

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Projecting the prevalence of obesity in South Korea through 2040: a microsimulation modeling approach

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-037629
Article Type:	Original research
Date Submitted by the Author:	10-Feb-2020
Complete List of Authors:	Yoon, Seok-Jun; Korea University, Department of Preventive Medicine, Korea University College of Medicine Jung, Yoon-Sun; Korea University, Department of Public Health, Graduate School, Korea University Kim, Young-Eun; Korea University, Department of Preventive Medicine, Korea University College of Medicine Go, Dun-Sol; Korea University, Department of Preventive Medicine, Korea University College of Medicine
Keywords:	PUBLIC HEALTH, Health policy < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, PREVENTIVE MEDICINE

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez on

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3 4	1	Title: Projecting the prevalence of obesity in South Korea through 2040: a
5 6	2	microsimulation modeling approach
7 8 9	3	
9 10 11	4	Authors: Yoon-Sun Jung ^{a*} , Young-Eun Kim ^b , Dun-Sol Go ^b , Seok-Jun Yoon ^b
12 13	5	Affiliations:
14 15 16	6	^a Department of Public Health, Korea University, Seoul, Korea
17 18	7	^b Department of Preventive Medicine, Korea University College of Medicine, Seoul, Korea
19 20 21	8	
21 22 23	9	Address for Correspondence:
24 25	10	Seok-Jun Yoon, M.D., Ph.D.
26 27 28	11	Department of Preventive Medicine, Korea University College of Medicine,
28 29 30	12	73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Korea
31 32	13	E-mail: yoonsj02@korea.ac.kr
33 34	14	-
35 36 37	15	E-mail addresses:
38 39	16	sunnyaurora@nate.com (Yoon-Sun Jung)
40 41	17	kimyes4454@gmail.com (Young-Eun Kim)
42 43 44	18	kds237@gmail.com (Dun-Sol Go)
45 46	19	
47 48	20	Keywords: Microsimulation, body mass index, obesity, Population Health Model, South
49 50 51	21	Korea
52 53	22	
54 55	23	Word count: 3,646
56 57 58	24	
58 59 60		

1 ว		2
2 3 4	25	ABSTRACT
5 6	26	
7 8 9	27	Objective To project the future prevalence of obesity among populations 19 years and older by 2040
10 11	28	in South Korea
12 13	29	Design, setting, and participants Using the 'Population Health Model-Body Mass Index' (BMI)
14 15	30	microsimulation model, the prevalence of obesity in Korean adults 19 years and over was projected
16 17	31	until the year 2040. The model integrates individual survey data from the Korea Health Panel Survey
18 19	32	of 2011 and 2012, population statistics based on resident registration, population projections, and
20 21	33	complete life tables categorized by sex and age. Birth rate, life expectancy, and international
22 23	34	migration were based on a medium growth scenario. The base population of Korean adults in 2012,
24 25	35	devised through data aggregation, was 39,842,730. Prediction equations were formulated using BMI
26 27	36	as the dependent variable; the individual's sex, age, smoking status, physical activity, and the
28 29	37	preceding year's BMI were used as predictive factors.
30 31 32	38	Outcome measure BMI categorized by sex.
33 34	39	Results The average BMI for Korean adults in 2040 was forecast to be 23.47 kg/m ² (23.91 and 23.04
35 36	40	kg/m ² for men and women, respectively). According the Korean BMI classification, 70.05% of all
37 38	41	adults were forecast to be 'pre-obese' (i.e., have BMIs 23 to 24.9) by 2040 (81.23% of men and 59.07%
39 40	42	of women), followed by 25.45% who would be 'underweight or normal'.
41 42	43	Conclusions Public health interventions need to be established so that the current average BMI,
43 44	44	smoking rate, and physical activity rate among Korean adults can be improved.
45 46	45	
47 48 49	46	
50 51	47	
52 53	48	
54 55	49	
56 57	50	
58 59	51	
60	51	

1 2			3
2 3 4	52		Strengths and limitations of this study
5 6	53	•	This study is the first in South Korea to analyze individual and national data using
7 8	54		microsimulation to predict the prevalence of obesity among adults.
9 10 11	55	•	We estimated the proportions of adults who will fall into various BMI categories by the
12 13	56		year 2040 assuming that the average BMI, smoking rate, and physical activity rates
14 15	57		measured in 2012 retain the same trend.
16 17	58	•	Our predictive model did not take into account nation-specific factors as applicable to
18 19 20	59		Korea.
21 22	60		
23 24	61		
25 26 27	62		
27 28 29	63		
30 31	64		
32 33	65		
34 35	66		
36 37 38	67		
39 40	68		
41 42	69		
43 44	70		
45 46	71		
47 48	72 73		
49 50 51	73		
52 53	75		
54 55	76		
56 57	77		
58 59	78		
60			

BMJ Open

79 BACKGROUND

The prevalence of overweight and obesity has increased markedly over the past 3 decades, and concerns about health risks associated with obesity have become almost universal.[1] The increasing rate of obesity is a growing public health concern not only in Western countries but also in South Korea.[2] From the 1990s through the beginning of the new millennium, the prevalence of adult and child obesity has increased rapidly and continues to rise steadily in parallel with rapid social and economic development.[3]

Obesity is not only a major public health problem in and of itself, but also a factor in the development of many chronic diseases; hence, it constitutes a strain on individuals and health systems worldwide. In the Global Burden of Disease Study, [4] globally in 2017, a high body mass index (BMI) accounted for 4.72 million deaths and 148.0 million disability-adjusted life-years. It is associated with an increased risk of many disorders, including diabetes, hypertension, dyslipidemia, heart disease, stroke, sleep apnea, early death, and cancer.[5-9] Moreover, obesity among older people increases the risk of knee osteoarthritis[10] and reduces functional capacity and quality of life.[11-14] The prevalence of these conditions rises commensurate with increased obesity, [15-18] and are associated with significant morbidity, higher risks of mortality, and increased economic costs for both individuals and the society at large.[19] A study of data from the National Health Insurance Service in Korea found that the socioeconomic cost of obesity in 2016 was approximately 9,665.32 million US dollars; medical expenses accounted for 51.3% of this amount, followed by decreasing productivity (20.5%), productivity loss (13.1%), early mortality (10.0%), care costs (4.3%), and transportation costs (0.8%).[20] Several studies on the long-term trends of obesity prevalence in South Korea found that obesity is increasing in men but not in women.[21-23] Although numerous investigators in other

102 countries have attempted to predict the prevalence of obesity into the future, only one such study by

103 Inkyung Baik was recently performed in South Korea.[2] More recent trends still need to be

104 investigated through predictive studies, and the accurate prediction of obesity prevalence remains an

important public health-related goal in the country.

To efficiently establish and execute an effective healthcare policy, which would require a large budget, it is necessary to select future targets for policy interventions (such as high-risk groups) to predict future healthcare needs and prevent budget waste.

Past prediction models incorporated a country's entire population; as such, macroscopic inferences based on average projections for the future society were generalized. However, when establishing a healthcare policy, it is necessary to estimate the future disease burden and medical needs of the entire population based on future projections that reflect individual characteristics, because a real-world understanding of the factors that are influenced by the policies or institutions is required. Individuals are independent entities with different characteristics and needs that govern their future decisions and behaviors. By applying these needs to the healthcare sector, health-related projections can be modeled by reflecting health risk factors such as sex, age, life cycle activities, smoking, etc.; as such, the effects of policy interventions can be quantified. [24] In this study, we aimed to predict the prevalence of obesity in Korea by using microsimulation, which is optimal for considering individual properties.

Microsimulation is a modeling technique that typically uses individual microunits, each with its own set of properties, to simulate downstream events based on the probability of transition between predefined states and their changes over time. When used in medicine, microsimulation can be particularly powerful because it preserves the patterns of previous behaviors and conditions, and allows for a clearer representation and understanding of how various processes affect the total outcome of the population over time. Collecting individual events from within a population that has varying attributes can be used to predict and plan outcomes (such as incidence, prevalence, and cost), and can also be used to assess the clinical and cost effectiveness of alternative health interventions.[25] Microsimulation modeling is particularly useful for studying BMI trends because it can simultaneously explain population dynamics such as aging, migration, and mortality. Additionally, the longitudinal framework of these models allows for interpreting a person's change in BMI as it is affected by factors such as a person's physical activity and behavior and thus act as a contributing factor to other diseases, [26]

Obesity prevalence and trend estimates provide important information for research, policy,

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

6

3 4	133
5 6	134
7 8	135
9 10	136
11 12	137
13 14	138
15 16	139
17 18	140
19 20	141
21 22	142
23 24 25	143
25 26 27	144
28 29	145
30 31	146
32 33	147
34 35	148
36 37	149
38 39	150
40 41	151
42 43	152
44 45	153
46 47 48	154
40 49 50	155
50 51 52	156
52 53 54	157
55 56	158
57 58	159
59 60	

and intervention.[27] As mentioned above, it is necessary to estimate the magnitude of obesity
because it has been identified as a risk factor for various chronic diseases. Because health forecasting
predicts disease episodes and portends future events, it facilitates healthcare strategies by promoting
the setting of goals to reduce obesity, establish health promotion interventions, and optimize resource
allocation.[28] Obesity trends may also be used to urge governments to implement preventative
approaches to reducing obesity.[29] Based on the above, we performed this study to project the future
trends in obesity prevalence in South Korea up to the year 2040.

- 141 METHODS
- 142 Model

13 We used the Population Health Model (POHEM)-BMI to estimate the prevalence of obesity in adults 14 19 years and over in South Korea from 2012 through 2040. In brief, POHEM is a time-continuous, 15 population-based, dynamic microsimulation model with individual underlying units of analysis. 16 Through dynamic simulation, POHEM creates a population and ages it, one person at a time, until 17 death.[30] The model dynamically simulates an individual's disease state, risk factors, and health 18 determinants to describe and plan health outcomes.[31] The POHEM models include cardiovascular 19 disease, various cancers, osteoarthritis, physical activity, and neurological events. The model used in 50 this study was the POHEM-BMI; the performance of each prediction step is shown in Figure 1.

[Insert Figure 1 here]

³ 152 Base population

To create the base population for the POHEM-BMI model, we used the 2011- 2012 Korea Health Panel survey and the resident registration-based population statistics. This constituted the base population for POHEM-BMI (n=39,842,730), reflecting the Korean population. Each Korean respondent 19 years of age and over (n=11,501) in 2012 was replicated using their survey-recorded weights to generate a simulated cohort of approximately 39,842,730 individuals. Korea Health Panel survey data are nationally representative panel surveys that incorporate health status, chronic diseases, health risk behaviors, and socio-demographic characteristics. Among them, we extracted sex, age,

current smoking status, physical activity, and the previous and current years' BMI values; these variables were required for the predictive equation. We then used a multiple linear regression model to estimate the BMI value using the independent variables age, sex, smoking status, physical activity, and previous BMI value as predictors. The POHEM-BMI model is auto-regressive and includes previous BMI values as a main explanatory variable.[26] For comparison with other international studies using this model, we used the variables as-is without normalizing them to Korean standards. In terms of predictor definitions, a current smoker was an individual who reported smoking 'every day' or 'sometimes'. Practicing physical activity was defined as performing either intense physical activity for at least 10 continuous minutes a day, 20 minutes total per day, 3 days a week during the preceding week, or moderate physical activity for at least 30 minutes a day, 5 days a week during the preceding week.

171 Simulation: Annual updates and risk transition

The population makeup was updated by aging each person by 1 year and changing the total population size based on population statistics, population projections, and complete life tables categorized by sex and age from Statistics Korea. For population projections, we assumed a medium growth scenario in terms of birth rate, life expectancy, and international migration. Each person's BMI was updated annually by applying a predictive equation that incorporates his/her own characteristics. The transition probability for each stochastic characteristic was calculated based on a generalized linear model.

Similar to the original POHEM-BMI, we assumed that the current individual behavioral
 patterns persisted, and no new factors arose to prevent obesity. We also assumed that the attributes of
 180
 patterns-persisted, and no new factors arose to prevent obesity. We also assumed that the attributes of
 181
 19-year-old individuals, which were entered annually, remained similar year-to-year.

182 Model validation and calibration

We established the model's validity by comparing the projected BMI average obtained from the
prediction model to estimates obtained from the Korea Health Panel survey. We set the calibration
cutoff point to 5% and adjusted the model by comparing the difference between the mean BMI
estimates observed from the Korea Health Panel survey and the values derived from the prediction

Page 9 of 24

BMJ Open

187	model categorized by sex and age. We analyzed the BMIs of each group by comparing the 2016 data
188	available from the Korea Health Panel with the most recent data. We accepted a difference of less
189	than 5% overall as well as in the sex- and age-categorized groups. Finally, we adjusted the
190	demographics of the 2040 population so that the predictions were similar within a 5% margin of error.
191	Projection
192	The model projected the BMI of each person from 2017 to 2040. Based on demographic
193	characteristics, the projections were then aggregated by year for each of the predefined subgroups.
194	The various trends observed in the Korean population data were used to generate algorithms that were
195	applied to future projections.
196	Model outputs
197	The final results of the BMI distributions were calculated overall and by sex. Individuals with a BMI
198	\geq 25 kg/m ² were obese according to the Guidelines for the Management of Obesity in Korean, which
199	is not the internationally accepted standard (see Table 1). According to this guideline, BMI is
200	categorized into standard groupings for underweight (<18.5 kg/m ²), normal weight (18.5–22.9 kg/m ²),
201	pre-obese (23–24.9 kg/m ²), obese class I (25–29.9 kg/m ²), obese class II (30–34.9 kg/m ²), and
202	obese class III (\geq 35 kg/m ²). All analyses in this study were performed using STATA version 13
203	(StataCorp LLC, College Station, TX, USA).
204	
205	Table 1 BMI classification of South Korea Body mass index
	Body mass index
	Classification
	(kg/m ²)

< 18.5

 \geq 35

18.5 - 22.9

23 - 24.9

25 - 29.9

30 - 34.9

 Underweight

Obese class I

Obese class II

Obese class III

Normal

Pre-obese

RESULTS We compared the total numbers of the individuals and characteristics in the initial 2012 population to those in the projected 2040 population (see Table 2) There were 39,842,730 adults who were 19 or over in 2012 and 43,818,808 in 2040. The male:female ratio was nearly 1:1 in both 2012 and 2040. The rapid aging of the Korean population was clearly observed when comparing the 2 eras. The average age of adults was expected to increase by 10.9 years from 45.69 years in 2012 to 56.59 years in 2040 (from 44.57 to 55.54 years among men and from 46.77 to 57.63 years among women). In 2012, the proportion of young people (those in the 19-24, 25-29, 30-34, 35-39, 40-44, 45-49, and 50–54 year age groups combined) accounted for approximately 71% of the adult population (with approximately 10% in each aforementioned age group), while the proportion of individuals aged 65 years and older was relatively low at approximately 14% and that of individuals 80 years of age and older at 2.6%. However, the age group structure in South Korea 28 years later (2040) is predicted to be quite different, as the proportion of the elderly population (≥ 80 years) was estimated to be almost 12% of the total adult population, while the proportion of individuals 19–64 years (i.e., the working age population) was only 60.95% of the adult population. There was no significant difference between the average BMIs in 2012 and 2040; however, according to the BMI classification in South Korea, approximately 50% of the adult population was 'underweight or normal' in 2012, whereas only 25.45% of the population was predicted to be the same in 2040. On the other hand, the 'pre-obese' group was expected to account for approximately 70% of the total adult population. Table 2 Comparison of number of people, by sex and BMI classification, South Korea, 2012 and 2040

