Appendix

Table of contents

Appendix Figure S1 - Sorting scheme for the yeast native 40S sample and the 43S-PIC-XL sample.	2
Appendix Figure S2 - Sorting scheme for the human native small 40S sample.	3
Appendix Figure S3 - Overview and resolution of the yeast 43S PIC and 48S IC.	5
Appendix Figure S4 - Sample preparation and cryo-EM structure of the yeast 43S PIC-XL.	6
Appendix Figure S5 - Crosslink derived connectivity network of the yeast ABCE1 43S PIC.	7
Appendix Figure S6 - Corrected register shifts in the helices of the PCI-MPN core in the human 43S PIC.	8
Appendix Figure S7 - Position of the eIF3 YLC and the eIF3a-CTD in yeast and human 43S PICs.	9
Appendix Figure S8 - Position of the eIF3g or eIF4b RRM and density in the mRNA channel.	10
Appendix Figure S9 - Molecular interactions of the TC in the complete human 43S PIC.	11
Appendix Table S1 - Data collection, refinement, and model composition of the yeast initiation complexes.	12
Appendix Table S2 - Data collection, refinement, and validation statistics of the human 43S PIC.	13
Appendix Table S3 - Crosslinks identified on a yeast ABCE1-43S PIC.	14
Appendix Table S4 - Molecular interactions between eIF3 subunits and 40S.	19
Appendix Text 1 - Molecular interactions between eIF3j and the 40S subunit in the yeast 43S-PIC.	20
Appendix References	21

Initial Alignment and CTF Refinement Full dataset <u>Removed Contaminations</u> (1'173'087) (e.g. FAS, 60S, bad particles) **3D** Classification **3D** Classification Good 40S particles without mask on elF3b/i (258'447) Pre-40S no elF3b 40S 48S IC 43S PIC 43S PIC 40S elF3b +elF3b -elF3j +ABCE1 +tRNA +elF5 +elF3j +/- partial +elF3i -elF3i +mRNA +ABCE1 elF3 +elF1A (12,937) (19,019) (18,135) (158,775) (45,177) (23, 114)(26, 467)(48, 977)(164, 293)3D Classification 3D Classification 3D Classification on ABCE1 on ABCE1 on elF3b/i +ABCE1 ABCE1 ABCE1 ABCE1 ABCE1 'down' state 'up' state (6.485) (16.656) (20.618) (5.543) (315)(41,711) (7,266) 48S IC 43S PIC 43S PIC, eIF3i in 43S PIC, eIF3i in 6.2 Å 'ES6-position' 'mRNA entry position' 5.3 Å (12,937) (20,618) 5.6 Å 7.0 Å (41,711)(7,266) в Full dataset Removed Contaminations (60S, bad particles) Initial Alignment (598'752) 3D Classification Good 40S particles without mask (521'396) Empty 40S + elF3 +eIF1/1A +elF1/1A +elF1 +elF3 +elF1/1A +elF3j +elF3j noisy +elF1/1A +eIF3j +ABCE1 43S +ABCE1 80S + tRNA (122,213) (78,757) (63,511) (103,751) (98,302) (54,862) 3D Classification on ABCE1 No elF3 (9,363) 3D Classification on elF3j 80S ABCE1 empty (50,947) empty (31,114) 43S ABCE1 Refinement, Bayesian Polishing elF3j (25,599) (34,608) (25,245) CTF Refinement, Postprocessin 43S ABCE1/elF3j

А

Appendix Figure S1 - Sorting scheme for the yeast native 40S sample and the 43S-PIC-XL sample.

A After 2D classification of the full dataset, approximately 260.000 particles representing 40S subunits were selected. By 3D classification into six classes, 29% of the particles were unambiguously identified as pre-initiation complexes, amongst them a 43S PIC class containing eIF1, eIF1A, eIF3 and ABCE1 with stably bound eIF3j and one class representing a partial 48S initiation complex containing eIF1A, eIF3, eIF5, the TC, and ABCE1. The 48S IC was refined to 6.2 Å and the eIF3j-containing 43S was sub-classified for ABCE1, yielding a 5.3 Å

3.0 Å (25.245) reconstruction of the 43S PIC. In total, 62% of the found initiation-factor-containing 40S particles contained ABCE1 after focused classification for ABCE1 presence. Independently, focused classification on the particles containing the eIF3b/i/g module was performed to assess conformational distribution of eIF3i/g with respect to eIF3b. 85% of the particles contained eIF3i in the "ES6-position", while in 15% of particles, eIF3i was in the "mRNA entry-position".

B After 2D classification of the full dataset, 521,396 particles representing 40S subunits were selected. By 3D classification into six classes, two classes containing ABCE1 were identified. These were subclassified by sequentially using a mask on the ABCE1 region as well as a mask on eIF3j, in order to identify one class containing both eIF3j and ABCE1 in the semi-open conformation as observed in the native sample. This class represents 4.8% of the total dataset and was refined to 3.0 Å.

Appendix Figure S2 - Sorting scheme for the human native small 40S sample.

The data set was first classified for presence of initiation factors (see Materials and Methods). 2.9% of all particles contained the eIF3 PCI-MPN core at the back side of the 40S and partial densities for the YLC at the mRNA entry site, the TC in the ISS, and ABCE1. Focused classifications were performed using a binary mask with soft edges

to obtain homogenous populations of 43S complexes. Focused classification on the TC yielded two classes with and without the TC that also differed in the conformation of the 40S head (closed latch without TC and P_{OUT} state). These two classes were sub-classified focusing on ABCE1, yielding the four main classes shown in Fig. 2. To obtain the highest possible resolution, we independently performed multi-body refinements on TC-bound and -unbound classes. The TC-lacking class containing the eIF3-PCI-MPN core was refined in two steps: first, the 43S was divided into three bodies (40S body, 40S head and eIF3; multi-body refinement I). Then the body containing the eIF3-PCI-MPN core was re-centered, the 40S SSU signal subtracted and a multi-body refinement with two bodies was performed (multi-body refinement II) that were used for model building. Particles containing the TC were subjected to multi-body refinement III with four bodies (40S body and head, eIF3-PCI-MPN core and TC) yielding well-resolved densities for the eIF3c-NTD on the body and eIF3d on the head used for model building. Classification of the entire 43S data set focusing on ABCE1 followed by focused refinement yielded a well-resolved map from 27% ABCE1-containing particles used for model building. Focused classification on the YLC revealed various compositional and conformational states. One class represented a very stable complete 43S complex in Pour state and focused refinement yielded a well-resolved map of the TC used for model building. A focused refinement resulted in the best resolved map for the TC, which could be used for model building; two other classes were enriched in stably bound YLC, one showing the clear connection between the PCI-MPN core and the YLC and one with a well-resolved density for a RRM adjacent to the mRNA entry site and density in the mRNA channel.

