from literature searches by
author HAP, and models were trained using train_cell classifier using default parameters and the
gene database org.Hs.eg.db (version 3.10.0). Models were trained on the entirety of each tissue
dataset with the exception of cerebrum, where 100,000 cells were randomly sampled for training
for computational efficiency. To compare cell type assignments to those obtained via manual
annotation by author JC (i.e. the 77 main cell types), we applied the function classifiy cells using
the trained models with the following non-default parameters: cluster extend = TRUE,
cluster_extend max_frac incorrect = 0.25, cluster extend max frac unknown = 0.95. Garnett
cell type assignments that matched the cell type assignment from manual annotation were
considered ‘correct’ with the following exceptions: Garnett classification of “Chromaffin cells”
was considered correct when manual annotation was “Sympathoblasts”, Garnett classification of
“B cells” or “T cells” was considered correct when manual annotation was “Lymphoid cells”,
Garnett classification of “Cap mesenchyme cells”, “Collecting duct cells”, “Distal tubule cells”,
“Loop of Henle cells”, “Proximal tubule cells”, and “Podocytes” were considered correct when
manual annotation was “Metanephric cells”, Garnett classification of “Ureter cells” and
“Collecting duct cells” were considered correct when manual annotation was “Ureteric bud cells”,
Garnett classification of “Pancreatic Alpha cells”, “Pancreatic Beta cells”, and “Pancreatic Delta
cells” was considered correct when manual annotation was “Islet endocrine cells”, Garnett
classification of “D cells” was considered correct with manual annotation of “Neuroendocrine

cells”.

To test the applicability of Garnett trained models to future data, we applied the pancreas model
to human adult pancreas scRNA-seq data from reference (/00). The model was applied using the
function classify_cells with the same parameters as above. When compared cell type assignments
to those provided by the authors, we considered the following cell types to be equivalent: acinar,
Acinar cells; ductal, Ductal cells; endothelial, Endothelial cells; mast, Myeloid cells; macrophage,
Myeloid cells; schwann, Glia; alpha, Pancreatic Alpha cells; beta, Pancreatic Beta cells; delta,
Pancreatic Delta cells; activated_stellate, Pancreatic stellate cells; quiescent_stellate, Pancreatic
stellate cells; t_cell, T cells.