	Men		Women		Total		
Population at baseline (2012)							
Number of	19,709,6	528	20,133,102		39,842,730		
people							
Age (mean)	44.57		46.77		45.69		
19-24	2,094,471	(10.63)	1,873,563	(9.31)	3,968,034	(9.96)	
25-29	1,748,148	(8.87)	1,642,257	(8.16)	3,390,405	(8.51)	
30-34	2,047,849	(10.39)	1,962,314	(9.75)	4,010,163	(10.06)	

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Number of people by BMI classificationUnderweight / $8,254,562$ (41.88) $11,482,06$ (57.03) $19,736,628$ Normal666Pre-obese $5,264,866$ (26.71) $4,207,673$ (20.90) $9,472,539$ Obese class I $5,867,369$ (29.77) $4,046,607$ (20.10) $9,913,976$ Obese class II $318,297$ (1.61) $324,205$ (1.61) $642,502$ Obese class III $4,534$ (0.02) $72,551$ (0.36) $77,085$ Smoking status999,329,983 $8879,037$ (45.05) $450,946$ (2.24) $9,329,983$ Non-smoker $10,830,591$ (54.95) $19,682,15$ (97.76) $30,512,747$ Obysical activity69 $9,913,976$ $9,913,976$ Physical activity69 $9,329,983$ Number of $21,717,128$ $22,101,680$ $43,818,808$ people9 $21,717,128$ $22,101,680$ $43,818,808$ People9 $21,717,128$ $22,101,680$ $43,818,808$ People $11,60,786$ (5.35) $1,901,788$ (4.94) $2,222,97,513$ (5.97) $1,201,131$ (5.43) $2,498,644$ $40-44$ $1,696,199$ (7.81) $1,552,548$ (7.02) $3,248,747$ $45-49$ $1,838,461$ (8.47) $1,632,766$ (7.39) $3,471,227$ $50-54$ $1,599,077$ (7.36) $1,475,843$ (6.68) $3,074,920$ </td
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Normal6Pre-obese $5,264,866$ (26.71) $4,207,673$ (20.90) $9,472,539$ Obese class I $5,867,369$ (29.77) $4,046,607$ (20.10) $9,913,976$ Obese class II $318,297$ (1.61) $324,205$ (1.61) $642,502$ Obese class III $4,534$ (0.02) $72,551$ (0.36) $77,085$ Smoking status </td
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Physical activity5,199,273 5,199,273(26.38) (26.38)3,103,036 3,103,036(15.41) (15.41)8,302,309 8,302,309Physical inactivity14,510,355(73.62)17,030,06 6(84.59)31,540,421Projected population (2040)66Number of people21,717,12822,101,68043,818,808Age (mean)55.5457.6356.5919-241,249,921(5.76)1,189,386(5.38)2,439,30725-291,165,520(5.37)1,106,562(5.01)2,272,08230-341,160,786(5.35)1,091,788(4.94)2,252,57435-391,297,513(5.97)1,201,131(5.43)2,498,64440-441,696,199(7.81)1,552,548(7.02)3,248,74745-491,838,461(8.47)1,632,766(7.39)3,471,22750-541,599,077(7.36)1,475,843(6.68)3,074,92055-591,882,322(8.67)1,821,485(8.24)3,703,807
activity14,510,355(73.62)17,030,06(84.59)31,540,421Physical inactivity14,510,355(73.62)17,030,06(84.59)31,540,421Projected population (2040)643,818,808People21,717,12822,101,68043,818,808Age (mean)55.5457.6356.5919-241,249,921(5.76)1,189,386(5.38)2,439,30725-291,165,520(5.37)1,106,562(5.01)2,272,08230-341,160,786(5.35)1,091,788(4.94)2,252,57435-391,297,513(5.97)1,201,131(5.43)2,498,64440-441,696,199(7.81)1,552,548(7.02)3,248,74745-491,838,461(8.47)1,632,766(7.39)3,471,22750-541,599,077(7.36)1,475,843(6.68)3,074,92055-591,882,322(8.67)1,821,485(8.24)3,703,807
Physical inactivity14,510,355(73.62)17,030,06(84.59)31,540,421Projected population (2040)Number of people21,717,12822,101,68043,818,808Age (mean)55.5457.6356.5919-241,249,921(5.76)1,189,386(5.38)2,439,30725-291,165,520(5.37)1,106,562(5.01)2,272,08230-341,160,786(5.35)1,091,788(4.94)2,252,57435-391,297,513(5.97)1,201,131(5.43)2,498,64440-441,696,199(7.81)1,552,548(7.02)3,248,74745-491,838,461(8.47)1,632,766(7.39)3,471,22750-541,599,077(7.36)1,475,843(6.68)3,074,92055-591,882,322(8.67)1,821,485(8.24)3,703,807
inactivity 6 Projected population (2040) Number of 21,717,128 22,101,680 43,818,808 people
Projected population (2040) Number of people 21,717,128 22,101,680 43,818,808 Age (mean) 55.54 57.63 56.59 19-24 1,249,921 (5.76) 1,189,386 (5.38) 2,439,307 25-29 1,165,520 (5.37) 1,106,562 (5.01) 2,272,082 30-34 1,160,786 (5.35) 1,091,788 (4.94) 2,252,574 35-39 1,297,513 (5.97) 1,201,131 (5.43) 2,498,644 40-44 1,696,199 (7.81) 1,552,548 (7.02) 3,248,747 45-49 1,838,461 (8.47) 1,632,766 (7.39) 3,471,227 50-54 1,599,077 (7.36) 1,475,843 (6.68) 3,074,920 55-59 1,882,322 (8.67) 1,821,485 (8.24) 3,703,807
Number of people21,717,12822,101,68043,818,808Age (mean)55.5457.6356.5919-241,249,921(5.76)1,189,386(5.38)2,439,30725-291,165,520(5.37)1,106,562(5.01)2,272,08230-341,160,786(5.35)1,091,788(4.94)2,252,57435-391,297,513(5.97)1,201,131(5.43)2,498,64440-441,696,199(7.81)1,552,548(7.02)3,248,74745-491,838,461(8.47)1,632,766(7.39)3,471,22750-541,599,077(7.36)1,475,843(6.68)3,074,92055-591,882,322(8.67)1,821,485(8.24)3,703,807
people55.5457.6356.5919-241,249,921(5.76)1,189,386(5.38)2,439,30725-291,165,520(5.37)1,106,562(5.01)2,272,08230-341,160,786(5.35)1,091,788(4.94)2,252,57435-391,297,513(5.97)1,201,131(5.43)2,498,64440-441,696,199(7.81)1,552,548(7.02)3,248,74745-491,838,461(8.47)1,632,766(7.39)3,471,22750-541,599,077(7.36)1,475,843(6.68)3,074,92055-591,882,322(8.67)1,821,485(8.24)3,703,807
Age (mean)55.5457.6356.5919-241,249,921(5.76)1,189,386(5.38)2,439,30725-291,165,520(5.37)1,106,562(5.01)2,272,08230-341,160,786(5.35)1,091,788(4.94)2,252,57435-391,297,513(5.97)1,201,131(5.43)2,498,64440-441,696,199(7.81)1,552,548(7.02)3,248,74745-491,838,461(8.47)1,632,766(7.39)3,471,22750-541,599,077(7.36)1,475,843(6.68)3,074,92055-591,882,322(8.67)1,821,485(8.24)3,703,807
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
25-291,165,520(5.37)1,106,562(5.01)2,272,08230-341,160,786(5.35)1,091,788(4.94)2,252,57435-391,297,513(5.97)1,201,131(5.43)2,498,64440-441,696,199(7.81)1,552,548(7.02)3,248,74745-491,838,461(8.47)1,632,766(7.39)3,471,22750-541,599,077(7.36)1,475,843(6.68)3,074,92055-591,882,322(8.67)1,821,485(8.24)3,703,807
30-341,160,786(5.35)1,091,788(4.94)2,252,57435-391,297,513(5.97)1,201,131(5.43)2,498,64440-441,696,199(7.81)1,552,548(7.02)3,248,74745-491,838,461(8.47)1,632,766(7.39)3,471,22750-541,599,077(7.36)1,475,843(6.68)3,074,92055-591,882,322(8.67)1,821,485(8.24)3,703,807
35-391,297,513(5.97)1,201,131(5.43)2,498,64440-441,696,199(7.81)1,552,548(7.02)3,248,74745-491,838,461(8.47)1,632,766(7.39)3,471,22750-541,599,077(7.36)1,475,843(6.68)3,074,92055-591,882,322(8.67)1,821,485(8.24)3,703,807
40-441,696,199(7.81)1,552,548(7.02)3,248,74745-491,838,461(8.47)1,632,766(7.39)3,471,22750-541,599,077(7.36)1,475,843(6.68)3,074,92055-591,882,322(8.67)1,821,485(8.24)3,703,807
45-491,838,461(8.47)1,632,766(7.39)3,471,22750-541,599,077(7.36)1,475,843(6.68)3,074,92055-591,882,322(8.67)1,821,485(8.24)3,703,807
50-54 1,599,077 (7.36) 1,475,843 (6.68) 3,074,920 55-59 1,882,322 (8.67) 1,821,485 (8.24) 3,703,807
55-59 1,882,322 (8.67) 1,821,485 (8.24) 3,703,807
60-64 1880 827 (8.66) 1866 992 (8.45) 3.747 819
65-69 2,078,232 (9.57) 2,101,456 (9.51) 4,179,688
70-74 1,956,454 (9.01) 2,055,954 (9.30) 4,012,408
75-79 1,739,807 (8.01) 1,919,444 (8.68) 3,659,251
80- 2,172,009 (10.00) 3,086,325 (13.96) 5,258,334
DMI(max) = 22.01 = 22.04 = 22.47
BMI (mean) 23.91 23.04 23.4
Bivit (mean) 23.91 25.04 25.4 Number of people by BMI classification
Number of people by BMI classification

(10.35)

(11.46)

(10.41)

(10.77)

(8.15)

(5.87)

(4.71)

(4.25)

(2.89)

(2.60)

(49.54)

(23.77)

(24.88)

(1.61)(0.19)

(23.42)

(76.58)

(20.84)

(79.16)

(5.57)

(5.19)

(5.14)(5.70)

(7.41)

(7.92)

(7.02)

(8.45)

(8.55)

(9.54)

(9.16)

(8.35)

(12.00)

(25.45)

23.47

							11
	Pre-obese	17,641,668	(81.23)	13,055,48 2	(59.07)	30,697,150	(70.05)
	Obese class I	1,712,332	(7.88)	221,829	(1.00)	1,934,161	(4.41)
	Obese class	33,455	(0.15)	388	(0.00)	33,843	(0.08)
	□ Obese class □	2,152	(0.01)	0	(0.00)	2,152	(0.00)
	The model was	well calibrated in	both the in	itial population	n and from ?	017 to 2040	
	Differences in each of th						he
	Korea Health Panel data						ne
	Additionally, when com		C C				I
	Statistics Korea, the tota			,	-		Y
		the average predi					T
	-					-	
value from 2013 to 2016 was estimated from the Korea Health Panel survey. The average BMI for the entire adult population is predicted to increase very slightly from 23.19 kg/m ² in 2017 to 23.46 kg/m ²							
in 2036 and is expected to remain steady thereafter. The predicted mean BMI trends are similar for							
men and women; the mean BMI in adult men was projected to increase only slightly, from 23.72 h_{2}/m^{2} in 2017 to 22.01 kg/m ² in 2026 (from 22.67 kg/m ² in 2017 to 22.01 kg/m ² for a dult							
kg/m ² in 2017 to 23.91 kg/m ² in 2036 (from 22.67 kg/m ² in 2017 to 23.01 in 2036 kg/m ² for adult we may and then almost relateous thereafter.							
women) and then almost plateau thereafter.							
[Insert Figure 2 here] The BMI distributions for men and women from 2012 to 2040 are shown in Figure 3. The							
proportions of 'pre-obese' individuals in both sexes are predicted to increase dramatically over time,							
while the proportions of individuals who are classified as 'underweight or normal' and 'obese' will							
gradually decrease. As of 2025, 52.35% of all male adults were expected to be pre-obese, with that							
proportion expected to be close to 81.23% by 2040. Moreover, 53.24% of all adult women are expected to be 'pre-obese' by 2035, with the proportion rising to almost 59.078% by 2040.							
	expected to be pre-obes	•		C	110St 39.0787	% by 2040.	
		Linser	rigure 3A	and 3B here]			

BMJ Open

252 DISCUSSION

The purpose of this study was to predict the prevalence of obesity in South Korea in the year 2040 using a microsimulation model. In the field of healthcare, microsimulation can predict the burden of disease by modeling various health risk factors that occur during an individual's lifetime. Given macro-effects such as changes in population structures in the forecasting model, microsimulation is very useful in that it can estimate both disease burdens and medical needs across the country.[24] While microsimulation models have been steadily evolving across health- and economy-related fields in many European countries, [32] they have yet to be actively utilized in South Korea (especially for healthcare). In this study, we strove to predict future adult obesity rates in South Korea using the POHEM-BMI, which is developed by Statistics Canada. POHEM is one of several population-based health dynamic microsimulation models used worldwide. Dynamic microsimulation, in the context of social science and population health, is a simulation of individuals (i.e., micro-level) and their behaviors, statuses, and actions (dynamics) over time.[33] These are modeled as desired using multiple sources of empirical data, including cross-sectional surveys, administrative databases, vital statistics, and census data.[31]

Summarizing the predicted results, the average BMI of South Korea's adult population aged 19 years and older was expected to be 23.47 in 2040, while the percentage of 'pre-obese' individuals was expected to increase over time. While it is encouraging that the proportion of 'obese' people (i.e., those with BMIs ≥ 25 kg/m²) in 2040 is predicted to be much lower than that in 2012, it is discouraging that the proportion of 'underweight or normal' individuals is also markedly lower. Most notably, the pre-obesity rate is predicted to rise dramatically. In addition to the sex and age of each individual, our model includes only smoking and physical activity as health-related behaviors. The distributions of these factors were assumed to remain equal across the years; hence, our data show that maintaining smoking and physical activity rates at 2012 levels among adults will lead to a sharp increase in the 'pre-obese' population by 2040.