Appendix Figure S3 - Overview and resolution of the yeast 43S PIC and 48S IC.

A, B Three views on the 3D reconstructions of the yeast 43S PIC (A) and the 48S IC (B) low-pass filtered according to local resolution.

C, D Gold standard Fourier Shell Correlation (FSC) curve (C) and 3D reconstruction the yeast 43S PIC colored and filtered according to local resolution (D).

E, F Gold standard Fourier Shell Correlation (FSC) curve (E) and 3D reconstruction the yeast 48S IC colored and low-pass filtered according to local resolution (F).

Appendix Figure S4 - Sample preparation and cryo-EM structure of the yeast 43S PIC-XL.

A SDS-PAGE gel of the Nip1-TAP pullout sample before and after sucrose gradient purification.

B UV profile from Nip1-TAP pullout elution fraction separated on a sucrose gradient (10–50%) by ultracentrifugation.

C Two views of the 3D reconstruction of the yeast 43S PIC-XL, low-pass filtered at local resolution.

D Atomic model of the yeast 43S PIC-XL.

E, F 3D reconstruction the yeast 43S PIC-XL colored and low-pass filtered according to local resolution (E) and gold standard Fourier Shell Correlation (FSC) curve (F).

Appendix Figure S5 - Crosslink derived connectivity network of the yeast ABCE1 43S PIC.

ABCE1-43S pre-initiation complex was affinity-purified from yeast cell extracts using TAP-tagged Nip1 (eIF3c) protein. Schematic representation of the obtained 43 inter-protein and 74 intra-protein crosslinks (Appendix Table 3) with a focus on initiation factors and ABCE1. Proteins are represented as bars with subunits and secondary structures indicated according to UniProt color scheme. The lengths of protein and crosslinks are scaled to the amino acid sequence.

Appendix Figure S6 - Corrected register shifts in the helices of the PCI-MPN core in the human 43S PIC. A Selected sites of the PCI-MPN core shown with cryo-EM density

B Comparison of the new model and the starting model (PDB 5A5T, des Georges *et al.*, 2015) coloured in grey. Same view and colours as in (A). Side chains are labelled to highlight the register shifts.

Appendix Figure S7- Position of the eIF3 YLC and the eIF3a-CTD in yeast and human 43S PICs.

A Cryo-EM map of the human 43S PIC class obtained after local classification on the YLC (see Appendix Fig S2), low-pass filtered at 6 Å (left). Composite model of the human 43S PIC as in Fig. 2 (right). The view focuses on the mRNA entry side of the 40S, showing the YLC and the rod-like eIF3a density representing its C-terminus spanning from the back side of the 40S to the YLC.

B Interactions of eIF3b with the ribosome; models for eIF3g and eIF3a not shown. Two different views show only WD40 blades (b) 5 to 7 of eIF3b. In β -strand D5 (nomenclature refers to Liu *et al*, 2014) Arg505, Arg507 and

Leu509 and in β -strand D6 Val558, Glu560 are facing towards uS4. The loop between B5-C5 (485-490) interacts with the rRNA backbone of the h16-h17 junction and uS4 (Tyr 165) and the loop between D5 and A6 (especially Phe510) interacts with Lys121 of uS4. h16 is contacted *via* the loop B6-C6 (res 532-541) *via* backbone interactions.

C Two different states of the yeast YLC obtained after focused classification. In one state ("ES6-position") the eIF3g-eIF3i module bound to the eIF3b most C-terminal helix is facing towards expansion segment ES6c, in the other state ("mRNA entry-position") it faces towards the mRNA entry, similar as in the human 43S PIC and as described previously (Erzberger *et al.*, 2014; Llacer *et al.*, 2018). 85% of the particles contained eIF3i in the ES6-position and 15% of particles in the mRNA entry-position (see Appendix Fig S1).

D Molecular model of the yeast 43S PIC with the YLC in (left) and overlay of the two positions. In the overlay the mRNA entry-position eIF3i is colored grey and eIF3g light blue and the eIF3b C-terminal helix white. The loop between the two most C-terminal helices of the eIF3b CTD (Thr697-Asp701) serves as a hinge for rotation.

Appendix Figure S8 - Position of the eIF3g or eIF4b RRM and density in the mRNA channel.

A Zoomed views on the mRNA channel as viewed from the ISS focusing on an extra density (green) on top of rRNA h16 and inside the mRNA channel. The isolated density is low-pass filtered according to local resolution.

B Overview and zoomed views on the poly-alanine model for an RRM on top of h16 and for the density in the mRNA channel in context of the 43S PIC. Interacting r-proteins and rRNA and the clearly visible tryptophan residue interacting with uS3 in the mRNA entry channel are highlighted.

C Model for a typical RRM-fold fitted into the corresponding isolated density.

D Overlay of the RRMs of eIF4b and eIF3g.

E Sequence alignment of the RRM of human eIF4b and eIF3g, which shows 21.7/55.4% sequence identity/similarity.

Appendix Figure S9 - Molecular interactions of the TC in the complete human 43S PIC.

A, B View focusing on the interactions of methionylated tRNA_i with eIF2 γ (A), the ZBD of eIF2 β packing upon the nucleotide binding pocket of eIF2 γ (B) as shown in Figure 7. Binding to tRNA_i (left) and the switch loops (sw) of eIF2 γ contacting the *de novo* built eIF1 N-terminal tail (middle and right).

C Zoomed views of fits of the TC model into the cryo-EM map. Highlighted are the CCA-end of tRNA_i bound to eIF2 γ , the guanine base lock-up by the eIF2 β ZBD, the GTP in the eIF2 γ nucleotide binding pocket and the *de novo* built N-terminal tail (res 4-30) of eIF1.

D Sequence alignment between the yeast and human eIF1 shows a sequence identity of 61.1% and a sequence similarity of 87.0% (N-terminus of eIF1 (4-30) shows 55.6/74.1% sequence identity/similarity) indicating a high degree of conservation.

Appendix Table S1 - Data collection, refinement, and model composition of the yeast initiation complexes.