Code availability
Scripts for processing sci-RNA-seq3 sequencing were written in python and R with code available
at https://doi.org/10.5281/zenodo.4013713. Most trajectory analysis was done with Monocle3 with
setup instructions and tutorial available at http:/cole-trapnell-lab.github.io/monocle-
release/monocle3.
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from a mixture of human HEK293T and mouse NIH/3T3 nuclei. (B-C) UMAP visualization of
single cell profiles derived from “sentinel” tissues included as batch controls in each experiment,
including 5 batches of nuclei (B) and 2 batches of cells (C). (D) UMAP visualization of both nuclei
and cells sampled from the same tissue (pancreas), integrated with Seurat (/5). (E) Boxplot
showing the number of UMISs (left) and genes (right) recovered per cell for each organ. (F) Scatter
plot showing the number of reads mapping to genes on the male-specific Y chromosome vs.
female-specific XIST and TSLX transcripts per fetus. The sex of each fetus was inferred from this
analysis. (G) Barplot showing the distribution of sexes for tissue samples corresponding to each
organ. (H) UMAP visualization of the aggregated transcriptomes of single cells from each of 117
tissue samples, colored by organ. Four samples with fewer than 5,000 total UMIs were excluded
from this analysis. (I) Histogram showing distribution of doublet scores for profiled cells (red) and
simulated doublets (blue) using Scrublet (20). Black vertical line corresponds to a threshold of
0.20, above which cells were called as doublets and filtered out.
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Fig. S2. Identifying main cell types and corresponding gene markers. (A-D) Histograms
showing the distribution of the number of cells (A), contributing samples (B) and marker genes
(C) for each of the 77 main cell types. For gene marker identification, we performed differential
gene analysis to identify cell type-specific gene markers for each of the 77 main cell types (FDR
of 5% and requiring at least a 5-fold expression difference between first and second ranked cell
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type). (D) Histogram showing the distribution of the number of marker genes assessed on an organ-
by-organ basis for 172 cell types (FDR of 5% and requiring at least a 5-fold expression difference
between first and second ranked cell type within a given organ). (E-H) UMAP of profiled
cerebrum (E, F) and liver (G, H) cells, colored by cell types as in corresponding panels of Fig. 1C
(E, G) or normalized gene expression of selected genes (F, H). For gene expression, UMI counts
for each gene were scaled for library size factor, log-transformed, and then mapped to Z-scores.
(I-J) UMAP of profiled cerebrum (I) and liver (J) cells, colored by estimated post-conceptual age
(rounded). We do not observe a clear correspondence between the differentiation trajectories and
estimated post-conceptual age.
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C Cluster-agnostic Cluster-extended
Correct Incorrect Unclassified Correct Incorrect Unclassified
Adrenal 0.33 0.04 0.64 0.79 0.02 0.19
Cerebellum 0.44 0.07 0.49 0.89 0.03 0.08
Cerebrum 0.23 0.10 0.67 0.60 0.07 0.30
Eye 0.30 0.07 0.64 0.70 0.03 0.27
Heart 0.40 0.13 0.47 0.64 0.07 0.30
Intestine 0.37 0.05 0.58 0.90 0.02 0.09
Kidney 0.41 0.05 0.53 0.68 0.04 0.28
Liver 0.41 0.08 0.52 0.69 0.06 0.25
Lung 0.43 0.06 0.51 0.87 0.02 0.11
Muscle 0.32 0.03 0.65 0.79 0.02 0.19
Pancreas 0.58 0.07 0.35 0.88 0.05 0.07
Placenta 0.31 0.08 0.61 0.73 0.05 0.22
Spleen 0.32 0.35 0.33 0.50 0.30 0.20
Stomach 0.42 0.09 0.50 0.66 0.08 0.26
Thymus 0.26 0.08 0.67 0.79 0.04 0.17