277To our knowledge, the only other study that predicted future obesity rates among South278Korean adults was the aforementioned investigation by Baik.[2] That study explored factors affecting

adult obesity as well as abdominal obesity, and constructed forecasting models to predict obesity prevalence rates in 2020 and 2030 using the Korea National Health and Nutritional Examination Survey (KNHANES). The prevalence rates of obesity among men and women in that study were predicted to be 47% and 32%, respectively, in 2020 and 62% and 37%, respectively, in 2030; these data were inconsistent with our own. The differences appeared to be caused by the different secondary sources used in the 2 studies, as well as the different independent variables and prediction methodologies. In particular, the obesity rate in the initial population according to the KNHANES tended to be higher; as such, a higher initial prevalence rate would lead to a higher projection.[34] Most importantly, Baik's study did not consider the preceding year's BMI, which was a major independent variable in our study; this may be a major explanation for the differences in findings between the 2 studies. We also compared our results to those predicted in Canada using the same model we used; based on self-reported BMIs, approximately 59% of the adult Canadian population was predicted to be 'overweight or obese' (i.e., BMIs >25 kg/m²) by 2030, which is a much higher percentage than that predicted in South Korea (10.12%). With respect to worldwide comparisons, whether cutoff points for overweight and obesity

should be lower for Asians than for another ethnic group remains debated.[35] Because of racial differences, the World Health Organization has proposed regarding BMIs of 18.5–22.9 kg/m² as optimal, 23–24.9 kg/m² as overweight, 25–29.9 kg/m² as moderate obesity, and \geq 30 kg/m² as severe obesity for Asians.[36] If the international BMI standard were to be applied in our study, the results would be much more favorable given that a large proportion of subjects would be classified as normal. However, more research is needed to determine particular BMI values that increase the likelihood of developing particular chronic disease, depending on the sex and age of the individual. The Korean Society of Obesity, which was established to improve obesity management through research and education, revised its clinical practical guidelines for the prevention and treatment of obesity in 2018. The new guidelines renamed the "overweight" category to "pre-obese", and divided obesity into 3 categories, thereby aiming to highlight the risk of obesity instead of promoting the term "overweight." The most recent guidance is based in part on data from of 84,690,131 Korean adults extracted from

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 15 of 24

1

BMJ Open

14

ן ר		14
2 3 4	306	the Korean National Health Insurance Service Health Checkup Database between 2006 and 2015. By
5 6	307	including the entire population registered in the National Health Insurance Services Database, they
7 8	308	calculated the first and second cutoff points corresponding to the increased risk of any of 3
9 10	309	accompanying diseases (type 2 diabetes, hypertension, and dyslipidemia). The first and second BMI
11 12	310	cutoff levels were 23 kg/m ² and 25 kg/m ² , respectively.[37,38] Rather than emphasizing the BMI
13 14	311	classification criteria, however, future studies ought to analyze the BMI reference points that can
15 16	312	significantly predict the occurrence of chronic diseases by sex and age group. Based on such evidence,
17 18	313	the developing governmental 'National Health Promotion Comprehensive Plan' needs to incorporate
19 20	314	additional, wider-ranging goals that take into account the characteristics of each sex and age group,
21 22 23	315	rather than presenting goals for obesity prevalence among adult men and women. Moreover,
23 24 25	316	systematic public health interventions that are tailored to individual characteristics need to be
26 27	317	established.
28 29	318	A limitation of this study was that the forecast model was not specific to Korea, as no
30 31	319	microsimulation model for predicting obesity prevalence has been developed in this country.
32 33	320	Therefore, we borrowed a model from Statistics Canada and performed an international comparison.
34 35	321	For that reason, the variables used as predictors included only sex, age, smoking, physical activity,
36 37	322	and the preceding year's BMI value. Nevertheless, our study's importance is that it is the first to
38 39 40	323	examine the possibility of using microsimulation to predict future BMI averages in South Korea.
40 41 42	324	Additionally, it is important to note that the BMI of the future adult population was predicted after
42 43 44 45 46	325	considering the change in population structure at the macro level as well as individual health behavior
	326	components at the micro level.
47 48	327	
49 50	328	CONCLUSION
51 52	329	The key finding of this study is that by 2040, 70.05% of Korean adults are predicted to be
53 54	330	pre-obese. Utilizing data sources available in Korea, the possibility of applying and expanding on the
55 56 57	331	concept of microsimulation was explored. In future studies, a model suitable for South Korea needs to

be developed, and the effectiveness of specific health policies ought to be assessed by applying

58 59 60

1		15						
2 3 4	333	various relevant scenarios to the basic forecasting model.						
5 6	334							
7 8	335	Abbreviations						
9 10	336	BMI: body mass index; KNHANES: Korea National Health and Nutritional Examination						
11 12	337	Survey, POHEM: Population Health Model						
12 13 14	338	Contributions						
14 15 16	339	YS (the first author) designed the study, analyzed and interpreted the data, and wrote the						
17 18	340	paper. YE participated in the statistical analysis. DS provided assistance in the interpretation of the						
19 20	341	data and preparation of the manuscript. SJ (the corresponding author) directed this study. All authors						
21 22	342	read and approved the final version of the manuscript.						
23 24	343	Funding						
25 26	344	This work was supported by the National Research Foundation of Korea (NRF) grant funded						
27 28	345	by the Korea government (Ministry of Science and ICT) (No. 2017R1A2B4005876). The funding						
29 30	346	agency had no role in the study design, analysis and interpretation of the data, or the preparation of						
31 32 33	347	the manuscript.						
33 34 35	348	Competing Interests						
36 37	349	The authors declare that they have no competing interests.						
38 39	350	Ethics approval						
40 41	351	This study used publicly available data of Korea Health Panel Survey 2011-2012 from The						
42 43	352	Korea Institute for Health and Social Affairs and the National Health Insurance, population statistics						
44 45 46 47 48 49 50 51 51	353	based on resident registration, population projections, complete life tables and future mortality rates						
	354	from Statistics Korea. The dataset does not contain any identifiable personal information. Ethical						
	355	approval was given by the Institutional Review Board of Korea University, Seoul, Korea (IRB No.						
	356	KUIRB-2020-0018-01).						
53 54 55	357	Provenance and peer review Not commissioned; externally peer reviewed.						
56 57	358	Data sharing statement						
58 59 60	359	The Korea Health Panel Survey data used in this article is available in						

Page 17 of 24

BMJ Open

1		16
2 3 4	360	https://www.khp.re.kr:444/eng/data/data.do. Detailed information on the survey design and data
5 6	361	characteristics are provided at https://www.khp.re.kr:444/eng/survey/sampling.do. Population
7 8	362	statistics, population projections, and complete life tables are available from http://kosis.kr/eng/.
9 10	363	
 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 	364	REFERENCES
	365	
	366	1. Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and
	367	obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of
	368	Disease Study 2013. Lancet 2014;384:766-81. https://doi.org/10.1016/S0140-6736(14)60460-8
	369	2. I Baik. Forecasting obesity prevalence in Korean adults for the years 2020 and 2030 by the analysis of
	370	contributing factors. Nutr Res Pract 2018;12:25-7. https://dx.doi.org/10.4162%2Fnrp.2018.12.3.251
	371	3. D Kim, C Ahn, SY Nam. Prevalence of obesity in Korea. Obesity Rev 2005;6:117–21.
	372	https://doi.org/10.1111/j.1467-789X.2005.00173.x
	373	4. GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk assessment of
	374	84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195
	375	countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study
	376	2017. Lancet 2018;392:1923-94. https://doi.org/10.1016/S0140-6736(18)32225-6
	377	5. Okosun IS, Chandra KMD, Choi S, et al. Hypertension and type 2 diabetes comorbidity in adults in
	378	the United States: Risk of overall and regional adiposity. Obes Res 2001;9:1–9.
40 41	379	https://doi.org/10.1038/oby.2001.1
42 43	380	6. Krauss RM, Winston M, Fletcher BJ, et al. Obesity: impact on cardiovascular disease. <i>Circulation</i>
44 45	381	1998;98:1472–6.
46 47	382	7. Chin K, Ohi M. Obesity and obstructive sleep apnea syndrome. <i>Intern Med</i> 1999;38:200–2.
48 49	383	https://doi.org/10.2169/internalmedicine.38.200
50 51	384	8. Wallström P, Bjartell A, Gullberg B, et al. A prospective Swedish study on body size, body
52 53	385	composition, diabetes, and prostate cancer risk. Brit J Cancer 2009;100:1799-805.
54 55	386	https://doi.org/10.1038/sj.bjc.6605077
56 57	387	9. Guh DP, Zhang W, Bansback N, et al. The incidence of comorbidities related to obesity and
58 59	388	overweight: a systematic review and meta-analysis. BMC Public Health 2009;9:88.
60	389	https://doi.org/10.1186/1471-2458-9-88

Page 18 of 24

BMJ Open

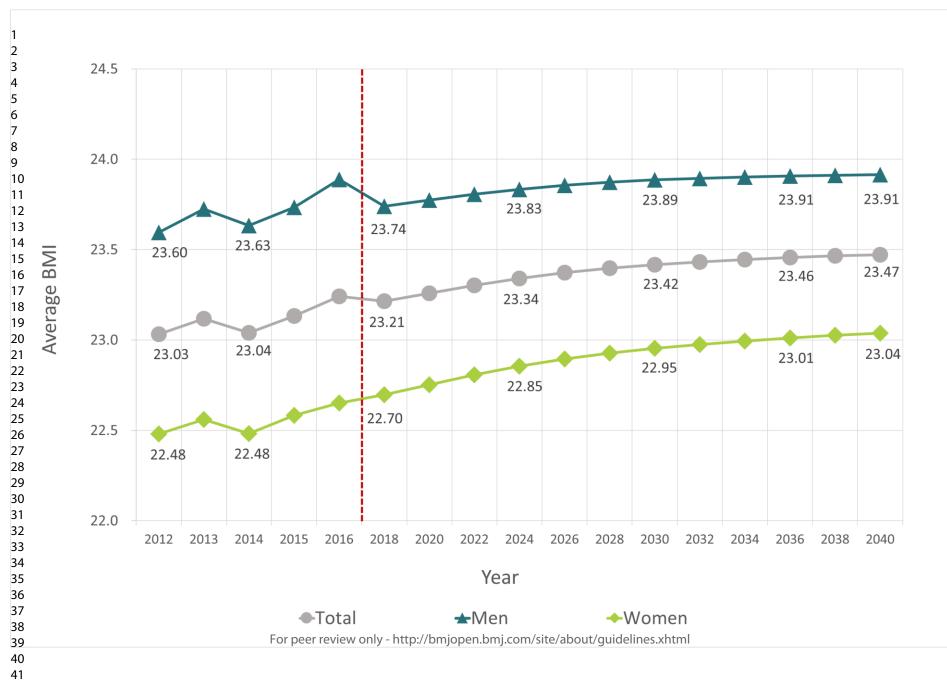
1			17
2 3 4	390	10.	Coggon D, Reading I, Croft P, et al. Knee osteoarthritis and obesity. Int J Obes Relat Metab Disord
5 6 7 8 9	391		2001;25:622-7. https://doi.org/10.1038/sj.ijo.0801585
	392	11.	Stenholm S, Rantanen T, Alanen E, et al. Obesity history as a predictor of walking limitation at old
	393		age. Obesity 2007;15:929-38. https://doi.org/10.1038/oby.2007.583
10 11	394	12.	Alley DE, Chang VW. The changing relationship of obesity and disability, 1988–2004. JAMA
12 13	395		2007;298:2020-7. https://doi.org/10.1001/jama.298.17.2020
14 15	396	13.	Larsson U, Karlsson J, Sullivan M. Impact of overweight and obesity on health-related quality of life-
16 17	397		a Swedish population study. Int J Obes Relat Metab Disord 2002;26:417-24.
18 19	398		https://doi.org/10.1038/sj.ijo.0801919
20 21	399	14.	Zaninotto P, Pierce M, Breeze E, et al. BMI and waist circumference as predictors of well-being in
22 23	400		older adults: findings from the English Longitudinal Study of Ageing. Obesity 2010;18:1981-7.
24 25	401		https://doi.org/10.1038/oby.2009.497
26 27	402	15.	Emerging Risk Factors Collaboration, Wormser D, Kaptoge S, et al. Separate and combined
28 29 30 31 32	403		associations of body-mass index and abdominal adiposity with cardiovascular disease: Collaborative
	404		analysis of 58 prospective studies. Lancet 2011;377:1085-95. https://doi.org/10.1016/S0140-
	405		6736(11)60105-0
33 34	406	16.	The Global Burden of Metabolic Risk Factors for Chronic Diseases Collaboration (BMI Mediated
35 36	407		Effects), Lu Y, Hajifathalian K, et al. Metabolic mediators of the effects of body-mass index,
37 38	408		overweight, and obesity on coronary heart disease and stroke: A pooled analysis of 97 prospective
39 40	409		cohorts with 1.8 million participants. Lancet 2014;383:970-83. https://doi.org/10.1016/S0140-
41 42	410		6736(13)61836-X
43 44	411	17.	Renehan AG, Tyson M, Egger M, et al. Body-mass index and incidence of cancer: A systematic
45 46	412		review and meta-analysis of prospective observational studies. Lancet 2008;371:569-78.
47 48	413		https://doi.org/10.1016/S0140-6736(08)60269-X
49 50	414	18.	Bhimjiyani A, Knuchel-Takano A, Hunt D, et al. Tipping the scales: Why preventing obesity makes
51 52	415		economic sense. Technical Report 2016.
53 54	416		https://www.cancerresearchuk.org/sites/default/files/tipping_the_scalescruk_full_report11.pdf
55	417		(accessed 26 Jan 2020).
56 57	418	19.	Wang YC, McPherson K, Marsh T, et al. Health and economic burden of the projected obesity trends
58 59 60	419		in the USA and the UK. Lancet 2011;378:815-25. https://doi.org/10.1016/S0140-6736(11)60814-3