	<i>S.c.</i> 43S PIC PDB 6ZCE EMDB 11160	<i>S.c.</i> 48S IC PDB 6ZU9 EMDB 11439	<i>S.c.</i> 43S PIC-XL PDB 7A1G EMDB 11608
Data collection			
Voltage (kV)		300	
Electron exposure (e–/Å ²)		25	44.8
Defocus range (µm)	-1.1	to -2.3	-0.5 to -2.5
Pixel size (Å)	1	.084	1.059
Symmetry imposed		C1	
Refinement			
Particle images (no.)	20,618	12,937	25,245
Map resolution (Å)	5.3	6.2	3.0
FSC threshold		0.143	
Map sharpening B factor (Å ²)	-48.5	-100	-24
Model composition			
Correlation coefficient (%; Phenix)	64	60	82
Models used (PDB codes)	5NDG, 6FYY, 4U1E, 3BPJ, 6FEC	6TB3, 6FYX, 4U1E	6TB3, 3BPJ
Non-hydrogen atoms	76,380	78,384	81,866
Protein residues	8,027	7,845	5,612
RNA bases	1,719	1,852	1,771
R.m.s. deviations			
Bond lengths (Å)			0.009
Bond angles (°)			1.245
Validation			
MolProbity score			1.26
Clash score			4.91
Rotamer outliers (%)			0.19
Ramachandran plot			
Favored (%)			99.17
Allowed (%)			0.78
Disallowed (%)			0.05
Validation RNA			0.00
Correct sugar			99
Good backbone conf. (%)			71

Appendix Table S2 - Data collection, refinement, and validation statistics of the human 43S PIC.

Atomic models were built into the best-resolved maps as obtained after local focused refinement or multi-body refinement. Validation statistics are shown for each individual part, as well as for the final composite models. The model for State II includes 40S SSU, eIF1, eIF3 PCI-MPN core, eIF3d, eIF3c-N, eIF3a-C, eIF3b, eIF3i, eIF3j, RRM and ABCE1. The model for State III includes 40S SSU, eIF1, eIF1A, eIF2 $\alpha/\beta/\gamma$, tRNA_i, eIF3 PCI-MPN core, eIF3d, eIF3d, eIF3c-N, eIF3a-C, eIF3b, eIF3i, RRM and ABCE1.

H.s. 43S	40S elF1A elF3c-N elF3d	elF3 PCI- MPN core (3a, 3c, 3d- N, 3e, 3f, 3h, 3k, 3l, 3m)	Ternary complex (eIF2α/β/ γ, tRNA _i eIF1)	ABCE1	composite model (state II) (PDB 6ZVJ, EMDB 11458)	composite model (state III) (PDB 7A09, EMDB 11602)
Data collection						
Voltage (kV)			30	0		
Electron exposure (e–/Å ²)			48	5		
Defocus range (µm)			−0.5 to	-2.5		
Pixel size (Å)			1.05	59		
Symmetry imposed			C1			
Refinement						
Particle images (no.)	23,660	25,228	11,032	13,250	5,231	8,712
Map resolution 3.0/3.0 (Å) (40S body/head)		3.4/3.8 (a,c,d,e,f,h, k,l,m)	4	3.2	3.8	3.5
FSC threshold		· · · <i>·</i>	0.14	13		
Map sharpening B factor (Å ²)	-29.98/ -35.86	-61.34/- 89.07	-50.55	-45.58	-36.79	-34.39
Model composition						
Correlation coefficient (%; mask; Phenix)	85/84	81	51	80	69	75
Starting model (PDB codes)	40S: 6G5H eL41: 6EK0 elF1A: 3J81 elF3d: 5K4B	5A5T	tRNA: 6FEC eIF2β: 6GSM eIF2α,γ: 6O85 eIF1: 6GSM	5LL6		
Non-hydrogen atoms	50,220/ 27,787	25,291	7,889	4,619	115,031	122,211
Protein residues	3,043/ 2,239	3,104	973	576	10,127	10,954
RNA bases	1208/ 464	0	75	0	1,720	1,796
R.m.s. deviations						
Bond lengths (Å)	0.017/0.024	0.016	0.013	0.017	0.010	0.010
Bond angles (°)	1.425/1.757	1.587	1.578	1.558	1.337	1.203

Validation						
MolProbity score	1.79/2.05	1.5	1.93	2.21	1.4	1.98
Clash score	2.82/4.36	6.52	7.9	6.45	5.45	8.57
Rotamer outliers (%)	8.9/12.64	1.53	3.83	13.44	1.39	0.02
Ramachandran						
plot				-		
Favored (%)	99.63/99.18	99.74	97.74	99.48	99.76	90.96
Allowed (%)	0.37/0.77	0.26	1.54	0.52	0.24	8.98
Disallowed (%)	0/0.05	0	0.71	0	0	0.06
Validation RNA						
Correct sugar pucker (%)	99.17/98.71	-	100	-	100	100
Good backbone conf. (%)	73.43/75	-	69.33	-	70	70

Appendix Table S3 - Crosslinks identified on a yeast ABCE1-43S PIC.

ABCE1-bound 43S PIC was affinity-purified from yeast cell extracts using TAP-tagged Nip1 (eIF3c) protein and crosslinked with BS2G. 43 inter-protein (dark green) and 74 intra-protein (light green) crosslinks were obtained from the analysis. The crosslinks are listed according to the Id.Score (xQuest identification score).

No	Topology	Protein1	Protein1 Protein2 AbsP Abs		AbsP	Mz	z	Err	ld.Sc
				os1	os2			or	ore
1	TLVNKSTGLK-VAKSNR-a5-b3	sp P33442 RS3	sp P26783 RS5_	50	222	610.	3	-	42.0
		A1_YEAST	YEAST			686		1.1	7
2	NKDDLEKISK-IAKER-a7-b3	sp P38249 EIF3	sp P32497 EIF3	596	802	476.	4	0.1	40.4
		A_YEAST	C_YEAST			015			6
3	ALQKEQEEQALK-STALKILAGK-a4-	sp Q05775 EIF3	sp Q03195 RLI1	118	121	628.	4	0.7	39.2
	b5	J_YEAST	_YEAST			607			3
4	TGPKALPDAVTIIEPK-	sp P05750 RS3_	sp P38701 RS20	200	32	801.	4	1.2	39.0
	VKQLENVSSNIVK-a4-b2	YEAST	_YEAST			455			9
5	DDLEKISK-IAKER-a5-b3	sp P38249 EIF3	sp P32497 EIF3	596	802	553.	3	-	37.9
		A_YEAST	C_YEAST			637		0.9	1
6	ENKVSPADAAK-VIKVLGR-a3-b3	sp P39938 RS26	sp Q3E7X9 RS2	108	14	503.	4	0.5	37.5
		A_YEAST	8A_YEAST			041			3
7	GISFKLQEEERER-SFKEPR-a5-b3	sp P02407 RS17	sp P32905 RSSA	72	116	496.	5	-	35.5
		A_YEAST	1_YEAST			658		0.3	
8	DSATHELTKVSEEPIHK-VHKSVAER-	sp P40217 EIF3I	sp Q04067 EIF3	138	47	589.	5	-	34.7
	a9-b3	_YEAST	G_YEAST			106		1.4	
9	GISFKLQEEER-SFKEPR-a5-b3	sp P02407 RS17	sp P32905 RSSA	72	116	732.	3	0.1	34.7
		A_YEAST	1_YEAST			043			
10	NKSELESR-IQKEK-a2-b3	sp P38249 EIF3	sp Q04067 EIF3	709	97	568.	3	1.2	34.6
		A_YEAST	G_YEAST			305			3
11	ISKIVDER-IAKER-a3-b3	sp P38249 EIF3	sp P32497 EIF3	599	802	557.	3	-1	34.2
		A_YEAST	C_YEAST			653			8
12	EKVEEQEQQQQQIIK-VTPTKTEVIIR-	sp P38701 RS20	sp P05750 RS3_	8	45	809.	4	1.1	34.1
	a2-b5	_YEAST	YEAST			941			4
13	ANDIGFHKYR-ITLTSTKVK-a8-b7	sp P41058 RS29	sp P38701 RS20	54	30	577.	4	1.3	33.7
		B_YEAST	_YEAST			319			7
14	QTVATLNVLIKDK-AGKVK-a11-b3	sp Q05775 EIF3	sp POCX33 RS3	205	13	510.	4	1.1	33.5
		J_YEAST	OA_YEAST			808			4
15	ALQKEQEEQALK-AIKGPVQK-a4-b3	sp Q05775 EIF3	sp Q03195 RLI1	118	181	588.	4	0.8	31.9
		J_YEAST	_YEAST			331			5
16	LTGDDQKFGVPVR-KAFTSYDR-a7-	sp P38011 GBL	sp POCX51 RS1	53	107	629.	4	0.5	31.9
	b1	P_YEAST	6A_YEAST			322			1
17	LAAPENEKPAPVRTHMR-EKAKR-a8-	sp Q01855 RS1	sp P39730 IF2P	72	226	881.	3	3.2	31.8
	b4	5_YEAST	_YEAST			813			9