Fig. S3. Semi-supervised classification with Garnett agrees with manual annotations and can
be used for automatic classification of other datasets. Garnett classifiers were generated for
each tissue using literature-derived markers (99). (A) A heatmap comparing manual classification
(rows) to cluster-agnostic (left) and cluster-extended (right) cell type assignments by Garnett in
pancreas. Color represents the percentage of cells with a certain manual annotation that were
labeled as each type by Garnett. (B) Results of applying the classifier trained on the data in (A) to
an independent adult human pancreas scRNA-seq data from (/00). Similar to (A), but comparing
cell type assignments from (/00) (rows) to cell type assignments by Garnett (columns). (C) Table
showing the fraction of Garnett organ-specific classifications that agree with manual
classifications. Correct indicates that the strategies agree, incorrect that they do not agree, and
unclassified that Garnett did not provide a classification.
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Fig. S4. Evaluation of main cell type specificity. (A-B) Histogram showing distribution of cluster
specificity scores (F1 scores) of main cell types vs. permuted controls in kidney (A) or all 15
organs (B). (C) Confusion matrix for intra-dataset cell type cross-validation by SVM classifier for
the 77 main cell types identified across all 15 organs.
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Fig. SS. Cell type correlation analysis with corresponding mouse tissues (kidney, liver,
placenta, thymus). We compared putative human cell subtypes identified in our data (rows)
against annotated mouse cell types from the corresponding tissues (/6) (columns) by cell type
correlation analysis. Colors correspond to beta values, normalized by the maximum beta value per
row. All MCA cell types with a beta of a matched human cell type > 0.01, that is also the maximum
beta for that human cell type, are shown for kidney, liver, placenta, and thymus.
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Fig. S6. Cell type correlation analysis with corresponding mouse tissues (pancreas, stomach,
spleen, eye). We compared putative human cell subtypes identified in our data (rows) against
annotated mouse cell types from the corresponding tissues (/6) (columns) by cell type correlation
analysis. Colors correspond to beta values, normalized by the maximum beta value per row. All
MCA cell types with a beta of a matched human cell type > 0.01, that is also the maximum beta
for that human cell type, are shown for pancreas, stomach, spleen and eye.
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Fig. S7. Cell type correlation analysis with corresponding mouse tissues (heart, intestine).
We compared putative human cell subtypes identified in our data (rows) against annotated mouse
cell types from the corresponding tissues (/6) (columns) by cell type correlation analysis. Colors
correspond to beta values, normalized by the maximum beta value per row. All MCA cell types
with a beta of a matched human cell type > 0.01, that is also the maximum beta for that human cell
type, are shown for heart and intestine.
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Fig. S8. Cell type correlation analysis with corresponding mouse tissues (lung, muscle). We
compared putative human cell subtypes identified in our data (rows) against annotated mouse cell
types from the corresponding tissues (/6) (columns) by cell type correlation analysis. Colors
correspond to beta values, normalized by the maximum beta value per row. All MCA cell types
with a beta of a matched human cell type > 0.01, that is also the maximum beta for that human cell
type, are shown for lung and muscle.
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Fig. S9. Cell type correlation analysis with mouse brain cell atlas. We compared putative
human cell subtypes identified in our data in the cerebrum or cerebellum (rows) against annotated
mouse cell types from the Mouse Brain Cell Atlas (50) (columns) by cell type correlation analysis.
Colors correspond to beta values, normalized by the maximum beta value per row. All MBCA cell
types with a beta of a matched human cell type > 0.01, that is also the maximum beta for that
human cell type, are shown together with matching human subtypes from cerebrum or cerebellum.
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Fig. S10. Clustering analysis of 77 main cell types. (A) From each organ, we sampled 5,000
cells from each cell type (or all cells for cell types with fewer than 5,000 cells in a given organ).
These were subjected to UMAP visualization based on the top differentially expressed genes
across cell types within each organ. Here they are colored by tissue-of-origin. In Fig. 3A, the same
UMAP visualization is colored by cell type labels. (B-C) We aggregated the transcriptomes for
each of the 172 annotated clusters observed across 15 organs, i.e. prior to collapsing common
labels. These pseudobulk profiles were subjected to UMAP visualization, either by top
differentially expressed genes across cell types within each organ (B), or by differentially
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expressed noncoding RNAs (C). Colors are the same as those used in Fig. 1C.
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Fig. S11. Distribution across individuals and potential for maternal origin of initially
unannotated cell types across individuals. (A) Bar plot (left) showing how initially unannotated
cell types are distributed across all samples that were processed for the organ in which the
unannotated cell type was identified (normalized by the total number of cells sampled in each
sample). The number of samples represented for each organ is listed in parentheses. Point and box
plot (right) showing the ratio of observed vs. expected numbers of cells for initially unannotated
cell types in each sample of the organ in which they were identified (“expected” assumes that the
overall number of cells of that type should be distributed equally across all tissue samples of the
organ). (B) Scatter plot showing the summed expression of maternal specific genes (XIST and
TSIX; TPM, transcripts per million) in all main cell types separated by male (colored in red) vs.
female (colored in grey). The horizontal line represents 3 standard deviations above the mean gene
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expression value of all cell types in male-derivied tissues.
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Fetal adrenal Placenta Fetal spleen Fetal liver