Page 19 of 24

1

BMJ Open

2			
- 3 4	420	20.	M Lee. Half of the socioeconomic costs of obesity are 'medical costs'. Korea Biomedical Review
5 6	421		(2018, December 10). <u>http://www.docdocdoc.co.kr/news/articleView.html?idxno=1063317/</u>
7 8	422		(accessed 2020, January 29)
9 10	423	21.	Kang HT, Shim JY, Lee HR, et al. Trends in prevalence of overweight and obesity in Korean adults,
10 11 12	424		1998–2009: the Korean National Health and Nutrition Examination Survey. J Epidemiol
13 14	425		2014;24:109-16. https://doi.org/10.2188/jea.je20130017
15	426	22.	Khang YH, Yun SC. Trends in general and abdominal obesity among Korean adults: findings from
16 17	427		1998, 2001, 2005, and 2007 Korea National Health and Nutrition Examination Surveys. J Korean
18 19	428		Med Sci 2010;25:1582-8. https://doi.org/10.3346/jkms.2010.25.11.1582
20 21	429	23.	Yoo S, Cho HJ, Khang YH. General and abdominal obesity in South Korea, 1998–2007: gender and
22 23	430		socioeconomic differences. Prev Med 2010;51:460-5. https://doi.org/10.1016/j.ypmed.2010.10.004
24 25	431	24.	Kim D. Estimation of disease and disease burden by health behavior. Sejong City: Korea Institute for
26 27	432		Health and Social Affairs 2018.
28 29	433	25.	Çağlayan Ç, Terawaki H, Chen Q, et al. Microsimulation Modeling in Oncology. JCO Clin Cancer
30 31	434		Inform 2018;2:1-11. https://doi.org/10.1200/CCI.17.00029
32 33	435	26.	Hennessy D, Garner R, Flanagan WM, et al. Development of a population-based microsimulation
34 35	436		model of body mass index. Health Rep 2017;28:20-30.
36 37	437	27.	The National Academies of Sciences, Engineering, and Medicine. Assessing prevalence and trends in
38	438		obesity: Navigating the evidence. Washington DC: The National Academies Press 2016.
39 40	439	28.	Soyiri IN, Reidpath DD. An overview of health forecasting. Environ Health Prev Med 2013;18:1-9.
41 42	440		https://doi.org/10.1007/s12199-012-0294-6
43 44	441	29.	Pineda E, Sanchez-Romero LM, Brown M, et al. Forecasting future trends in obesity across Europe:
45 46	442		The value of improving surveillance. Obes Facts 2018;11:360–71. https://doi.org/10.1159/000492115
47 48	443	30.	Manuel DG, Tuna M, Hennessy D, et al. Projections of preventable risks for cardiovascular disease in
49 50	444		Canada to 2021: a microsimulation modelling approach. CMAJ Open 2014;2:E94-101.
51 52	445		https://doi.org/10.9778/cmajo.2012-0015
53 54	446	31.	Hennessy DA, Flanagan WM, Tanuseputro P, et al. The Population Health Model (POHEM): an
55 56	447		overview of rationale, methods and applications. Popul Health Metrics 2015;13:24.
57 58	448		https://doi.org/10.1186/s12963-015-0057-x
59 60	449	32.	Spielauer M. Dynamic microsimulation of health care demand, health care finance and the economic


Page 20 of 24

BMJ Open

2 3	450	impact of health behaviours: survey and review. 2007 International Journal of Microsimulation
4 5	451	2007;1:35–53.
6 7	452	 Zucchelli E, Jones A, Rice N. The evaluation of health policies through dynamic microsimulation
8 9 10 11 12 13 14	453	methods. International Journal of Microsimulation 2012;5:2–20.
	454	
		34. Lin J, Thompson TJ, Cheng YJ, et al. Projection of the future diabetes burden in the United States
	455	through 2060. Popul Health Metr 2018;16:9. https://doi.org/10.1186/s12963-018-0166-4
15 16	456	35. Low S, Chin MC, Ma S, et al. Rationale for redefining obesity in Asians. Ann Acad Med Singapore
17	457	2009;38:66–9.
18 19	458	36. The World Health Organization Western Pacific Region, International Association for the Study of
20 21	459	Obesity. The Asia-Pacific Perspective: Redefining obesity and its treatment. Sydney, Australia: Health
22 23	460	Communications Australia Pty Limited; 2000.
24 25	461	37. Seo MH, Kim YH, Han K, et al. Prevalence of obesity and incidence of obesity-related comorbidities
26 27	462	in Koreans based on National Health Insurance Service Health Checkup Data 2006-2015 (J Obes
28	463	Metab Syndr 2018;27:46–52). J Obes Metab Syndr 2018;27:198–9.
29 30	464	https://doi.org/10.7570/jomes.2018.27.3.198
31 32 33 34 35 36	465	38. Seo MH, Lee WY, Kim SS, et al. 2018 Korean Society for the Study of Obesity guideline for the
	466	management of obesity in Korea. J Obes Metab Syndr 2019;28:40-5.
	467	https://doi.org/10.7570/jomes.2019.28.1.40
37 38	468	
39 40	469	
41 42	470	Figure 1 Summary of data sources and methods used to generate and validate projections of
43 44	471	distribution of BMI categories in South Korea, 2012-2040
45 46	472	Figure 2 Population Health Model (POHEM) projections of average BMI in South Korea,
47 48	473	2012-2040
49 50	474	Figure 3A Projection of distribution of BMI, Men aged 19 years and older, South Korea,
51 52 53	475	2012-2040
54 55	476	Figure 3B Projection of distribution of BMI, Women aged 19 years and older, South Korea,
56 57	477	2012-2040
58 59 60	478	

PEigure 1 Summary of data sources and methods used to generate and validate projections of distribution of BMI categories in South Korea, 2012-2040

Step1: Generate an initial Korean population		0) using Korea Health	Panel Survey (<i>n</i> =11,501).	population aged 19 years of 3MI, pre-BMI, smoking rate, th Panel Survey.	
			↓		
Step2:	Each year to 2040, update	synthetic cohort for c	lemographic changes and E	BMI	
Annual update	Age	Births and deaths	Immigration and emigration	BMI, pre-BMI, Smoking , Physical Activity	
Data sources	Not applicable	registration, p and com	istics based on resident opulation projections, nplete life tables e from Statistics Korea	Korea Health Panel Survey	
Update method	Each person aged 1 yr	aged 19 years are ad applied to match	n projections, new entrants ded and the mortality rate is the population structure the future	The BMI values of each individual are updated annually by the BMI prediction equation	
			¥		
Step3: Validate and Calibrate model	Compare predicted estimates to survey estimates from 2013 to 2016 and calibrate the model to approximate survey estimates				
			¥		
Step4: Projection	Project baseline BMI from a For peer review only - h		site/about/guidelines.xhtml		

Figure 2 Population Health Model (POHEM) projections Marerage BMI in South Korea, 2012-2040

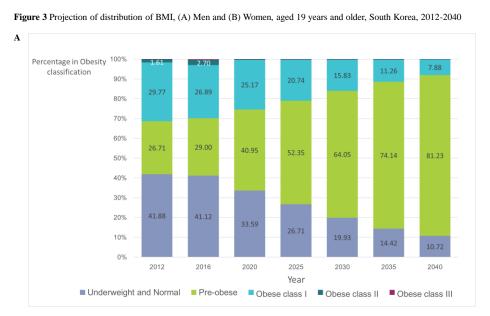


Figure 3 Projection of distribution of BMI, (A) Men and (B) Women, aged 19 years and older, South Korea, 2012-2040

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

STROBE Statement-checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Pag No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1-2
		(<i>b</i>) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of	6-8
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and	6-7
		methods of selection of participants. Describe methods of follow-up	
		<i>Case-control study</i> —Give the eligibility criteria, and the sources and	
		methods of case ascertainment and control selection. Give the rationale	
		for the choice of cases and controls	
		<i>Cross-sectional study</i> —Give the eligibility criteria, and the sources and	
		methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and	-
		number of exposed and unexposed	
		<i>Case-control study</i> —For matched studies, give matching criteria and the	
		number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	6-8
Data sources/	8*	For each variable of interest, give sources of data and details of methods	6-7
measurement		of assessment (measurement). Describe comparability of assessment	
		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	7-8
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	7
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	6-8
		(b) Describe any methods used to examine subgroups and interactions	7
		(c) Explain how missing data were addressed	7-8
			7-8
		(<i>d</i>) <i>Cohort study</i> —If applicable, explain how loss to follow-up was addressed	/-0
		Case-control study-If applicable, explain how matching of cases and	
		controls was addressed	
		Cross-sectional study-If applicable, describe analytical methods taking	
		account of sampling strategy	
		(<u>e</u>) Describe any sensitivity analyses	-

Continued on next page

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	1
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	
data		information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Cohort study-Report numbers of outcome events or summary measures over time	
		Case-control study-Report numbers in each exposure category, or summary	
		measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	
		their precision (eg, 95% confidence interval). Make clear which confounders were	
		adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	
Other informati	on		
	22	Give the source of funding and the role of the funders for the present study and, if	
Funding	22	Give the source of funding and the fole of the funders for the present study and, if	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Projecting the prevalence of obesity in South Korea through 2040: a microsimulation modeling approach

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-037629.R1
Article Type:	Original research
Date Submitted by the Author:	23-Jun-2020
Complete List of Authors:	Jung, Yoon-Sun; Department of Public Health, Graduate School, Korea University, Seoul, Korea Kim, Young-Eun ; Big Data Department, National Health Insurance Service, Wonju, Korea Go, Dun-Sol; Department of Health Care Policy Research, Korea Institute for Health and Social Affairs Yoon, Seok-Jun; Department of Preventive Medicine, Korea University College of Medicine, Seoul, Korea
Primary Subject Heading :	Public health
Secondary Subject Heading:	Health policy
Keywords:	PUBLIC HEALTH, Health policy < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, PREVENTIVE MEDICINE

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1
2
3
4
5
6
7
/ 8
9
10
11
12
13
14
15
16
17
18
19
20
20
21
22 23
23
24
25
26
27
28
29
30
31
32
33
34
35
36
20
37
38
39
40
41
42
43
44
45
46
47
48
49
49 50
50 51
51
52
53
54
55
56
57
58
59

1	Title: Projecting the prevalence of obesity in South Korea through 2040: a
2	microsimulation modeling approach
3	
4	Authors: Yoon-Sun Jung ^{a*} , Young-Eun Kim ^b , Dun-Sol Go ^c , Seok-Jun Yoon ^d
5	Affiliations:
6	^a Department of Public Health, Graduate School, Korea University, Seoul, Korea
7	^b Big Data Department, National Health Insurance Service, Wonju, Korea
8	^c Department of Health Care Policy Research, Korea Institute for Health and Social Affairs
9	^d Department of Preventive Medicine, Korea University College of Medicine, Seoul, Korea
10	
11	Corresponding author:
12	Seok-Jun Yoon, M.D., Ph.D.
13	Department of Preventive Medicine, Korea University College of Medicine,
14	73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Korea
15	E-mail: yoonsj02@korea.ac.kr
16	- 2
17	E-mail addresses:
18	sunnyaurora@nate.com (Yoon-Sun Jung)
19	kimyes4454@gmail.com (Young-Eun Kim)
20	kds237@gmail.com (Dun-Sol Go)
21	
22	Keywords: Microsimulation, body mass index, obesity, Population Health Model, South
23	Korea
24	

1		2
2 3 4	26	ABSTRACT
5 6	27	
7 8 9	28	Objective To project the future prevalence of obesity among populations 19 years and older by 2040
9 10 11	29	in South Korea
12 13	30	Design, setting, and participants Using the 'Population Health Model-Body Mass Index' (BMI)
14 15	31	microsimulation model, the prevalence of obesity in Korean adults 19 years and over was projected
16 17	32	until the year 2040. The model integrates individual survey data from the Korea Health Panel Survey
18 19	33	of 2011 and 2012, population statistics based on resident registration, population projections, and
20 21	34	complete life tables categorized by sex and age. Birth rate, life expectancy, and international
22 23	35	migration were based on a medium growth scenario. The base population of Korean adults in 2012,
24 25 26	36	devised through data aggregation, was 39,842,730. Prediction equations were formulated using BMI
20 27 28	37	as the dependent variable; the individual's sex, age, smoking status, physical activity, and the
29 30	38	preceding year's BMI were used as predictive factors.
31 32	39	Outcome measure BMI categorized by sex.
33 34	40	Results The median BMI for Korean adults in 2040 was forecast to be 23.55 kg/m ² (23.97 and 23.17
35 36	41	kg/m ² for men and women, respectively). According to the Korean BMI classification, 70.05% of all
37 38	42	adults were forecast to be 'pre-obese' (i.e., have BMIs 23 to 24.9) by 2040 (81.23% of men and
39 40	43	59.07% of women), followed by 24.88% who would be 'normal'.
41 42	44	Conclusions We explored the possibility of applying and expanding on the concept of
43 44	45	microsimulation in the field of healthcare by combining data sources available in Korea using the
45 46 47	46	POHEM model. In future studies, it is necessary to develop a microsimulation model suitable for
47 48 49	47	Korea's domestic situation, and it is necessary to evaluate the effectiveness of special health policies
50 51	48	by applying various prediction scenarios to the basic model.
52 53	49	
54 55	50	
56 57	51	
58 59 60	52	

Page 4 of 27

BMJ Open

1			3
2 3 4	53		Strengths and limitations of this study
5 6	54	•	To the best of our knowledge, this study is the first to use a microsimulation model to
7 8	55		predict future obesity prevalence in Korea considering the change in population structure
9 10 11	56		(macro level) as well as individual health behavior components (micro level).
12 13	57	•	This study has the greatest significance in exploring the possibility of applying and
14 15	58		expanding the concept of microsimulation in the field of healthcare by combining data
16 17 18	59		sources available in Korea.
19 20	60	•	Although a representative data source was used in this study, the prevalence of obesity
21 22	61		may be underestimated because it is based on a self-reported BMI value.
23 24 25	62	•	The estimated BMI value differs from the Korea Health Statistics, which is based on the
25 26 27	63		data measured by actual measurement.
28 29 30 31 32	64	•	There is a limitation that it does not accurately reflect the domestic situation because it
	65		borrows a micro-simulation model developed abroad.
32 33 34	66		
35 36	67		
37 38	68		
39 40 41	69 70		
42 43	70		
44 45	72		
46 47 48	73		
49 50	74		
51 52	75		
53 54 55	76		
56 57	77 79		
58 59	78 79		
60	17		

BMJ Open

80 BACKGROUND

The prevalence of overweight and obesity has increased markedly over the past 3 decades, and concerns about health risks associated with obesity have become almost universal.[1] The increasing rate of obesity is a growing public health concern not only in Western countries but also in South Korea.[2] From the 1990s through the beginning of the new millennium, the prevalence of adult and child obesity has increased rapidly and continues to rise steadily in parallel with rapid social and economic development.[3]

Obesity is not only a major public health problem in and of itself, but also a factor in the development of many chronic diseases; hence, it constitutes a strain on individuals and health systems worldwide. In the Global Burden of Disease Study, [4] globally in 2017, a high body mass index (BMI) accounted for 4.72 million deaths and 148.0 million disability-adjusted life-years. It is associated with an increased risk of many disorders, including diabetes, hypertension, dyslipidemia, heart disease, stroke, sleep apnea, early death, and cancer.[5-9] Moreover, obesity among older people increases the risk of knee osteoarthritis[10] and reduces functional capacity and quality of life.[11-14] The prevalence of these conditions rises commensurate with increased obesity, [15-18] and are associated with significant morbidity, higher risks of mortality, and increased economic costs for both individuals and the society at large.[19]