18	KVQLGK-VEKASR-a1-b3	sp POCX35 RS4	sp POCX31 RS2	128	102	364.	4	-	31.8
		A_YEAST	4A_YEAST			968		0.7	4
19	EFIILGGGQEAKDVTTTSANEGK-	sp P40217 EIF3I	sp P06103 EIF3	261	632	865.	4	1.2	31.7
	HKVEHGYK-a12-b2	_YEAST	B_YEAST			188			3
20	AVLKFAAHTGATPIAGR-	sp P32905 RSSA	sp P02407 RS17	88	81	699.	5	0.7	31.2
	KDQYVPEVSALDLSR-a4-b1	1_YEAST	A_YEAST			979			1
21	LVEGLANDPENKVPLIK-	sp P48589 RS12	sp P05759 RS31	85	113	723.	4	0.5	31.1
	VDAEGKVTK-a12-b6	YEAST	YEAST			401			3
22	AAKAAAAI AGGK-NTKGGK-a3-b3	sn103F7921RS2	sn P38912 IF1A	12	7	566	3	-	30.5
		5A YFAST	YFAST			988	Ū	11	1
23	NKSELESB-EKASLTK-22-62	spl D382/19/ FIE3		709	99	611	3	0.6	30 /
25		A VEAST		/05	55	011.	5	0.0	0.4
24				21	212	991	4		0
24	AAAALAGGKK-KKDELER-89-DI	SPIQ3E/92IRS2	SD1267831855_	21	213	468.	4	-	30.0
25			TEAST	200	22	205	-	1.3	0
25	IGPKALPDAVIIIEPKEEEPILAPSVK-	sp P05750 RS3_	sp P38/01 RS20	200	32	879.	5	2.3	29.6
	VKQLENVSSNIVK-a4-b2	YEAST	_YEAST			894			5
26	YIDLEAPVQIVKR-VTPTKTEVIIR-a12-	sp P38701 RS20	sp P05750 RS3_	101	45	724.	4	0.7	29.5
	b5	_YEAST	YEAST			67			8
27	DVTTTSANEGKFEAR-EKASLTK-a11-	sp P40217 EIF3I	sp Q04067 EIF3	272	99	833.	3	0.9	29.2
	b2	_YEAST	G_YEAST			087			1
28	REDDKPK-EKAKR-a5-b4	sp P39935 IF4F	sp P39730 IF2P	564	226	538.	3	2.7	29
		1_YEAST	_YEAST			627			
29	GGTATGGAGKK-VEASCFDGNKR-	sp Q05775 EIF3	sp P38912 IF1A	230	56	761.	3	0.6	28.4
	a10-b10	J YEAST	YEAST			367			2
30	AAAFKSOKSK-KMKSU NK-a8-b3	sn P39730 IF2P	sp P39935 IF4F	147	611	702	3	07	28.2
50		ΥΕΔST	1 VFΔST	147	011	066		0.7	20.2
21	AAAEKSOKSK KNAKSLINK 28 62			147	E 71	702	2	0.7	- 1 0
21	AAALKSQKSK-KINKSLLINK-88-05	VEACT	SPIESSSSOUR	147	371	702. 066	5	0.7	20.2
22				707	07	100		0	20.1
32	QVIIAEVSKNK-IQKEK-a9-b3	sp P38249 EIF3	sp Q04067 EIF3	/0/	97	493.	4	0	28.1
		A_YEAST	G_YEAST	_		039	_		9
33	AIKLTGHERPLTQVK-SIITYKIEDGVK-	sp P40217 EIF3I	sp Q04067 EIF3	5	23	631.	5	-	27.5
	a3-b6	_YEAST	G_YEAST			161		0.2	1
34	KAATASANVR-NKAVAR-a1-b2	sp P38431 IF5_	sp P32497 EIF3	156	189	581.	3	-	26.7
		YEAST	C_YEAST			326		2.5	3
35	AEGKLLTRK-KAALEKK-a4-b1	sp P39730 IF2P	sp P39935 IF4F	235	217	633.	3	-	26.4
		_YEAST	1_YEAST			386		0.1	2
36	AQHAVILDQEKYDR-	sp Q3E792 RS2	sp POCX55 RS1	46	36	793.	4	-	26.1
	IVYALTTIKGVGR-a11-b9	5A_YEAST	8A_YEAST			683		2.1	4
37	AGNREPPSTPSTLPKATVSPDK-	sp P38249 EIF3	sp P39936 IF4F	889	243	693.	5	-2	25.4
	KNGLISETEK-a15-b1	A YEAST	2 YEAST			563			9
38	QNDITDGKDYHTLANNVESK-	sp POCX55 RS1	sp Q01855 RS1	96	13	679.	5	1.5	25.1
	VFKTHSYR-a8-b3	8A YEAST	5 YEAST			733			
39	IAIVSADKCKPK-EDDKPK-a10-b4			17	564	539.	4	-	24.7
		YEAST	1 YEAST			787		1.9	7
40	VSVVRNKETGK-LANFEKMK-a7-b6	sp 004067 FIF3	sp P39730 IF2P	227	210	569	Δ	-1	23.0
.0		G YFAST	YFAST		210	308	1	- ⁻	8
41	D\/ΔKPMSIESIR_KKΔΔΤΛςΛΝΙ/R4	sn 005775 EIE2	sn P38/131 1E5	186	156	6/0	Л	2.2	22 0
41			30431113_ VEACT	100	150	102	4	2.2	22.5
42				170	27	102	C	4	2
42	DVLDELKINYISKK-EIVKSINISSKK-a/-	SPIP204591F2A	SD12390151511VI	170	27	485.	6	-4	22.7
		_YEAST	I_YEASI		100	598	_		3
43	YGLAEKVEK-DCKACGK-a6-b3	sp1PUCX311RS2	sp P38431 IF5_	99	122	657.	3	2.6	22.6
		4A_YEAST	YEAST			319			1
44	VGELLKLR-SPEDVKR-a6-b6	sp Q03195 RLI1	sp Q03195 RLI1	192	203	464.	4	-	43.0
		_YEAST	_YEAST			018		0.9	8
45	ILQLENVLKR-VGELLKLR-a9-b6	sp Q03195 RLI1	sp Q03195 RLI1	216	192	562.	4	0.4	42.5
		_YEAST	_YEAST			85			
46	FNVVKVSAAAGK-NAGLGFKTPK-a5-	sp POCX48 RS1	sp POCX48 RS1	141	43	580.	4	1.8	41.3
	b7	1B YEAST	1B YEAST			329			7
47	NTEEKGWVPVTK-LVKAGK-a5-b3		sp P25443 RS2	33	46	700.	3	1	41.0
		YEAST	YEAST			057			6
48	AQHAVILDOFKYDR-I KIGGSI AR-	sp Q3F792 RS2	sp Q3F792 RS2	46	70	539	5	0.5	40.7
	a11-b2	5A YEAST	5A YEAST			897	Ĭ		2
	1	<u> </u>					i		