Fig. S12. Immunostaining with isotype controls and antibody validation in control tissues.
(A, C) Representative fluorescence microscopy of human fetal adrenal (A) or spleen (C) tissue,
staining for isotype controls for antibodies used in Fig. 3CD. (B, D) Representative fluorescence
microscopy of control organs for ANXAI (staining trophoblasts from placenta) or AFP (staining
hepatocytes from liver) in corresponding control organs. (E) Representative fluorescence
microscopy of placenta for AF P+, ALB+ cells, staining for AFP+. For controls, the concentration
of isotype IgG used is the same as the concentration of primary antibody. Images were captured
by the same exposure time and renormalized in the same range. Scale bars are shown in each
image.
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Fig. S13. Cell type correlation analysis informs annotation of some initially annotated cell
types. Scatter plots showing the co-expression of top gene markers for four initially unannotated
cell types in human subtypes (left) or matched mouse cell types from the Mouse Cell Atlas (MCA)
(16) (right plots) from the same organ. The uncharacterized human cell type and matched mouse
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cell types are colored in red, with other cell types colored in grey.
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Fig. S14. Integration analysis and Identification of gene markers and cell fractions of blood
cell types. (A) The same UMAP of Fig. 4C is shown on the left and the right, but cells from our
study are not shown (left) or colored in dark grey (right). Cells from the scRNA-seq atlas of human
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fetal liver blood cells (/08) are colored based on the annotations from the original publication.
Labels on the left derived from annotations in (/08), and labels on the right are main blood cell
categories. (B) UMAP visualization of blood cells, integrating across all profiled organs of this
study (103,766 cells) and an scRNA-seq atlas of blood cells from human embryos (1,231 cells)
(109). Cells are colored by blood cell types from our study (left) or the published dataset (right),
with cells from the other study colored in grey. (C) UMAP visualization of all blood cells, colored
as in Fig. 4B (reproduced at left) or normalized expression of cell type-specific markers (right).
Colors indicate UMI counts for each gene that have been scaled for library size, log-transformed,
and then mapped to Z-scores. The enriched cell types for each gene marker are labeled. (D)
Heatmap showing the blood cell fraction of all blood cells derived from each organ, normalized
by the max value of each cell type.
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Fig. S15. UMAP visualization of hematopoietic stem/progenitor cells (HSPCs). (A) 1,608
HSPCs were selected for reanalysis and UMAP visualization, colored by tissue-of-origin. (B)
Colors correspond to UMI counts for each gene that have been scaled for library size, log-
transformed, and then mapped to Z-scores. The plotted genes include HSPCs markers (RUNX1
and CD34), quiescent HSPCs markers (MECOM and NRIP1), and HSPCs differentiation markers
(LYZ, ACTGI, ANK]I).
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Fig. S17. Characterization and comparison of endothelial cell subtypes. (A-C) UMAP
visualization of endothelial cell types colored by main cell types with tissue-of-origin of vascular
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endothelial cells annotated (A) tissue-of-origin (B) or sub-cluster (C). VEC: vascular endothelial
cells. LEC: Lymphatic endothelial cells. (D) UMAP visualization of single cells integrating human
fetal ECs from our study with mouse adult ECs from (/39). Mouse ECs from the published dataset
are colored by tissue source (/39). Human cells are colored in dark grey. (E) Similar to (D), but
mouse cells are colored in light grey, while human cells are colored by the tissue source (left) or
annotations (right). (F) Dot plot showing the expression of conserved gene markers for organ-
specific endothelial cells (except intestinal endothelial cells, where conserved gene markers are
not found). (G) UMAP visualization of human endothelial cells as in (A), colored by the
normalized expression of cell type-specific genes (FDR of 0.05 and over 2-fold expression
difference between first and second ranked cell type), with the number of cell type-specific genes
and top gene names listed. UMI counts for these genes are scaled for library size, log-transformed,
aggregated and then mapped to Z scores. VEC: Vascular endothelial cells. LEC: Lymphatic
endothelial cells. (H) Heatmap showing cell type-specific TF expression for different endothelial
cell types across organs. Aggregated UMI counts of each cluster for these TFs are scaled for library
size, log-transformed, aggregated, and mapped to Z scores (capped to [0-2]).
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F) UMAP visualization of neuroendocrine cells from digestive and respiratory organs colored by
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Fig. S19. Characterization and comparison of renal epithelial cell subtypes. (A) UMAP
visualization of renal epithelial cells, colored by main progenitor and terminal cell types. (B) Plot
similar with (A), colored by the normalized expression of cell type-specific genes (FDR of 0.05
and over 2-fold expression difference between first and second ranked cell type), with the number
of cell type-specific genes and top TFs listed. UMI counts for these genes are scaled for library
size, log-transformed, aggregated and then mapped to Z scores.
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Fig. S20. Cell type correlation analysis between human and mouse cell atlases. (A) We