Meanwhile, with respect to worldwide comparisons, whether cutoff points for overweight and obesity should be lower for Asians than for another ethnic group remains debated.[20] Because of racial differences, the World Health Organization has proposed regarding BMIs of 18.5–22.9 kg/m² as optimal, 23–24.9 kg/m² as overweight, 25–29.9 kg/m² as moderate obesity, and \geq 30 kg/m² as severe obesity for Asians.[21] However, it is more important to determine particular BMI values that increase the likelihood of developing particular chronic disease, depending on the sex and age of the individual. The Korean Society of Obesity, which was established to improve obesity management through research and education, revised its clinical practical guidelines for the prevention and treatment of obesity in 2018. The new guidelines renamed the "overweight" category to "pre-obese", and divided obesity into 3 categories, thereby aiming to highlight the risk of obesity instead of promoting the term "overweight." The most recent guidance is based in part on data from of

 84,690,131 Korean adults extracted from the Korean National Health Insurance Service Health Checkup Database between 2006 and 2015. By including the entire population registered in the National Health Insurance Service Database, they calculated the first and second cutoff points corresponding to the increased risk of any of 3 accompanying diseases (type 2 diabetes, hypertension, and dyslipidemia). The first and second BMI cutoff levels were reported to be 23 kg/m^2 and 25 kg/m^2 , respectively, [22,23] suggesting that obesity criteria reflecting the actual risk of chronic disease in Koreans is necessary. A study of data from the National Health Insurance Service in Korea found that the socioeconomic cost of obesity in 2016 was approximately 9,665.32 million US dollars; medical expenses accounted for 51.3% of this amount, followed by decreasing productivity (20.5%), productivity loss (13.1%), early mortality (10.0%), care costs (4.3%), and transportation costs (0.8%).[24] Several studies on the long-term trends of obesity prevalence in South Korea found that obesity is increasing in men but not in women.[25-27] Although numerous investigators in other countries have attempted to predict the prevalence of obesity into the future, only one such study by Inkyung Baik was recently performed in South Korea.^[2] More recent trends still need to be investigated through predictive studies, and the accurate prediction of obesity prevalence remains an important public health-related goal in the country. To efficiently establish and execute an effective healthcare policy, which would require a large budget, it is necessary to select future targets for policy interventions (such as high-risk groups) to predict future healthcare needs and prevent budget waste. Past prediction models incorporated a country's entire population; as such, macroscopic inferences based on average projections for the future society were generalized. However, when establishing a healthcare policy, it is necessary to estimate the future disease burden and medical

needs of the entire population based on future projections that reflect individual characteristics,
because a real-world understanding of the factors that are influenced by the policies or institutions is

132 required. Individuals are independent entities with different characteristics and needs that govern their

future decisions and behaviors. By applying these needs to the healthcare sector, health-related

134 projections can be modeled by reflecting health risk factors such as sex, age, life cycle activities,

135 smoking, etc.; as such, the effects of policy interventions can be quantified.[28] In this study, we

BMJ Open

aimed to predict the prevalence of obesity in Korea by using microsimulation, which is optimal forconsidering individual properties.

Microsimulation is a modeling technique that typically uses individual microunits, each with its own set of properties, to simulate downstream events based on the probability of transition between predefined states and their changes over time. When used in medicine, microsimulation can be particularly powerful because it preserves the patterns of previous behaviors and conditions, and allows for a clearer representation and understanding of how various processes affect the total outcome of the population over time. In other words, microsimulation can predict the burden of disease by modeling various health risk factors that occur during an individual's lifetime. Given macro-effects such as changes in population structures in the forecasting model, microsimulation is very useful in that it can estimate both disease burdens and medical needs across the country.[28] Collecting individual events from within a population that has varying attributes can be used to predict and plan outcomes (such as incidence, prevalence, and cost), and can also be used to assess the clinical and cost effectiveness of alternative health interventions.[29] Microsimulation modeling is particularly useful for studying BMI trends because it can simultaneously explain population dynamics such as aging, migration, and mortality. Additionally, the longitudinal framework of these models allows for interpreting a person's change in BMI as it is affected by factors such as a person's physical activity and behavior and thus act as a contributing factor to other diseases. [30] However, while microsimulation models have been steadily evolving across health- and economy-related fields in many European countries,[31] they have yet to be actively utilized in South Korea (especially for healthcare).

157 Obesity prevalence and trend estimates provide important information for research, policy,
158 and intervention.[32] As mentioned above, it is necessary to estimate the magnitude of obesity
159 because it has been identified as a risk factor for various chronic diseases. Because health forecasting
160 predicts disease episodes and portends future events, it facilitates healthcare strategies by promoting
161 the setting of goals to reduce obesity, establish health promotion interventions, and optimize resource
162 allocation.[33] Obesity trends may also be used to urge governments to implement preventative
approaches to reducing obesity.[34] Based on the above, we performed this study to project the future

7

1 2		
2 3 4	164	trends in obesity prevalence in South Korea up to the year 2040.
5 6	165	
7 8 9 10 11 12 13 14 15 16 17 18 19	166	METHODS
	167	Model
	168	We used the Population Health Model (POHEM)-BMI to estimate the prevalence of obesity
	169	in adults 19 years and over in South Korea from 2012 through 2040. In brief, POHEM is a time-
	170	continuous, population-based, dynamic microsimulation model with individual underlying units of
	171	analysis used worldwide. Dynamic microsimulation, in the context of social science and population
20 21	172	health, is a simulation of individuals (i.e., micro-level) and their behaviors, statuses, and actions
22 23	173	(dynamics) over time.[35] These are modeled as desired using multiple sources of empirical data,
24 25	174	including cross-sectional surveys, administrative databases, vital statistics, and census data.[36]
26 27	175	Through dynamic simulation, POHEM creates a population and ages it, one person at a time, until
28 29 30 31	176	death.[37] The model dynamically simulates an individual's disease state, risk factors, and health
	177	determinants to describe and plan health outcomes.[36] POHEM is accessible because it wants the
32 33	178	general process to be constant across the country's population, with the exception of variables unique
34 35 36	179	to each country, such as marriage and mortality. The POHEM models include cardiovascular disease,
37 38	180	various cancers, osteoarthritis, physical activity, and neurological events. The model used in this study
39 40	181	was the POHEM-BMI; the performance of each prediction step is shown in Figure 1.
41 42	182	[Insert Figure 1 here]
43 44	183	Base population
45 46 47 48 49 50 51 52 53 54 55 56 57	184	To create the base population for the POHEM-BMI model, we used the 2011-2012 Korea Health
	185	Panel survey and the resident registration-based population statistics. This constituted the base
	186	population for POHEM-BMI (n=39,842,730), reflecting the Korean population. Each Korean
	187	respondent 19 years of age and over (n=11,501) in 2012 was replicated using their survey-recorded
	188	weights to generate a simulated cohort of approximately 39,842,730 individuals. Korea Health Panel
	189	survey data are nationally representative panel surveys that incorporate health status, chronic diseases,
58 59	190	health risk behaviors, and socio-demographic characteristics. Among them, we extracted sex, age,
60	191	current smoking status, physical activity, and the previous and current years' BMI values; these

BMJ Open

variables were required for the predictive equation. We then used a multiple linear regression model to estimate the BMI value using the independent variables age, sex, smoking status, physical activity, and previous BMI value as predictors. The POHEM-BMI model is auto-regressive and includes previous BMI values as a main explanatory variable.[30] For comparison with other international studies using this model, the variable composition was the same, but the variable definition was not. The definition of variables was consistent with the definition of indicators in the Korea Health Statistics. In terms of predictor definitions, a current smoker was an individual who reported smoking 'every day' or 'sometimes'. Practicing physical activity was defined as performing either intense physical activity for at least 10 continuous minutes a day, 20 minutes total per day, 3 days a week during the preceding week, or moderate physical activity for at least 30 minutes a day, 5 days a week during the preceding week. Simulation: Annual updates and risk transition The population makeup was updated by aging each person by 1 year and changing the total population size based on population statistics, population projections, and complete life tables categorized by sex and age from Statistics Korea. For population projections, we assumed a medium growth scenario in terms of birth rate, life expectancy, and international migration. Each person's BMI was updated annually by applying a predictive equation that incorporates his/her own characteristics. The transition probability for each stochastic characteristic was calculated based on a generalized linear model. Similar to the original POHEM-BMI, we assumed that the current individual behavioral patterns persisted, and no new factors arose to prevent obesity. We also assumed that the attributes of 19-year-old individuals, which were entered annually, remained similar year-to-year. Model validation and calibration We established the model's validity by comparing the projected BMI median obtained from the prediction model to estimates obtained from the Korea Health Panel survey. We set the calibration cutoff point to 5% and adjusted the model by comparing the difference between the median BMI estimates observed from the Korea Health Panel survey and the values derived from the prediction model categorized by sex and age. We analyzed the BMIs of each group by comparing the 2016 data

Underweight

available from the Korea Health Panel with the most recent data. We accepted a difference of less than 5% overall as well as in the sex- and age-categorized groups. Finally, we adjusted the demographics of the 2040 population so that the predictions were similar within a 5% margin of error. In this study, all necessary data for model building and projection were obtained from publicly available data and does not include any identifiable personal information, so no additional ethical approval was required. In addition, ethical and governance approvals were granted by the Korea Institute for Health and Social Affairs which conducts Korea Health Panel Survey. All participants gave written informed consent to take part before they were allowed to complete the survey. Projection The model projected the BMI of each person from 2017 to 2040. Based on demographic characteristics, the projections were then aggregated by year for each of the predefined subgroups. The various trends observed in the Korean population data were used to generate algorithms that were applied to future projections. **Model outputs** The final results of the BMI distributions were calculated overall and by sex. Individuals with a BMI \geq 25 kg/m² were obese according to the Guidelines for the Management of Obesity in Korean, which is not the internationally accepted standard (see Table 1). According to this guideline, BMI is categorized into standard groupings for underweight (<18.5 kg/m²), normal weight (18.5–22.9 kg/m²), pre-obese (23–24.9 kg/m²), obese class I (25–29.9 kg/m²), obese class II (30–34.9 kg/m²), and obese class III (\geq 35 kg/m²). All analyses in this study were performed using STATA version 13 (StataCorp LLC, College Station, TX, USA). Table 1 BMI classification of South Korea **Body mass index** Classification (kg/m^2)

< 18.5

1		10
2 3		Normal 18.5 – 22.9
4 5		Pre-obese $23-24.9$
6		Obese class I 25 – 29.9
7 8		Obese class II 30 – 34.9
9 10		Obese class III ≥ 35
11	244	
12 13 14	245	Patient and public involvement
14 15 16	246	No patient involved
17 18	247	
19 20	248	RESULTS
21 22	249	We compared the total numbers of the individuals and characteristics in the initial 2012
23 24	250	population to those in the projected 2040 population (see Table 2) There were 39,842,730 adults who
25 26	251	were 19 or over in 2012 and 43,818,808 in 2040. The male:female ratio was nearly 1:1 in both 2012
27 28	252	and 2040. The rapid aging of the Korean population was clearly observed when comparing the 2 eras.
29 30	253	The average age of adults was expected to increase by 10.9 years from 45.69 years in 2012 to 56.59
31 32	254	years in 2040 (from 44.57 to 55.54 years among men and from 46.77 to 57.63 years among women).
33 34 35	255	In 2012, the proportion of young people (those in the 19–39 and 40–64 year age groups combined)
36 37	256	accounted for approximately 85.54% of the adult population, while the proportion of individuals aged
38 39	257	65 years and older was relatively low at approximately 14%. However, the age group structure in
40 41	258	South Korea 28 years later (2040) is predicted to be quite different, as the proportion of individuals
42 43	259	19-64 years (i.e., the working age population) was only 60.95% of the adult population, while the
44 45 46	260	proportion of the elderly population (≥65 years) was estimated to be almost 40% of the total adult
47 48	261	population.
49 50	262	
51 52		
53		
54 55		
56		
57 58		
59		
60		

263 Table 2 Comparison of number of people, South Korea, 2012 and 2040

		P	opulation at b	aseline (20	12)		Projected population (2040)						
	Mei	n	Wom	en	Total		Men		Women		Total		
	Number	(Perce	Number	(Perce	Number	(Percenta	Numb	(Pe	ercentage)	Number	(Perce	Number	(Percer
		ntage)		ntage)		ge)	er				ntage)		tage)
Number of people	19,709	,628	20,133	,102	39,842	2,730		2	21,717,128	22,101,680		43,818,808	
Age (mean±s.d.)	44.5	57 ± 15.60	46.77	7±16.92	45.0	69 ± 16.31		55.5	54 ± 18.60	57.	63±19.33	56.59	±19.00
19-39	7,985,737	(40.52)	7,505,824	(37.29)	15,491,561	(38.88)	4,873,74	0	(22.45)	4,588,867	(20.76)	9,462,607	(21.60
40-64	9,360,489	(47.49)	9,230,871	(45.85)	18,591,360	(46.66)	8,896,88	36	(40.97)	8,349,634	(37.78)	17,246,520	(39.35
65-	2,363,402	(11.98)	3,396,407	(16.87)	5,759,809	(14.45)	7,946,50)2	(36.59)	9,163,179	(41.45)	17,109,681	(39.05)
Smoking status													
Smoker	8,879,037	(45.05)	450,946	(2.24)	9,329,983	(23.42)							
Non-smoker	10,830,591	(54.95)	19,682,156	(97.76)	30,512,747	(76.58)							
Physical activity													
Physical activity	5,199,273	(26.38)	3,103,036	(15.41)	8,302,309	(20.84)							
Physical inactivity	14,510,355	(73.62)	17,030,066	(84.59)	31,540,421	(79.16)							

264 There was no significant difference between the median BMIs in 2012 and 2040; however, according to the BMI classification in South Korea, approximately

265 41.48% of the adult population was 'normal' in 2012, whereas only 24.88% of the population was predicted to be the same in 2040. (see Table 3) On the

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

other hand, the 'pre-obese' group was expected to account for approximately 70% of the total adult population.