49	GPVQKVGELLK-ILQLENVLKR-a5-b9	sp Q03195 RLI1 YEAST	sp Q03195 RLI1 YEAST	186	216	622. 878	4	1.4	39.2 4
50	SDWLLLKK-SIDTLKDK-a7-b6	sp P39730 IF2P YEAST	sp P39730 IF2P YEAST	993	976	505. 037	4	0.7	38.8 5
51	AQHAVILDQEKYDR-AAAALAGGKK- a11-b9	sp Q3E792 RS2	sp Q3E792 RS2	46	21	528. 486	5	0.4	38.7 3
52		sp P38701 RS20	sp P38701 RS20	8	101	881	4	0.5	38.3
52	YIDI FAPVOIVKR-a2-b12	YFAST	YFAST	0	101	722	·	0.5	7
53	ASLTKTGLQCR-IQKEK-a5-b3	sp Q04067 EIF3	sp Q04067 EIF3	104	97	659. 027	3	0.9	, 38.3 2
54	ALTSLFSKAGK-SFHGKR-a8-b5	sp P06103 EIF3 B_YEAST	sp P06103 EIF3 B_YEAST	105	147	488. 021	4	- 1.2	38.0 5
55	LSSESVIEQIVKYAR-	sp P05756 RS13	sp P05756 RS13	39	43	800.	4	0.6	37.8
56	RKEEIANAER-LAKGGR-a2-b3	sp P38249 EIF3	sp P38249 EIF3	835	961	478.	4	-	37.7
57	VQTKLTR-ELEKK-a4-b4	sp P26786 RS7	sp P26786 RS7	76	83	765 529.	3	-	37.4
58	KLDYVLALK-VGVLSEDKK-a1-b8	A_YEAST sp P05755 RS9	A_YEAST sp P05755 RS9	92	90	642 533.	4	0.9	37.2
59	ALQKEQEEQALK-KGKESSADR-a4-	sp Q05775 EIF3	sp Q05775 EIF3	118	62	622.	4	-	37.1
60	ILQLENVLKR-SPEDVKR-a9-b6	sp Q03195 RLI1	sp Q03195 RLI1	216	203	573 538.	4	0.2	37.0
61	APFVVALNKIDR-TKLLDK-a9-b2	sp P39730 IF2P	sp P39730 IF2P	531	420	50 539.	4	0	8 36.9
62	DIEKLSGGELQR-ILQLENVLKR-a4-b9	sp Q03195 RLI1	sp Q03195 RLI1	221	216	889.	3	2.3	36.8
63	KAPFVVALNKIDR-TKLLDK-a10-b2	sp P39730 IF2P	sp P39730 IF2P	531	420	571.	4	0.4	36.5 8
64	LNNVFVIGEQGKPYISLPK-	sp POCX35 RS4	sp POCX35 RS4	233	161	893. 492	4	0.8	36.3 9
65	VCEFMISQLGLQKK-NIKIHGF-a13- b3	sp P32911 SUI1 YFAST	sp P32911 SUI1 YFAST	100	104	651. 848	4	-	36.2
66	AQHAVILDQEKYDR- AAKAAAALAGGK-a11-b3	sp Q3E792 RS2 5A_YEAST	sp Q3E792 RS2 5A_YEAST	46	12	556. 9	5	- 0.5	36.0 3
67	YGSEKGSPAGPSAVTAR-IEDGVKYK- a5-b6	sp Q04067 EIF3 G YEAST	sp Q04067 EIF3 G YEAST	62	29	671. 092	4	0.5	35.9 4
68	ALQKEQEEQALK-GKESSADR-a4-b2		sp Q05775 EIF3 J YEAST	118	62	590. 549	4	- 0.9	35.7 5
69	AQHAVILDQEKYDR-ILKEVPTYR- a11-b3	sp Q3E792 RS2 5A YEAST		46	52	580. 711	5	- 1.9	35.6 3
70	KAATASANVR-DCKACGK-a1-b3			156	122	641. 312	3	- 1.3	35.6 1
71	YGSEKGSPAGPSAVTAR-VHKSVAER- a5-b3	sp Q04067 EIF3 G YEAST	sp Q04067 EIF3 G YEAST	62	47	664. 594	4	1.8	35.5 8
72	NVKEEETVAK-SKNAER-a3-b2	sp POCX39 RS8 A YEAST	sp POCX39 RS8 A YEAST	128	137	649. 332	3	- 0.9	35.5 7
73	FYAPETKEK-TDVIKR-a7-b5	sp P06103 EIF3 B_YEAST	sp P06103 EIF3 B_YEAST	529	536	647. 011	3	0	35.5 6
74	DIEKLSGGELQR-GPVQKVGELLK-a4- b5	sp Q03195 RLI1 YEAST	sp Q03195 RLI1 YEAST	221	186	869. 818	3	1.3	35.5 4
75	ALLDIDTLDEKTR-GKESSADR-a11- b2	sp Q05775 EIF3 J_YEAST	sp Q05775 EIF3 J_YEAST	79	62	612. 562	4	0	35.3 9
76	AAKLAAPENEKPAPVR-VFKTHSYR- a3-b3	sp Q01855 RS1 5_YEAST	sp Q01855 RS1 5_YEAST	64	13	466. 589	6	- 1.7	35.2 6
77	TGPKALPDAVTIIEPK-DPAKSR-a4-b4	sp P05750 RS3_ YEAST	sp P05750 RS3_ YEAST	200	194	605. 336	4	- 2.1	34.5 2
78	ALQKEQEEQALK-KEQPKK-a4-b5	sp Q05775 EIF3 J_YEAST	sp Q05775 EIF3 J_YEAST	118	56	567. 563	4	1.1	34.3 1
79	GGTATGGAGKK-GKTNLGGAFK- a10-b2	sp Q05775 EIF3 J_YEAST	sp Q05775 EIF3 J_YEAST	230	236	664. 688	3	- 1.7	34.1 9