1l trajectories

Colors correspond to beta

1C C€

t 10 mouse embryon

ns
ing me

compared 77 human fetal cell types (columns) aga

1
2
3
4

thod (11)

values, scaled by row and capped to [0, 6]. All main human cell types are shown (n

match

(MOCA) (11) (rows) with a cell type cross-

5
6
7
8
9

77), as are

(n = 10). One unexpected

match is between human retinal pigment cells and the mouse melanocyte trajectory. However, the

MOCA major trajectories that are top matches for 1+ human cell types

he human data, and

int

t represented

ilar, skin was no

1mi

marker genes for these cell types are very s

93



O 00 0 N i A W N =

Pt
DN b~ W N = O

a subcluster of the mouse melanocyte trajectory does in fact appear to correspond to retinal
pigment cells. (B) We compared the 77 human fetal cell types (columns) against 56 mouse
embryonic cell sub-trajectories (MOCA) (/1) (rows) with the same method. Colors correspond to
beta values, scaled by column and capped to [0, 6]. All human cell types where the summed NNLS
regression coefficient was > 0.6 are shown (53 columns), as are all MOCA sub-trajectories that
are top matches for 1+ human cell types (28 rows). Reannotated mouse trajectories are marked
with an asterisk. Upon comparison to organ-resolved human cell types and further consideration
of markers, e.g. Krt5 (204), Dsp (205), Grhl3 (206), we conclude that MOCA “pericardium” was
incorrectly annotated in (//) and in fact corresponds to “squamous epithelium” (renamed in
figure). “Stomach epithelial trajectory” has been renamed “foregut epithelial trajectory” as it
mapped to epithelial cell types in organs derived from foregut (stomach and pancreas), rather than
stomach alone. The previous uncharacterized “Pdgfra positive glial trajectory” has been renamed
“oligodendrocyte trajectory”, validated by specific expression of Oligl, Olig2, and Brinp3 (166,
167).
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Fig. S21. Additional views of integration of human fetal and mouse embryonic cell atlases.
After downsampling as described in the text, we applied Seurat (/5) to jointly analyze human fetal
and mouse embryonic cells (/7). The same UMAP as in Fig. 6A-C is also shown here. Mouse
cells are colored by the identity of mouse sub-trajectory (/7). Cells are colored by human cell type
(red labels) or mouse sub-trajectory (black labels). Note that several of the mouse sub-trajectory
labels (/1) have been modified pursuant to this work, indicated by asterisks (112: “oligodendrocyte
precursor” — “Wnt8b+ cell”; 114: “Pdgfra+ glia” — “oligodendrocyte”; 115: “pericardium” —
“squamous epithelial”; 129: “stomach epithelial” “foregut epithelial”; see main text for
justifications). Dotted circles indicate major lineages.
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Fig. S22. Additional views of integration of human fetal and mouse embryonic cell atlases.
After downsampling as described in the text, we applied Seurat (/5) to jointly analyze human fetal
and mouse embryonic cells (/7). The same UMAP as in Fig. 6A-C and Fig. S21 is also shown
here. Mouse cells are colored by the identity of mouse sub-trajectory (/7). Human cells are colored