Table 3 Comparison of number of people, by BMI classification, South Korea, 2012 and 2040

	Population at baseline (2012)							Projected population (2040)					
	Me	en	Wor	nen	Total		Men		Women		Total		
	Number	(Percent	Number	(Percent	Number	(Percen	Number	(Percent	Number	(Perce	Number	(Percer	
		age)		age)		tage)		age)		ntage)		tage)	
BMI (median)	23.	.59	22.	41	23.0)4	23.	97	23.1	7	23.:	55	
Number of pe	eople by BMI	classification	on										
Underweight	840,251	(4.26)	2,368,051	(11.76)	3,208,302	(8.05)	98,954	(0.46)	152,500	(0.69)	251,454	(0.57)	
Normal	7,414,311	(37.62)	9,114,015	(45.27)	16,528,32	(41.48)	2,228,567	(10.26)	8,671,481	(39.2 3)	10,900,048	(24.88)	
Pre-obese	5,264,866	(26.71)	4,207,673	(20.90)	9,472,539	(23.77)	17,641,668	(81.23)	13,055,48	(59.0 7)	30,697,150	(70.05	
Obese class 1	5,867,369	(29.77)	4,046,607	(20.10)	9,913,976	(24.88)	1,712,332	(7.88)	221,829	(1.00)	1,934,161	(4.41)	
Obese class II	318,297	(1.61)	324,205	(1.61)	642,502	(1.61)	33,455	(0.15)	388	(0.00)	33,843	(0.08	
Obese class III	4,534	(0.02)	72,551	(0.36)	77,085	(0.19)	2,152	(0.01)	0	(0.00)	2,152	(0.00)	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

27 268

Page 14 of 27

BMJ Open

2 3	270	
4 5	270	The model was well calibrated in both the initial population and from 2017 to 2040.
6	271	Differences in each of the variables estimated between 2013 to 2016, which were derived from the
7 8	272	Korea Health Panel data, were within the 5% range only when using the predictive model.
9 10	273	Additionally, when compared to the population structure for 2040 (the final year) as predicted by
11 12	274	Statistics Korea, the total population and gender and age-specific ratio were similar.
13 14	275	Figure 2 shows the median predicted BMIs between 2017 and 2040. Each median BMI value
15 16	276	from 2013 to 2016 was estimated from the Korea Health Panel survey. The median BMI for the entire
17 18 19	277	adult population is predicted to increase very slightly from 23.23 kg/m ² in 2018 to 23.53 kg/m ² in
20 21	278	2036 and is expected to remain steady thereafter. The predicted median BMI trends are similar for
22 23	279	men; the median BMI in adult men was projected to increase only slightly, from 23.74 kg/m ² in 2018
24 25	280	to 23.95 kg/m ² in 2036 and then almost plateau thereafter. On the other hand, women were expected
26 27	281	to experience a relatively steep rise compared to men; the median BMI in adult women was projected
28 29	282	to increase from 22.66 kg/m ² in 2018 to 23.17 kg/m ² in 2040.
30 31 32	283	[Insert Figure 2 here]
32 33	284	The BMI distributions for men and women from 2012 to 2040 are shown in Figure 3. The
34 35 36	285	proportions of 'pre-obese' individuals in both sexes are predicted to increase dramatically over time,
30 37 38	286	while the proportions of individuals who are classified as 'normal' and 'obese' will gradually
39 40	287	decrease. As of 2025, 52.35% of all male adults were expected to be pre-obese, with that proportion
41 42	288	expected to be close to 81.23% by 2040. Moreover, 53.24% of all adult women are expected to be
43 44	289	'pre-obese' by 2035, with the proportion rising to almost 59.078% by 2040.
45 46	290	[Insert Figure 3A and 3B here]
47 48	291	
49 50	292	DISCUSSION
51 52	293	The purpose of this study was to predict the prevalence of obesity in South Korea in the year
53 54	294	2040 using a microsimulation model. In this study, we strove to predict future adult obesity rates in
55 56 57	295	South Korea using the POHEM-BMI, which is developed by Statistics Canada. Summarizing the
57 58 59	296	predicted results, the median BMI of South Korea's adult population aged 19 years and older was
60	297	expected to be 23.55 in 2040, while the percentage of 'pre-obese' individuals was expected to

increase over time. While it is encouraging that the proportion of 'obese' people (i.e., those with BMIs ≥ 25 kg/m²) in 2040 is predicted to be much lower than that in 2012, it is discouraging that the proportion of 'normal' individuals is also markedly lower. Most notably, the pre-obesity rate is predicted to rise dramatically. In addition to the sex and age of each individual, our model includes only smoking and physical activity as health-related behaviors. The distributions of these factors were assumed to remain equal across the years; hence, our data show that maintaining smoking and physical activity rates at 2012 levels among adults will lead to a sharp increase in the 'pre-obese' population by 2040.

To our knowledge, the only other study that predicted future obesity rates among South Korean adults was the aforementioned investigation by Baik.[2] That study explored factors affecting adult obesity as well as abdominal obesity, and constructed forecasting models to predict obesity prevalence rates in 2020 and 2030 using the Korea National Health and Nutritional Examination Survey (KNHANES). The prevalence rates of obesity among men and women in that study were predicted to be 47% and 32%, respectively, in 2020 and 62% and 37%, respectively, in 2030; these data were inconsistent with our own. The differences appeared to be caused by the different secondary sources used in the 2 studies, as well as the different independent variables and prediction methodologies. In particular, the obesity rate in the initial population according to the KNHANES tended to be higher; as such, a higher initial prevalence rate would lead to a higher projection.[38] Most importantly, Baik's study did not consider the preceding year's BMI, which was a major independent variable in our study; this may be a major explanation for the differences in findings between the 2 studies. We also compared our results to those predicted in Canada using the same model we used; based on self-reported BMIs, approximately 59% of the adult Canadian population was predicted to be 'overweight or obese' (i.e., BMIs >25 kg/m²) by 2030, which is a much higher percentage than that predicted in South Korea (10.12%).

With reference to international comparisons, if the international BMI standard were to be applied in our study, the results would be much more favorable given that a large proportion of subjects would be classified as normal. However, this study defined obesity by applying the BMI classification system according to 2018 Korean Society for the Study of Obesity guideline for the

management of obesity in Korea. Of course, it would be appropriate to use international standards in international comparison, but it is necessary to reflect the situation of individual countries in the management of obesity for the purpose of preventing and managing chronic diseases. Therefore, rather than emphasizing the BMI classification criteria, more research is needed to analyze the BMI values that can significantly predict the occurrence of chronic diseases. In other words, it is necessary to continuously accumulate sufficient epidemiologic evidence for the relationship between the BMI and the actual risk of disease and death for Koreans, and based on such evidence, efforts to establish appropriate diagnostic and medical standards for Koreans are needed. In particular, the relationship is likely to vary by age as well as sex, so it should be considered as well. In the meantime, the obesity standard has been applied collectively regardless of sex and age. However, in order to deviate from a uniform approach to obesity, gender- and age-based approaches are needed, considering the changes in hormones and body composition. Because health management policies including obesity management requires a large budget, it is most important to establish cost-effective policies, and this requires selecting targets for policy intervention. The results from this study made it possible to grasp the obese high-risk group by sex and age group, and furthermore, it is expected to enable estimation of medical needs. As it is necessary to apply obesity standards differently according to sex and age group, it is a similar problem in setting goals of the 'National Health Promotion Comprehensive Plan'. The developing

governmental 'National Health Promotion Comprehensive Plan' needs to suggest additional, wider-ranging goals considering the characteristics of each sex and age group, rather than presenting goals for obesity prevalence among adult men and women. In this case, the goal should be presented at an achievable level in consideration of future prediction patterns. Finally, systematic public health interventions that are tailored to individual characteristics need to be established.

Findings from this study should be interpreted with consideration of several limitations. First, since a microsimulation model for predicting obesity prevalence has not been developed in this country, we borrowed the model developed by the Statistics Canada, and accordingly it is not built to fit the domestic situation. Therefore, not only is the definition of obesity different, but the predictors of BMI include only sex, age, smoking, physical activity, and preceding year's BMI values. In the

Page 17 of 27

BMJ Open

2		10
2 3 4	354	future, research to develop a new model of microsimulation in the field of healthcare for domestic
5 6	355	conditions will be very valuable. In this process, it is necessary to consider practical suitability and
7 8	356	efficiency in selecting basic data, module-specific behavioral equations, and variables for use in the
9 10	357	model. Second, it is a limitation of data sources. There is a difference between the current prevalence
11 12	358	of obesity calculated from the Korea Health Panel data used in this study and the Korea Health
13 14	359	Statistics using the KNHANES. As of 2011, the prevalence of adult obesity in Korea Health Statistics
15 16	360	was 31.9%, and the prevalence of adult obesity calculated by the Korea Health Panel data was 23.7%,
17 18	361	a difference of 8.2%.[39] Unlike the Korea Health Statistics, which contains body-measured height
19 20 21	362	and weight information, the Korea Health Panel (although this is a representative data source)
21 22 23	363	generates data based on self-reported by respondents, which may underestimate obesity. However, in
23 24 25	364	the POHEM-BMI model used in this study, the BMI of the previous year was regarded as the main
26 27	365	explanatory variable, and therefore, the Korea Health panel data that followed the same subject once a
28 29	366	year was inevitably used. In addition, the original POHEM-BMI model includes the process of
30 31	367	converting self-reported BMI into a measured BMI, but we omitted this due to limitations of the data
32 33	368	source.
34 35	369	Nevertheless, our study's importance is that it is the first to examine the possibility of using
36 37	370	microsimulation to predict future BMI medians in South Korea. Additionally, it is important to note
38 39	371	that the BMI of the future adult population was predicted after considering the change in population
40 41 42	372	structure at the macro level as well as individual health behavior components at the micro level.
42 43 44	373	
45 46	374	CONCLUSION
47 48	375	The key finding of this study is that by 2040, 70.05% of Korean adults are predicted to be
49 50	376	pre-obese. Utilizing data sources available in Korea, the possibility of applying and expanding on the
51 52	377	concept of microsimulation was explored. In future studies, a model suitable for South Korea needs to
53 54	378	be developed, and the effectiveness of specific health policies ought to be assessed by applying
55 56	379	various relevant scenarios to the basic forecasting model.
57 58	380	
59 60	381	Abbreviations

2		
3 4	382	BMI: body mass index; KNHANES: Korea National Health and Nutritional Examination
5	383	Survey, POHEM: Population Health Model
6 7	384	Authors' Contributions
8 9	385	YS (the first author) designed the study, analyzed and interpreted the data, and wrote the
10 11 12	386	paper. YE participated in the statistical analysis. DS provided assistance in the interpretation of the
13 14	387	data and preparation of the manuscript. SJ (the corresponding author) directed this study. All authors
15 16	388	read and approved the final version of the manuscript.
17 18	389	Funding
19 20	390	This work was supported by the National Research Foundation of Korea (NRF) grant funded
21 22	391	by the Korea government (Ministry of Science and ICT) (No. 2017R1A2B4005876). The funding
23 24 25	392	agency had no role in the study design, analysis and interpretation of the data, or the preparation of
25 26 27	393	the manuscript.
28	394	Competing Interests
29 30 31	395	The authors declare that they have no competing interests.
32 33	396	Ethics approval
34 35	397	This study used publicly available data of Korea Health Panel Survey 2011-2012 from The
36 37	398	Korea Institute for Health and Social Affairs and the National Health Insurance, population statistics
38 39	399	based on resident registration, population projections, complete life tables and future mortality rates
40 41	400	from Statistics Korea. The dataset does not contain any identifiable personal information. Ethical
42 43	401	approval was given by the Institutional Review Board of Korea University, Seoul, Korea (IRB No.
44 45 46	402	KUIRB-2020-0018-01).
47 48 49	403	Provenance and peer review Not commissioned; externally peer reviewed.
50 51	404	Data sharing statement
52 53	405	The Korea Health Panel Survey data used in this article is available in
54 55 56	406	https://www.khp.re.kr:444/eng/data/data.do. Detailed information on the survey design and data
56 57 58	407	characteristics are provided at https://www.khp.re.kr:444/eng/survey/sampling.do. Population
59 60	408	statistics, population projections, and complete life tables are available from http://kosis.kr/eng/.

1	0
	x
т	o

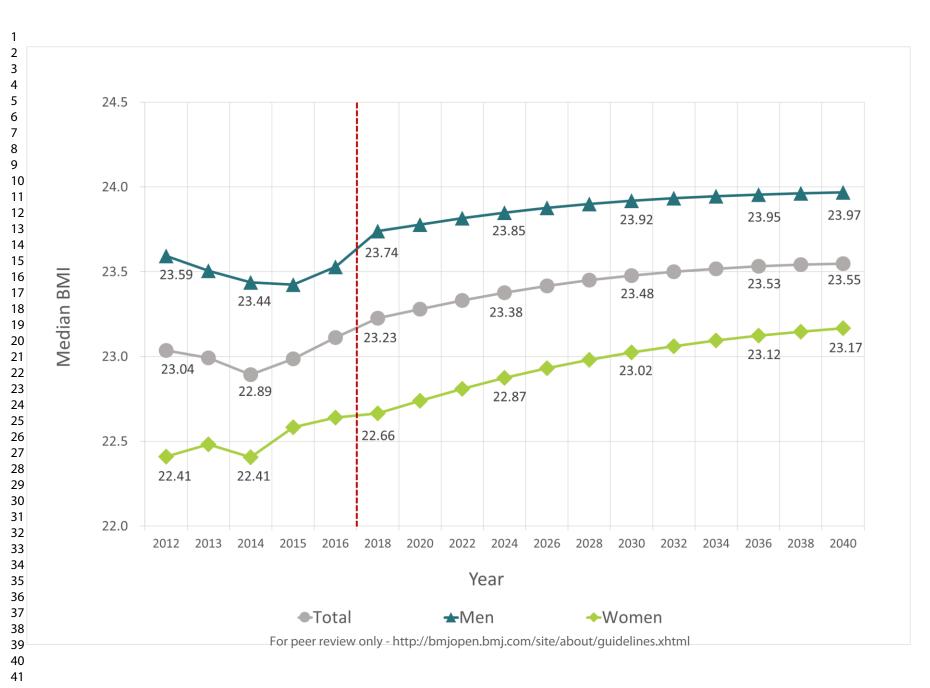
2		10	
2 3 4	409		
5	410		
7 8	411	REFERENCES	
9 10	412		
11 12	413	1. Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and	
13 14	414	obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of	
15 16	415	Disease Study 2013. Lancet 2014;384:766-81. https://doi.org/10.1016/S0140-6736(14)60460-8	
17 18	416	2. I Baik. Forecasting obesity prevalence in Korean adults for the years 2020 and 2030 by the analysis of	
19 20	417	contributing factors. Nutr Res Pract 2018;12:25-7. https://dx.doi.org/10.4162%2Fnrp.2018.12.3.251	
21 22	418	3. D Kim, C Ahn, SY Nam. Prevalence of obesity in Korea. <i>Obesity Rev</i> 2005;6:117–21.	
23 24	419	https://doi.org/10.1111/j.1467-789X.2005.00173.x	
25 26	420	4. GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk assessment of	
20 27 28	421	84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195	
29	422	countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study	
30 31	423	2017. Lancet 2018;392:1923-94. https://doi.org/10.1016/S0140-6736(18)32225-6	
32 33	424	5. Okosun IS, Chandra KMD, Choi S, et al. Hypertension and type 2 diabetes comorbidity in adults in	
34 35	425	the United States: Risk of overall and regional adiposity. Obes Res 2001;9:1-9.	
36 37	426	https://doi.org/10.1038/oby.2001.1	
38 39	427	6. Krauss RM, Winston M, Fletcher BJ, et al. Obesity: impact on cardiovascular disease. Circulation	
40 41	428	1998;98:1472–6.	
42 43	429	7. Chin K, Ohi M. Obesity and obstructive sleep apnea syndrome. <i>Intern Med</i> 1999;38:200–2.	
44 45	430	https://doi.org/10.2169/internalmedicine.38.200	
46 47	431	8. Wallström P, Bjartell A, Gullberg B, et al. A prospective Swedish study on body size, body	
48 49	432	composition, diabetes, and prostate cancer risk. Brit J Cancer 2009;100:1799-805.	
50 51	433	https://doi.org/10.1038/sj.bjc.6605077	
52 53	434	9. Guh DP, Zhang W, Bansback N, et al. The incidence of comorbidities related to obesity and	
54	435	overweight: a systematic review and meta-analysis. BMC Public Health 2009;9:88.	
55 56	436	https://doi.org/10.1186/1471-2458-9-88	
57 58	437	10. Coggon D, Reading I, Croft P, et al. Knee osteoarthritis and obesity. Int J Obes Relat Metab Disord	
59 60	438	2001;25:622-7. https://doi.org/10.1038/sj.ijo.0801585	