80	TTQENASEAIKSDSK-	sp P39730 IF2P	sp P39730 IF2P	298	303	770.	4	1.1	34.1
	KDSEVVPDDELK-a11-b1	_YEAST	_YEAST			123			3
81	ASLTKTGLQCR-NKETGK-a5-b2	sp Q04067 EIF3	sp Q04067 EIF3	104	227	669.	3	1.1	34.0
		G YEAST	G YEAST			351			9
82	ALQKEQEEQALK-ELIKK-a4-b4	sp Q05775 EIF3	sp Q05775 EIF3	118	86	714.	3	-	33.9
		J YEAST	J YEAST			067		0.2	4
83	YIDLEAPVQIVKR-VLKISTR-a12-b3	sp P38701 RS20		101	64	614.	4	1	33.7
		YEAST	YEAST			614			7
84	KOFVVDVLHPNR-LAEVYKAEK-a1-	sp P0CX31 RS2	sp P0CX31 RS2	21	49	650.	4	-1	33.6
	b6	4A YEAST	4A YEAST			107	-	_	3
85	RPAFTKDTPIFTHPI FNAFTK-	sp10057751FIF3	sp 005775 FIF3	132	118	654	6	0.9	33.3
00	ALOKEOFEOALK-a6-b4	I YFAST	I YFAST	102	110	677	Ŭ	0.0	8
86		sp10057751FIF3	sp 005775 FIF3	79	86	786	3	03	333
00		I YFAST	I YFAST	, 5		117	-	0.0	5
87	ΑΤΥΣΡΟΚΑΚ-Ι ΟΜΙΑΟΚΟΒ-a7-b7	sn P38249 FIF3	sp P38249 FIF3	896	905	529	4	07	33.2
07		A YFAST	A YFAST	050	505	288		0.7	8
88	AOHAVII DOFKYDR-SMKDR-a11-b3	spl03E792/RS2	sn 03E792 RS2	46	33	605	4	-	32.7
00		5A YEAST	5A YFAST	10	55	053		04	7
89	GKESSADR-ELIKK-a2-b4	sp10057751FIF3	sp 005775 FIF3	62	86	525	3	0.4	32.6
05		I YEAST	I YEAST	02	00	618	5	0.4	7
90	SLEHYDKI SEOGPPETI B-I NKEYK-	sp P32/197 FIF3	sn P32/197 FIF3	661	796	752	Λ	-	, 32.1
50	a7-b3	Ο ΥΕΔΥΤ	C VFΔST	001	/50	386	-	09	8
91		sp P38/31 IF5	sn P38/31 IF5	152	156	550	Λ	-	31.9
51	h1	36[1 30431[1 3_ VFΔST	VFΔST	152	150	570.	-	03	1
02		col029701/0520	cn 020701 0020	0	64	600	Л	0.5	21 /
92	h3	VENST	VENCT	0	04	099. 884	4	0	51.4 2
02				670	700	707	1	0.1	2
95	NUCELESP 28 62	A VEACT	SULAST	079	709	200	4	0.1	51.Z o
0.4				110	40	599	4	0.4	0
94	ALQKEQEEQALK-KPAPKPK-d4-D5	SPIQUS7751EIF3	SPIQUS775JEIF3	118	49	509. E72	4	0.4	31.Z
05				120	110	575	Г	0.0	4
95	ALOKEOEEOALK 28 64	I VEACT	I VENCT	120	110	727.	5	0.8	50.8 7
00				62	25	(1)	4	1.0	7 20.0
90	ha	SPIQU4007 JEIFS	C VEAST	02	55	221	4	1.0	50.0 4
07				0.4	EO	016	1		4 20.6
97		SP12334421833	SP1P334421K33	94	50	916.	4	- 0 E	30.6
0.9				147	62	303	4	0.5	2
98	DIPIETHPLENAETKK-GKESSADK-	SPIQUS7751EIF3	SPIQUS7751EIF3	147	62	704.	4	0.7	30.5
00				0.4	FO	099	Г		20.1
99		SP P33442 KS3	SP P33442 K53	94	50	/8/.	5	- 27	30.1
100				120	140	612	4	Z./	20.0
100	GFLFVECGSIVINDARK-IIKSFHGR-	SPIPUOIUSIEIFS	SPIPUOTUSIEIFS	138	142	082. FOC	4	- 1 7	29.9
101				000	070	596	2	1.7	4
101	μννγοιε-οιμιτνυκ-α2-βο	SHIRSS/SUIIFZP	5412373011F2P	990	9/0	040. 262	5	-	29./ 7
102				1 4 7	110	303		0.1	/
102		SPIQUS//SIEIF3	SPIQUS//SIEIF3	14/	118	845. 425	4	-	29.5 c
102				000	000	435	г	0.8	20.4
103	AGINEFFSIFSILFKAIVSPUK-	3015302491E1F3	34153249 EIF3	007	090	250	Э	0	29.4 2
104				66	100	359	4	0.2	3
104	DLSEASVIPEIALPKIINK-	SD1P399381K526	SD1P399381K526	66	108	853.	4	0.2	29.3
105				110	00	920	г		4
105	ALQKEQEEQALK-IKKELIK-84-D3	SPIQU5775 EIF3	spiqu5775 EIF3	118	82	480.	5	-	29.0
100				000	967	2/3	-	U.1	0
106	AGINKEPPSTPSTLPKATVSPUK-	SPIP382491EIF3	SPTP38249TEIF3	889	867	666.	5	0.9	28.3
107		A_TEASI	A_TEASI	10	07	940 577	-		9
107	AQHAVILDQEKYDR-HSKQAIYTR-	spiuse/92/RS2	spiuse/92/RS2	46	97	5//.	5	-	28.2
4.00		5A_YEAST	5A_YEAST	0.02	0.67	/	<u> </u>	0.9	1
108	EPPSTPSTLPKATVSPDK-KSTPYSFR-	sp1P382491EIF3	sp P38249 EIF3	889	867	/33.	4	-	25.7
4.00	a11-b1	A_YEAST	A_YEAST	400	50	879	<u> </u>	0.7	8
109	EQEEQALKRPAFTK-KEQPK-a8-b1	sp Q05775 EIF3	sp Q05775 EIF3	126	52	600.	4	-	25.6
		J_YEAST	J_YEAST	4	455	568	<u> </u>	2.8	6
110	AASAKIESSVESQFSAGR-	sp PUCX39 RS8	sp PUCX39 RS8	151	128	/67.	4	1.4	25.6
	NVKEEETVAK-a5-b3	A_YEAST	A_YEAST			388			1