in grey.
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Fig. S23. Additional views of integration of human fetal and mouse embryonic cell atlases.
After downsampling, we applied Seurat (/5) to jointly analyze human fetal and mouse embryonic
cells (/7). The same UMAP as in Fig. 6A-C and Fig. S21 is also shown here. Human cells are
colored according to the 77 main cell types annotated here. Mouse cells are colored in grey.
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Fig. S24. Integration of all hematopoietic cells from human fetal and mouse embryonic cell
atlases. We applied Seurat (/5) to jointly analyze 103,766 human and 40,606 mouse hematopoietic
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cells. (A) The UMAP visualization is the same with Fig. 6D. Cells are colored by source species.
(B) The UMAP visualization is the same with Fig. 6D. Human cells are colored according to their
tissue-of-origin. Mouse cells are colored in grey. (C) Similar UMAP visualization as above,
colored by normalized gene expression in human cells only (top) or mouse cells only (bottom).
Colors indicate UMI counts for each gene that have been scaled for library size, log-transformed,
and then mapped to Z-scores. (D) Left: similar UMAP visualization as above, colored by annotated
mouse blood cell types (based on the votes of k = 3 nearest human cells) or grey (human cells).
Right: UMAP visualization of mouse blood cells only, colored by the cell type annotations shown
in the left figure.
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Fig. S25. Integration of all endothelial cells from human fetal and mouse embryonic cell
atlases. We applied Seurat (/5) to jointly analyze 89,291 human and 25,301 mouse endothelial
cells. The same UMAP visualization is shown in all panels. (A) Cells are colored by source species.
(B) Cells are colored by source/development stage. (C) Mouse cells are colored by the identity of
mouse sub-trajectory (/). Human cells are colored in grey. (D) Human cells are colored according
to the 77 main cell types annotated here. Mouse cells are colored in grey. (E) Human cells are
colored according to their tissue-of-origin. Mouse cells are colored in grey.
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Fig. S26. Integration of all epithelial cells from human fetal and mouse embryonic cell atlases.
We applied Seurat (/5) to jointly analyze 282,262 human and 65,449 mouse epithelial cells. The
same UMAP visualization is shown in all panels. (A) Cells are colored by source species. (B) Cells
are colored by source/development stage. (C) Mouse cells are colored by the identity of mouse
sub-trajectory (/7). Human cells are colored in grey. (D) Human cells are colored according to the
77 main cell types annotated here. Mouse cells are colored in grey. (E) Human cells are colored
according to their tissue-of-origin. Mouse cells are colored in grey.
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Fig. S27. Trajectory analysis of microglia and tissue resident macrophages. (A) Pseudotime
trajectory (left) or UMAP coordinates from Fig. 6D (right) of all mouse microglia and
macrophages, colored by differential branches (top) or pseudotime computed based on each cell’s
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euclidean distance to the intersection point in pseudotime trajectory (bottom). (B-C) Smoothed
line plots showing dynamics of developmental time (B) or TF expression (C) as a function of
pseudotime for cells in each of the three branches. For gene expression, UMI counts for each gene
are scaled for library size, log-transformed, and then mapped to Z-scores.
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Legends for Supplementary Tables

Table S1 | Metadata for 121 fetal tissue samples. Includes individual id, organ, estimated post-
conceptual age, number of cells profiled, average and median mRNA/gene count, median exonic
reads ratio, number of cells included in downstream analysis, and annotation for trisomy 18
samples.

Table S2 | Differential gene expression test results for the aggregated “pseudobulk”
transcriptomes of different organs. For each gene, the “max_organ” is the organ with the highest
expression by transcripts per million (TPM) (“max.expr”). The “second organ” is the organ with
the second highest expression by transcripts per million (TPM) (“second.expr”). The
“fold.change” is the fold change between the max expression and second max expression. The
“qval” is the false detection rate (one-sided likelihood ratio test with adjustment for multiple
comparisons) for the differential gene expression test across the aggregated pseudobulk
transcriptomes of different organs.

Table S3 | Metadata for main cell types annotated in each organ. We list the 172 cell types
annotated during our organ-by-organ review, together with the gene markers supporting that
annotation and citations to the literature supporting those gene markers. The table also includes
basic statistics for each main cell type, including number of cells profiled, average and median
mRNA/gene count, median exonic reads ratio, number of samples, and statistics from intra-data
cross-validation analysis: cross-validation accuracy (CV_accuracy), recall value (CV_recall) and
F1 score (CV_F1 _score).