1			19
2 3 4	439	11.	Stenholm S, Rantanen T, Alanen E, et al. Obesity history as a predictor of walking limitation at old
5 6	440		age. Obesity 2007;15:929-38. https://doi.org/10.1038/oby.2007.583
7	441	12.	Alley DE, Chang VW. The changing relationship of obesity and disability, 1988–2004. JAMA
8 9	442		2007;298:2020-7. https://doi.org/10.1001/jama.298.17.2020
10 11	443	13.	Larsson U, Karlsson J, Sullivan M. Impact of overweight and obesity on health-related quality of life-
12 13	444		a Swedish population study. Int J Obes Relat Metab Disord 2002;26:417-24.
14 15	445		https://doi.org/10.1038/sj.ijo.0801919
16 17	446	14.	Zaninotto P, Pierce M, Breeze E, et al. BMI and waist circumference as predictors of well-being in
18 19	447		older adults: findings from the English Longitudinal Study of Ageing. Obesity 2010;18:1981-7.
20 21	448		https://doi.org/10.1038/oby.2009.497
22 23	449	15.	Emerging Risk Factors Collaboration, Wormser D, Kaptoge S, et al. Separate and combined
24 25	450		associations of body-mass index and abdominal adiposity with cardiovascular disease: Collaborative
26 27	451		analysis of 58 prospective studies. Lancet 2011;377:1085-95. https://doi.org/10.1016/S0140-
28 29	452		6736(11)60105-0
30 31	453	16.	The Global Burden of Metabolic Risk Factors for Chronic Diseases Collaboration (BMI Mediated
32	454		Effects), Lu Y, Hajifathalian K, et al. Metabolic mediators of the effects of body-mass index,
33 34	455		overweight, and obesity on coronary heart disease and stroke: A pooled analysis of 97 prospective
35 36	456		cohorts with 1.8 million participants. Lancet 2014;383:970-83. https://doi.org/10.1016/S0140-
37 38	457		6736(13)61836-X
39 40	458	17.	Renehan AG, Tyson M, Egger M, et al. Body-mass index and incidence of cancer: A systematic
41 42	459		review and meta-analysis of prospective observational studies. Lancet 2008;371:569-78.
43 44	460		https://doi.org/10.1016/S0140-6736(08)60269-X
45 46	461	18.	Bhimjiyani A, Knuchel-Takano A, Hunt D, et al. Tipping the scales: Why preventing obesity makes
47 48	462		economic sense. Technical Report 2016.
49 50	463		https://www.cancerresearchuk.org/sites/default/files/tipping_the_scalescruk_full_report11.pdf
51 52	464		(accessed 26 Jan 2020).
52 53 54	465	19.	Wang YC, McPherson K, Marsh T, et al. Health and economic burden of the projected obesity trends
55	466		in the USA and the UK. Lancet 2011;378:815-25. https://doi.org/10.1016/S0140-6736(11)60814-3
56 57	467	20.	Low S, Chin MC, Ma S, et al. Rationale for redefining obesity in Asians. Ann Acad Med Singapore
58 59 60	468		2009;38:66–9.

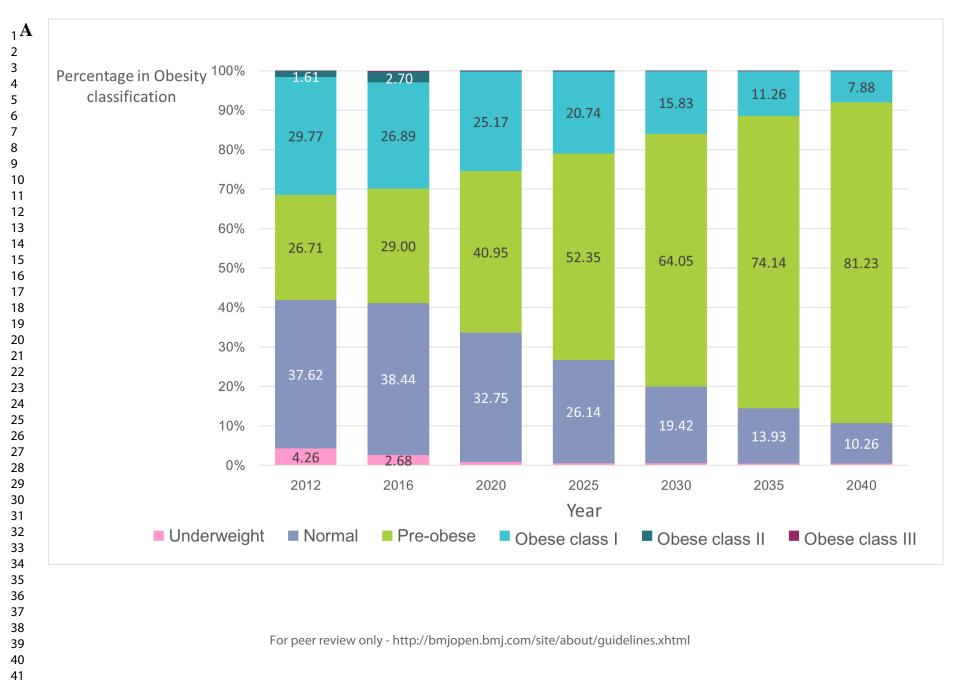
Page 21 of 27

BMJ Open

1 2			20
2 3 4	469	21.	The World Health Organization Western Pacific Region, International Association for the Study of
5	470		Obesity. The Asia-Pacific Perspective: Redefining obesity and its treatment. Sydney, Australia: Health
6 7	471		Communications Australia Pty Limited; 2000.
8 9	472	22.	Seo MH, Kim YH, Han K, et al. Prevalence of obesity and incidence of obesity-related comorbidities
10 11	473		in Koreans based on National Health Insurance Service Health Checkup Data 2006-2015 (J Obes
12 13	474		Metab Syndr 2018;27:46–52). J Obes Metab Syndr 2018;27:198–9.
14 15	475		https://doi.org/10.7570/jomes.2018.27.3.198
16 17	476	23.	Seo MH, Lee WY, Kim SS, et al. 2018 Korean Society for the Study of Obesity guideline for the
18 19	477		management of obesity in Korea. J Obes Metab Syndr 2019;28:40-5.
20 21	478		https://doi.org/10.7570/jomes.2019.28.1.40
22 23	479	24.	M Lee. Half of the socioeconomic costs of obesity are 'medical costs'. Korea Biomedical Review
24 25	480		(2018, December 10). <u>http://www.docdocdoc.co.kr/news/articleView.html?idxno=1063317/</u>
26 27	481		(accessed 2020, January 29)
28 29	482	25.	Kang HT, Shim JY, Lee HR, et al. Trends in prevalence of overweight and obesity in Korean adults,
30 31	483		1998–2009: the Korean National Health and Nutrition Examination Survey. J Epidemiol
32 33	484		2014;24:109-16. https://doi.org/10.2188/jea.je20130017
34 35	485	26.	Khang YH, Yun SC. Trends in general and abdominal obesity among Korean adults: findings from
36	486		1998, 2001, 2005, and 2007 Korea National Health and Nutrition Examination Surveys. J Korean
37 38	487		Med Sci 2010;25:1582-8. https://doi.org/10.3346/jkms.2010.25.11.1582
39 40	488	27.	Yoo S, Cho HJ, Khang YH. General and abdominal obesity in South Korea, 1998–2007: gender and
41 42	489		socioeconomic differences. Prev Med 2010;51:460-5. https://doi.org/10.1016/j.ypmed.2010.10.004
43 44	490	28.	Kim D. Estimation of disease and disease burden by health behavior. Sejong City: Korea Institute for
45 46	491		Health and Social Affairs 2018.
47 48	492	29.	Çağlayan Ç, Terawaki H, Chen Q, et al. Microsimulation Modeling in Oncology. JCO Clin Cancer
49 50	493		Inform 2018;2:1-11. https://doi.org/10.1200/CCI.17.00029
51 52	494	30.	Hennessy D, Garner R, Flanagan WM, et al. Development of a population-based microsimulation
53 54	495		model of body mass index. Health Rep 2017;28:20-30.
55 56	496	31.	Spielauer M. Dynamic microsimulation of health care demand, health care finance and the economic
57	497		impact of health behaviours: survey and review. 2007 International Journal of Microsimulation
58 59 60	498		2007;1:35–53.


Page 22 of 27

BMJ Open


1 2		21
2 3 4	499	32. The National Academies of Sciences, Engineering, and Medicine. Assessing prevalence and trends in
5	500	obesity: Navigating the evidence. Washington DC: The National Academies Press 2016.
6 7	501	33. Soyiri IN, Reidpath DD. An overview of health forecasting. <i>Environ Health Prev Med</i> 2013;18:1–9.
8 9	502	https://doi.org/10.1007/s12199-012-0294-6
10 11	503	34. Pineda E, Sanchez-Romero LM, Brown M, et al. Forecasting future trends in obesity across Europe:
12 13	504	The value of improving surveillance. Obes Facts 2018;11:360-71. https://doi.org/10.1159/000492115
14 15	505	35. Zucchelli E, Jones A, Rice N. The evaluation of health policies through dynamic microsimulation
16 17	506	methods. International Journal of Microsimulation 2012;5:2–20.
18 19	507	36. Hennessy DA, Flanagan WM, Tanuseputro P, et al. The Population Health Model (POHEM): an
20 21	508	overview of rationale, methods and applications. Popul Health Metrics 2015;13:24.
22 23	509	https://doi.org/10.1186/s12963-015-0057-x
24 25	510	37. Manuel DG, Tuna M, Hennessy D, et al. Projections of preventable risks for cardiovascular disease in
26 27	511	Canada to 2021: a microsimulation modelling approach. CMAJ Open 2014;2:E94–101.
28 29	512	https://doi.org/10.9778/cmajo.2012-0015
30 31	513	38. Lin J, Thompson TJ, Cheng YJ, et al. Projection of the future diabetes burden in the United States
32	514	through 2060. Popul Health Metr 2018;16:9. https://doi.org/10.1186/s12963-018-0166-4
33 34	515	39. Choi JS, Choi SE, Yeom AR, et al. A Report on the Korea Health Panel Survey of 2011. Korea
35 36	516	Institute for Health and Affairs. 2013.
37 38	517	
39 40	518	
41 42	519	Figure 1 Summary of data sources and methods used to generate and validate projections of
43 44	520	distribution of BMI categories in South Korea, 2012-2040
45 46	521	Figure 2 Population Health Model (POHEM) projections of median BMI in South Korea,
47 48	522	2012-2040
49 50	523	Figure 3A Projection of distribution of BMI, Men aged 19 years and older, South Korea,
51 52	524	2012-2040
53 54 55	525	Figure 3B Projection of distribution of BMI, Women aged 19 years and older, South Korea,
56 57	526	2012-2040
58 59 60	527	

PEGEREPARE And validate projections of distribution of BMI categories in South Korea, 2012-2040

Step1: Generate an initial Korean population		80) using Korea Health	Panel Survey (<i>n</i> =11,501).	n population aged 19 years o BMI, pre-BMI, smoking rate, th Panel Survey.				
			\checkmark					
Step2: Annual update	Each year to 2040, update	synthetic cohort for o	lemographic changes and E Immigration and	BMI BMI, pre-BMI, Smoking				
		deaths	emigration	Physical Activity				
Data sources	Not applicable	Population statistics based on resident registration, population projections, and complete life tables by sex and age from Statistics Korea		Korea Health Panel Survey				
Update method	Each person aged 1 yr	Each year, based on projections, new entrants aged 19 years are added and the mortality rate is applied to match the population structure in the future		The BMI values of each individual are updated annually by the BMI prediction equation				
			¥					
Step3: Validate and Calibrate model		Compare predicted estimates to survey estimates from 2013 to 2016 and calibrate the approximate survey estimates						
			V					
Step4: Projection	Project baseline BMI from For peer review only - h							

PErigere Projection of distribution of BMI, (A) Men and (B) Women, aged 19 years and older, South Korea, 2012-2040

Figure 3 Projection of distribution of BMI, (A) Men and (B) Women, aged 19 years and older, South Korea, 2012 P20406 of 27

STROBE Statement—checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Pag No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or	1-2
		the abstract	
		(b) Provide in the abstract an informative and balanced summary of what	2
		was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4-7
Objectives	3	State specific objectives, including any prespecified hypotheses	6-7
Methods			
Study design	4	Present key elements of study design early in the paper	7
Setting	5	Describe the setting, locations, and relevant dates, including periods of	7-8
C		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and	8-9
1		methods of selection of participants. Describe methods of follow-up	
		Case-control study—Give the eligibility criteria, and the sources and	
		methods of case ascertainment and control selection. Give the rationale	
		for the choice of cases and controls	
		Cross-sectional study—Give the eligibility criteria, and the sources and	
		methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and	-
		number of exposed and unexposed	
		<i>Case-control study</i> —For matched studies, give matching criteria and the	
		number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	7-9
		and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods	7-9
measurement		of assessment (measurement). Describe comparability of assessment	
		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	8-9
Study size	10	Explain how the study size was arrived at	7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	7
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for	7-9
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	8-9
		(c) Explain how missing data were addressed	8-9
		(d) Cohort study—If applicable, explain how loss to follow-up was	8-9
		addressed	
		<i>Case-control study</i> —If applicable, explain how matching of cases and	
		controls was addressed	
		<i>Cross-sectional study</i> —If applicable, describe analytical methods taking	
		account of sampling strategy	
		r	1

Continued on next page

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially
		eligible, examined for eligibility, confirmed eligible, included in the study,
		completing follow-up, and analysed
		(b) Give reasons for non-participation at each stage
		(c) Consider use of a flow diagram
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and
data		information on exposures and potential confounders
		(b) Indicate number of participants with missing data for each variable of interest
		(c) <i>Cohort study</i> —Summarise follow-up time (eg, average and total amount)
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time
		Case-control study—Report numbers in each exposure category, or summary
		measures of exposure
		Cross-sectional study—Report numbers of outcome events or summary measures
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and
		their precision (eg, 95% confidence interval). Make clear which confounders were
		adjusted for and why they were included
		(b) Report category boundaries when continuous variables were categorized
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a
		meaningful time period
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and
		sensitivity analyses
Discussion		
Key results	18	Summarise key results with reference to study objectives
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or
		imprecision. Discuss both direction and magnitude of any potential bias
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,
		multiplicity of analyses, results from similar studies, and other relevant evidence
Generalisability	21	Discuss the generalisability (external validity) of the study results
Other informati	on	
Funding	22	Give the source of funding and the role of the funders for the present study and, if