111	VVAQVEDAVNNTQQADLKNK-	sp P32497 EIF3	sp P32497 EIF3	187	189	904.	4	0.4	25.4
	NKAVARAYNTTK-a18-b2	C_YEAST	C_YEAST			724			6
112	VTGFKDEVLETV-TLVNKSTGLK-a5-	sp P33442 RS3	sp P33442 RS3	248	50	831.	3	1.3	25.4
	b5	A1_YEAST	A1_YEAST			456			2
113	QNDITDGKDYHTLANNVESK-	sp POCX55 RS1	sp POCX55 RS1	96	49	688.	5	0.6	24.4
	KADVDLHKR-a8-b1	8A_YEAST	8A_YEAST			544			2
114	ALQKEQEEQALK-GGTATGGAGKK-	sp Q05775 EIF3	sp Q05775 EIF3	118	230	604.	4	-	24.3
	a4-b10	J_YEAST	J_YEAST			317		2.8	7
115	EPPSTPSTLPKATVSPDK-	sp P38249 EIF3	sp P38249 EIF3	889	898	741.	4	-	24.3
	AKLDMIAQK-a11-b2	A_YEAST	A_YEAST			895		1.3	7
116	KADVPPPSADPSK-EIVKSNTSSK-a1-	sp P39015 STM	sp P39015 STM	34	27	832.	3	-	23.5
	b4	1_YEAST	1_YEAST			765		1.2	2
117	ALTAAITPMNKK-GGTATGGAGKK-	sp Q05775 EIF3	sp Q05775 EIF3	166	230	565.	4	0.7	22.5
	a11-b10	J_YEAST	J_YEAST			311			2

Appendix Table S4 - Molecular interactions between eIF3 subunits and 40S.

	elF3a											
3a	eS1	3a	3c	3a	3f	3a	3h	3a	3m			
Q6	E78	E125	K474	N521	S232	N521	S232	S444	K342			
N10	E78	V132	N678	H565	R109	A525	Q314	I44 6	1325			
R14	E78, D77	R140	P464,S4 66			E547	K220	Y447	K342			
E17	N75	R143	D463			H550	W216	Q448	1325			
		W246	P729	Ţ		E564	H209	S449	D326, Q327			
		Q247	Q724]		R571	E77	E451	Q327			
		D337	K745	T		E576	R108	R454	E309			
		L342	R719]		R578	E145, E146	N512	C323			
		E468	Y799									
		R483	S797, D800]								
		1484	D800	1								

elF3b										
3b	18S rRNA	3b	uS4							
K487	A560	R507	D158							
D488	A560	V556	K155							

c-N						elF3c (PCI	-MPN co	ore)				
18S rRNA	3c	18S rRNA	3c	eS27	3c	3d	3c	3e	3c	3f	3c	3h
C1039, A1181	K342	G929	G341	Q65	D562	A70	Y583	Y286	Q852	D333	Y557	L210
C1180	K343	G929	N388	Q75	M591	Q31	D587	Y286	N870	N351, Q347	L859	M247
U1178			L389	Q75	H593	P32, G64	D602	Y41			K862	M247
C369					Q595	L39	S820	N302			V873	N261
U367					H600	H73	L835	1347, Q349			H876	N261
U367, U368					D602	H73	Q837	S352				I
U367					P603	W45	H845	N395				
					Q606	W45						
					Y609	K41]					
					N610	A43	Ι					
					N631	R38	T					
					D635	Y59						
					R641	T46	Ι					
					E666	W45	Ι					
	c-N 185 rRNA C1039, A1181 C1180 U1178 C369 U367 U367 U367 U368 U367	c-N Item 188 3c C1039, A1181 K342 C1180 K343 U1178 U1178 U367 U367, U368 U367 U367	c-N 18S rRNA 188 3c 18S rRNA C1039, K342 G929 C1180 K343 G929 C1180 K343 G929 U1178 C369 U367 U367, U367 U367	c-N Image: scalar stress of the stres of the stress of the stress of the stress of the s	I8S rRNA 3c I8S rRNA 3c eS27 C1039, A1181 K342 G929 G341 Q65 C1180 K343 G929 N388 Q75 U1178	IS IS IS Sc PRNA Sc eS27 Sc C1039, A1181 K342 G929 G341 Q65 D562 C1180 K343 G929 N388 Q75 M591 U1178 L389 Q75 H593 U367 L389 Q75 H600 U367 P603 Q666 Y609 N810 N611 N635 R641 E666	c-N iss rRNA 3c iss rRNA 3c es27 3c 3d C1039, A1181 K342 G929 G341 Q65 D562 A70 C1180 K343 G929 G341 Q65 D562 A70 C1180 K343 G929 N388 Q75 M591 Q31 U1178 L389 Q75 H593 P32, G64 U367 D602 H73 U367 P603 W45 Q606 W45 Y609 K41 N610 A43 N631 R38 D635 Y59 R641 T46 E666 W45	c-N ISS rRNA 3c ISS rRNA 3c eS27 3c 3d 3c C1039, A1181 K342 G929 G341 Q65 D562 A70 Y583 C1180 K343 G929 N388 Q75 M591 Q31 D587 U1178 L389 Q75 H593 P32, G64 D602 U367 J367 L389 Q75 H593 S820 U367 J367 L389 Q75 L39 S820 U367 H600 H73 L835 U367 G602 H73 Q837 U367 R610 A43 R845 G606 W45 Y609 K411 R46 Q606 W45 R631 R38 D635 Y59 Q641 T46 E666 W45 E666 K45	c-N ISS rRNA 3c ISS rRNA 3c eS27 3c 3d 3c 3e C1039, A1181 K342 G929 G341 Q65 D562 A70 Y583 Y286 C1180 K343 G929 N388 Q75 M591 Q31 D587 Y286 U1178 L389 Q75 H593 P32, G64 D602 Y41 C369 L389 Q75 H593 P32, G64 D602 Y41 C369 S25 L39 S20 N302 U367 S45 H600 H73 L835 1347, Q349 U367 S65 H603 W45 H845 N355 U367 H600 H73 Q837 S352 U367 N611 A33 N631 R38 U367 N635	c-N I8S rRNA 3c 18S rRNA 3c eS27 3c 3d 3c 3c	c-V ISS rRNA 3c ISS rRNA 3c eS27 3c 3d 3c 3e 3c 3f C1039, A1181 K342 G929 G341 Q65 D562 A70 Y583 Y286 Q852 D333 C1180 K343 G929 N388 Q75 M591 Q31 D587 Y286 N870 N351, Q347 U1178 S433 G929 N388 Q75 H593 P32,G64 D602 Y41 U367 S492 L389 Q75 L393 S820 N302 U367 S492 L389 Q75 L39 S820 N302 U367 S495 L39 S821 N347 U367 N602 H73 Q837 S352 U367 N611 R38 N631 R34	c-N I8S rRNA 3c 827 3c 3d 3c 3c 3f 3c C1039, A1181 K342 G929 G341 Q65 D562 A70 Y583 Y286 Q852 D333 Y557 C1180 K343 G929 N388 Q75 M591 Q31 D587 Y286 N870 N351, Q347 L859 V1178 V1178 V1178 V1178 V1178 Q595 L390 S820 N302 V347 L859 U367 U367 L389 Q75 H593 P32, G64 D602 Y11 V347 V373 U367 L389 Q75 H593 P32, G64 D602 Y14 V373 U367 L389 Q75 H593 L835 S324 V873 U367 L369 K41 L39 S352 S52 S59 S59 S59 S59 S59 S661 T46 S59 S59 S661 S