Table S4 | Differential gene expression test results for 77 main cell types. For each gene, the
“max_cell _type” is the cell type with the highest expression by transcripts per million (TPM)
(“max.expr”). The “second cell type” is the cell type with the second highest expression by
transcripts per million (TPM) (“second.expr”). The “fold.change” is the fold change between the
max expression and second max expression. The “qval” is the false detection rate (one-sided
likelihood ratio test with adjustment for multiple comparisons) for the differential gene expression
test across different cell types.

Table S5 | Differential gene expression test results for main cell types within each organ.
Similar to Table S4 but on an organ-by-organ basis. For each gene, the “max_cell type” is the cell
type with the highest expression within the organ by transcripts per million (TPM) (“max.expr”).
The “second cell type” is the cell type with the second highest expression within the organ by
transcripts per million (TPM) (“second.expr”). The “fold.change” is the fold change between the
max expression and second max expression. The “qval” is the false detection rate (one-sided
likelihood ratio test with adjustment for multiple comparisons) for the differential gene expression
test across different cell types within the organ.
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Table S6 | Metadata for subtypes within each organ. Includes subtype name, top matched cell
type in the mouse cell atlas (MCA) (/6) and mouse brain cell atlas (MBCA) (50) and beta values
in cell type correlation analysis. The table also includes other basic statistics for each subtype,
including number of cells profiled, average and median mRNA/gene count, median exonic reads
ratio, number of samples, and statistics from intra-data cross-validation analysis: cross-validation
accuracy (CV_accuracy), recall value (CV_recall) and F1 score (CV_F1_score).

Table S7 | Differential gene expression test results for blood cell types. Same column
annotation as Table S5.

Table S8 | Differential gene expression test results for cell clusters along erythropoiesis
trajectory. Same column annotation as Table S5.

Table S9 | Differential gene expression test results for macrophage/microglia subtypes. Same
column annotation as Table S5.

Table S10 | Differential gene expression test results for endothelial subtypes. Same column
annotation as Table S5.

Table S11 | Differential gene expression test results for neuroendocrine cell subtypes. Same
column annotation as Table S5.

Table S12 | Differential gene expression test results for renal epithelial cell subtypes. Same
column annotation as Table S5.

Table S13 | Top matched MOCA (mouse organogenesis) trajectory for each human fetal cell
type. Beta value represents the sum of regression coefficients from non-negative least squares
(NNLS) regression. Added beta values over 0.6 are considered to be strong matches.

Table S14 | Top matched MOCA (mouse organogenesis) sub-trajectory for each human fetal
cell type. Beta value represents the sum of regression coefficients from non-negative least squares
(NNLS) regression. Summed beta values over 0.6 are considered to be strong matches.

Table S15 | Conserved blood cell type markers across human and mouse. For each gene,
“cell_type name” is the human and mouse cell type with the highest expression. The
“qval_human” and “qval _mouse” are the false detection rates (one-sided likelihood ratio test with
adjustment for multiple comparisons) for the differential gene expression test across different
blood cell types in human and mouse, respectively.
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1  Table S16 | Differential gene expression test results for mouse embryonic microglia and

2 macrophage subtypes. Same column annotation as Table S5.
3
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Legends for Supplementary Files

File S1 | Metadata of high-quality cells. Includes sample metadata and various per-cell QC stats,
Louvain cluster id and cell type annotation, for each of the 4,062,965 high-quality cells used in the
downstream analyses.

File S2 | Metadata of genes. Includes gene id, short name and gene type information for each
gene.

File S3 | Gene count matrix of cells. Includes expression UMI values for each gene in each cell.

File S4 | Matrix of gene expression values across tissues. Includes normalized gene expression
values (transcripts per million) for each tissue.

File S5 | Matrix of proportion of cells with each gene detected across tissues. Includes the
proportion of cells in each tissue in which a given gene was detected (UMI > 0).

File S6 | Matrix of gene expression values across main cell types. Includes normalized gene
expression values (transcripts per million) for each cell type in each tissue.

File S7 | Matrix of proportion of cells with each gene detected across cell types. Includes the
proportion of cells in each major cell type in which a given gene was detected (UMI > 0).
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