elF3d									
3d	3e	3d	u\$27	3d	18S rRNA	3d	e \$28	3d	uS7
F4	Y32	E75	K36	R212	C1470	Q416	R51, E52	K472	Q29
Q10	H12	E77	R80			T423	R13	S478	N31
D11	R16	Q81	S78, F79	T		K426	F34, T38		
W16	S167, G171	V83	G76	1				+	
G17	W170			•					
A20	Q209								
Y30	L208								
E22	N244,								
1.55	L590								
K25	Q283,								
100	E284								

elF3f							
3f	3h	3f	3k	3f	3m	3f	31
R108	D113	S267	Q218	Q280	N362	N332	1523
V163	Y99	N328	E203	D301	W347		
S164	E56			R306	H339		
Y239	L218, E217			N313	S337		
N260	K206						
R261	H209, N207						
1263	1205						
D268	Q336						
Q271	S161						
P316	Q348						
I318	Q348						
N342	K331						

21 21					
elF3I					
	-				
N356	R313				
Q345	N324				

K534	S216

elF3h						
3h	31	3h	3k			
E195	R545	K331	S217			
		K345	K204			

31 D480 1523 D532

Appendix text 1 - Molecular interactions between eIF3j and the 40S subunit in the yeast 43S-PIC.

Molecular details of the eIF3j-40S interaction were derived from the high-resolution structure of the cross-linked 43S-PIC (43S-PIC-XL) at an overall resolution of 3.0 Å and a local resolution of eIF3j ranging from 3 to 5 Å (Appendix Fig S4). Ribosome-bound eIF3i forms a dimer folding into a stable entangled 6-helix bundle as observed in crystal structure of human eIF3j (PDB 3BPJ; lacking 137 residues at the N- and 28 residues at the C-terminus). A yeast homology model based on this structure could be unambiguously fitted into the EM density (Fig EV3). It accommodates between the 40S body and head via interactions of both protomers. The 40S body is contacted by Arg148 and Arg154 of the N-terminal helix 1 of protomer 1 via A542 in the h17-h18 junction and via Glu22 of eS30, respectively. This contact to eS30 is also confirmed by the XL-MS data (Appendix Fig S5 and Appendix Table 3). 40S body and head are bridged by the C-terminal helix 3 of protomer 1. Here, Gln195 and Thr199 contact the backbone of eS30 in the body (at Lys15 and Lys20, respectively), while Arg215 contacts G1264 of h33 on the head. Helix 3 of the second protomer projects into the opposite direction and likely contacts Glu31 of eIF1A via a basic patch consisting of Lys205, Arg209, and Arg212. Following helix 3, the second eIF3j protomer forms a highly basic loop inside a pocket formed by h33, h34 and eS10 (Figs 4E, F and EV3). Here, Lys230 of eIF3j and Phe59 of eS10 are sandwiching the flipped-out G1435 base of h34. H34 is also contacted by Lys234 (at G1438), whereas Lys231 contacts U1266 and G1267 of h33. The loop is further stabilized by salt bridges between Arg220 and Glu70-Glu71 of eS10. From the loop, the C-terminus projects towards the mRNA entry channel (Fig 4G). It interacts with h18 (via Lys236) and then forms several contacts with uS3, mainly via hydrophobic interactions between Leu239 and Phe243 with Ile114, Leu142, and Arg143 of uS3 and the flipped-out base of A579 (h18). Finally, the C-terminus is anchored at h18 by the interaction of Lys244 with C559 (phosphate) and U581 (stacking), as well as Lys245 with U581 and U582 (phosphates). From here, the eIF3j C-terminus makes another kink into the mRNA entry channel, in which eleven more residues are visible (Asp246-Phe257). This part is not forming any specific interactions and thus is more flexible.

Appendix References

des Georges A, Dhote V, Kuhn L, Hellen CU, Pestova TV, Frank J, Hashem Y (2015) Structure of mammalian eIF3 in the context of the 43S preinitiation complex. Nature 525: 491-495

Erzberger JP, Stengel F, Pellarin R, Zhang S, Schaefer T, Aylett CHS, Cimermancic P, Boehringer D, Sali A, Aebersold R et al (2014) Molecular Architecture of the 40SeIF1eIF3 Translation Initiation Complex. Cell 159: 1227-1228

Liu Y, Neumann P, Kuhle B, Monecke T, Schell S, Chari A, Ficner R (2014) Translation initiation factor eIF3b contains a nine-bladed beta-propeller and interacts with the 40S ribosomal subunit. Structure 22: 923-930

Llacer JL, Hussain T, Saini AK, Nanda JS, Kaur S, Gordiyenko Y, Kumar R, Hinnebusch AG, Lorsch JR, Ramakrishnan V (2018) Translational initiation factor eIF5 replaces eIF1 on the 40S ribosomal subunit to promote start-codon recognition. Elife 7