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Projecting the prevalence of obesity in South Korea through 2040: a microsimulation modeling approach

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-037629.R2
Article Type:	Original research
Date Submitted by the Author:	31-Oct-2020
Complete List of Authors:	Jung, Yoon-Sun; Korea University, Department of Public Health, Graduate School, Korea University, Seoul, Korea Kim, Young-Eun ; National Health Insurance Service, Big Data Department, National Health Insurance Service, Wonju, Korea Go, Dun-Sol; Korea Institute for Health and Social Affairs, Department of Health Care Policy Research, Korea Institute for Health and Social Affairs Yoon, Seok-Jun; Korea University, Department of Preventive Medicine, Korea University College of Medicine, Seoul, Korea
Primary Subject Heading :	Public health
Secondary Subject Heading:	Health policy
Keywords:	PUBLIC HEALTH, Health policy < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, PREVENTIVE MEDICINE

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

2
3
4
5
6
5 6 7 8
/
8 9
-
10
11
12
13
14
15
16
17
18
11 12 13 14 15 16 17 18 19 20 21
עו 20
∠∪ ⊃1
21
20 21 22 23 24 25 26 27 28 29
23
24
25
26
27
28
29
30
31
32 33
33
33 34 35
35
36 37 38
37
38
39
40
41
42
42 43
43 44
45
46
47
48
49
50
51
52
53
55 54
54 55
56
57
58
59

25

60

1	Title: Projecting the prevalence of obesity in South Korea through 2040: a
2	microsimulation modeling approach
3	
4	Authors: Yoon-Sun Jung ^{a*} , Young-Eun Kim ^b , Dun-Sol Go ^c , Seok-Jun Yoon ^d
5	Affiliations:
6	^a Department of Public Health, Graduate School, Korea University, Seoul, Korea
7	^b Big Data Department, National Health Insurance Service, Wonju, Korea
8	^c Department of Health Care Policy Research, Korea Institute for Health and Social Affairs
9	^d Department of Preventive Medicine, Korea University College of Medicine, Seoul, Korea
10	Corresponding author:
11	Seok-Jun Yoon, M.D., Ph.D.
12	Department of Preventive Medicine, Korea University College of Medicine,
13	73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Korea
14	E-mail: yoonsj02@korea.ac.kr
15	
16	E-mail addresses:
17	sunnyaurora@nate.com (Yoon-Sun Jung)
18	kimyes4454@gmail.com (Young-Eun Kim)
19	kds237@gmail.com (Dun-Sol Go)
20	
21	Keywords: Microsimulation, body mass index, obesity, Population Health Model, South
22	Korea
23	
24	Word count: 4,373

1		2
2 3 4	26	ABSTRACT
5 6	27	
7 8 9	28	Objective To project the prevalence of obesity in 2040 among individuals 19 years and older
10 11	29	in South Korea.
12 13	30	Design, setting, and participants Using the 'Population Health Model-Body Mass Index'
14 15 16	31	(POHEM-BMI) microsimulation model, the prevalence of obesity in Korean adults 19 years
17 18	32	and older was projected until 2040. The model integrated individual survey data from the
19 20	33	Korea Health Panel Survey of 2011 and 2012, population statistics based on resident
21 22 23	34	registration, population projections, and complete life tables categorized by sex and age.
24 25	35	Birth rate, life expectancy, and international migration were based on a medium growth
26 27	36	scenario. The base population of Korean adults in 2012, devised through data aggregation,
28 29	37	was 39,842,730. The prediction equations were formulated using BMI as the dependent
30 31 32	38	variable; the individual's sex, age, smoking status, physical activity, and preceding year's
33 34	39	BMI were used as predictive factors.
35 36	40	Outcome measure BMI categorized by sex.
37 38 39	41	Results The median BMI for Korean adults in 2040 was forecast to be 23.55 kg/m^2 (23.97)
40 41	42	and 23.17 kg/m ² for men and women, respectively). According to the Korean BMI
42 43	43	classification, 70.05% of all adults were forecast to be 'pre-obese' (i.e., have BMIs 23 to
44 45 46	44	24.9) by 2040 (81.23% of men and 59.07% of women) and 24.88% to be 'normal'.
47 48	45	Conclusions We explored the possibility of applying and expanding on the concept of
49 50	46	microsimulation in the field of healthcare by combining data sources available in Korea and
51 52 53	47	found that more than half of the adults in this study population will be pre-obese, and the
54 55	48	proportions of "obesity" and "normal" will decrease compared with those in 2012. The
56 57	49	results of our study will aid in devising healthy strategies and spreading public awareness for
58 59 60	50	preventing this condition.

1 2			3
2 3 4	51		
5 6	52		Strengths and limitations of this study
7 8 9	53	•	To the best of our knowledge, this is the first study to use a microsimulation model to
9 10 11	54		predict future obesity prevalence in Korea considering the change in population structure
12 13	55		(macro level) as well as individual health behavior components (micro level).
14 15 16	56	•	The results of our study aid in suggesting additional and wider-ranging strategies for
17 18	57		obesity prevention by considering sex and age group in the formulation of the 'National
19 20	58		Health Promotion Comprehensive Plan'.
21 22 23	59	•	Although a representative data source was used in this study, the prevalence of obesity
23 24 25	60		may be underestimated because it is based on a self-reported BMI value.
26 27	61	•	This study uses a micro-simulation model developed abroad, and hence, may not reflect
28 29 30	62		the domestic situations accurately.
30 31 32	63	•	Another limitation is that we assumed the attributes of 19-year-old individuals to remain
33 34	64		similar each year.
35 36	65		
37 38 39	66		
40 41			
42 43			
44 45			
46			
47 48			
49			
50			
51 52			
53			
54			
55 56			
56 57			
58			
59			

BMJ Open

4

1 2	
3	e
4	C
5	e
6 7	
8	e
9	
10	7
11	
12 13	7
14	
15	7
16	
17 18	7
18 19	,
20	,
20 21	,
22	
23 74	-
25	
26	~
22 23 24 25 26 27 28 29	,
28	7
29 30	
31	7
32	
33	8
34 35	
36	8
37	
38	8
39 40	0
40 41	8
42	c
43	8
44	8
45 46	C
40 47	8
48	
49	8
50	
51 52	8
53	
54	8
55	
56 57	9
57 58	
59	9
60	

The prevalence of overweight and obesity has increased markedly over the past 3 decades, and concerns about health risks associated with obesity have become almost universal.[1] The increasing rate of obesity is a growing public health concern not only in Western countries but also in South Korea.[2] From the 1990s through the beginning of the new millennium, the prevalence of adult and child obesity has increased rapidly and continues to rise steadily in parallel with rapid social and economic development.[3]

74 Obesity is not only a major public health problem in itself, but also a factor in the 75 development of many chronic diseases; hence, it constitutes a strain on individuals and health 76 systems worldwide. It is associated with an increased risk of many disorders, including 77 diabetes, hypertension, dyslipidemia, heart disease, stroke, sleep apnea, early death, and 78 cancer.[4-8] Moreover, obesity among older people increases the risk of knee 79 osteoarthritis[9] and reduces functional capacity and quality of life.[10-13] The prevalence of 80 these conditions rises in proportion to the increase in obesity [14-17] and is associated with 81 increased economic costs for both individuals and the society at large.[18] A study of data 82 from the National Health Insurance Service in Korea found that the socioeconomic cost of 83 obesity in 2016 was approximately 9,665.32 million US dollars.[19]

84 Meanwhile, with respect to worldwide comparisons, whether cutoff points for 85 overweight and obesity should be lower for Asians than for another ethnic groups remains 86 debatable.[20] The World Health Organization has proposed BMIs of 18.5–22.9 kg/m² as optimal, 23–24.9 kg/m² as overweight, 25–29.9 kg/m² as moderate obesity, and \geq 30 kg/m² 87 88 as severe obesity for Asians.[21] The Korean Society of Obesity, which was established to 89 improve obesity management through research and education, revised its clinical practical 90 guidelines for the prevention and treatment of obesity in 2018. The new guidelines renamed 91 the "overweight" category to "pre-obese", and divided obesity into 3 categories, thereby

	-
92	aiming to highlight the risk of obesity instead of promoting the term "overweight." The most
93	recent guidance is based in part on data of 84,690,131 Korean adults extracted from the
94	Korean National Health Insurance Service Health Checkup Database between 2006 and 2015.
95	By including the entire population registered in the National Health Insurance Service
96	Database, they calculated the first and second cutoff points corresponding to the increased
97	risk of any of the 3 accompanying diseases (type 2 diabetes, hypertension, and dyslipidemia)
98	The first cutoff BMI level was 23 kg/m ² , and the second cutoff BMI level was 25 kg/m ² ,
99	suggesting the necessity of obesity criteria that accurately reflect the risk of chronic disease
100	among Koreans.[22,23]
101	Although numerous investigators in other countries have attempted to predict the
102	future prevalence of obesity, only one such study by Inkyung Baik was recently performed in
103	South Korea.[2] More recent trends still need to be investigated through predictive studies,
104	and the accurate prediction of obesity prevalence remains an important public health-related
105	goal in the country. To efficiently establish and execute an effective healthcare policy, which
106	would require a large budget, it is necessary to select future targets for policy interventions
107	(such as high-risk groups) to predict healthcare needs and prevent budget waste.
108	Past prediction models incorporated a country's entire population; as such,
109	macroscopic inferences based on average projections for the future society were generalized.
110	However, when establishing a healthcare policy, it is necessary to estimate the future disease
111	burden and medical needs of the entire population based on future projections that reflect
112	individual characteristics because a real-world understanding of factors that are influenced by
113	policies or institutions is required. Individuals are independent entities with different
114	characteristics and needs that govern their future decisions and behaviors. By applying these
115	needs, health-related projections can be modeled to reflect health risk factors such as sex,
116	age, life cycle activities, smoking, etc., and the effects of policy interventions can be

Page 7 of 65

BMJ Open

	2	-	
1			
		۱	١

1 2		6
2 3 4	117	quantified.[24] In this regard, we aimed to predict the prevalence of obesity in Korea by
5 6 7 8 9 10 11 12 13 14 15 16 17 18	118	using microsimulation, which is optimal for considering individual properties.
	119	Microsimulation is a modeling technique, which typically uses individual microunits,
	120	each with its own set of properties, to simulate downstream events based on the probability of
	121	transition between predefined states and their changes over time. When used in medicine,
	122	microsimulation can be particularly powerful because it preserves the patterns of previous
	123	behaviors and conditions, and allows for a clearer representation and understanding of how
19 20	124	various processes affect the total outcome of the population over time.[25] Given macro-
21 22	125	effects such as changes in population structures in the forecasting model, microsimulation is
23 24 25	126	very useful as it can estimate both disease burdens and medical needs across the country.[24]
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	127	Microsimulation modeling is particularly useful for studying BMI trends because it can
	128	simultaneously explain population dynamics such as aging and mortality. Additionally, the
	129	longitudinal framework of these models allows for interpreting a person's change in BMI as
	130	it is affected by factors such as a person's physical activity and behavior, and thus, acts as a
	131	contributing factor for other diseases.[26] However, while microsimulation models have been
	132	steadily evolving across health- and economy-related fields in many European countries,[27]
	133	they are yet to be actively utilized in South Korea (especially for healthcare).
42 43	134	Obesity prevalence and trend estimates provide important information for research,
44 45	135	policy, and intervention.[28] Because health forecasting predicts disease episodes and
46 47 48	136	portends future events, it facilitates healthcare strategies by promoting the setting of goals to
49 50	137	reduce obesity, establish health promotion interventions, and optimize resource
51 52	138	allocation.[29] Obesity trends may also be used to urge governments to implement
53 54 55	139	preventative approaches for reducing obesity.[30] Based on the above findings, we performed
55 56 57	140	this study to project the future trends in obesity prevalence in South Korea up to the year
58 59 60	141	2040.

1		7
2 3 4	142	
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	143	METHODS
	144	Model
	145	We used the Population Health Model (POHEM)-BMI to estimate the prevalence of
	146	obesity among adults 19 years and older in South Korea from 2012 through 2040. In brief,
	147	POHEM is a time-continuous, population-based, dynamic microsimulation model with
	148	individual underlying units of analysis used worldwide. Dynamic microsimulation, in the
	149	context of social science and population health, is a simulation of individuals (i.e., micro-
21 22	150	level) and their behaviors, statuses, and actions (dynamics) over time.[31] These are modeled
23 24 25	151	as desired using multiple sources of empirical data, including cross-sectional surveys,
25 26 27	152	administrative databases, vital statistics, and census data.[32]
28 29	153	Through dynamic simulation, POHEM creates a population and ages it, one person at a time,
30 31 22	154	until death.[33] The model dynamically simulates an individual's disease state, risk factors,
32 33 34 35 36 37 38	155	and health determinants to describe and plan health outcomes.[32] POHEM is accessible
	156	because it wants the general process to be constant across the country's population, with the
	157	exception of variables unique to each country, such as marriage and mortality. The POHEM
39 40 41	158	models include cardiovascular disease, various cancers, osteoarthritis, physical activity, and
42 43	159	neurological events. The model used in this study was the POHEM-BMI; the performance of
44 45	160	each prediction step is shown in Figure 1.
46 47 48	161	Base population
49 50	162	To create the base population for the POHEM-BMI model, we used the 2011–2012 Korea
51 52	163	Health Panel survey and the resident registration-based population statistics. The base
53 54	164	population for POHEM-BMI (n=39,842,730), reflected the Korean population. Each Korean
55 56 57	165	respondent 19 years of age and older (n=11,501) in 2012 was replicated using their survey-
58 59 60	166	recorded weights to generate a simulated cohort of approximately 39,842,730 individuals.

Page 9 of 65

1

BMJ Open

8

2	
3 4	167
5 6	168
7 8	169
9 10 11	170
12 13	171
14 15	172
16 17	173
18 19 20	174
20 21 22	175
23 24	176
25 26	177
27 28 29	178
30 31	179
32 33	180
34 35	
36 37	181
38 39	182
40 41	183
42 43	184
44 45	185
46 47	186
48 49 50	187
50 51 52	188
53 54	189
55 56	190
57 58	191
59 60	. / 1

Korea Health Panel survey data are nationally representative, and incorporate health status, chronic diseases, health risk behaviors, and socio-demographic characteristics. Among them, we extracted sex, age, current smoking status, physical activity, and the previous and current years' BMI values; these variables were required for the predictive equation. We then used a multiple linear regression model to estimate the BMI value using the extracted independent variables as predictors. The POHEM-BMI model is auto-regressive and includes previous BMI values as a main explanatory variable.[26] For comparison with other international studies using this model, the variable composition was the same, but the variable definition was not. The definition of variables was consistent with the definition of indicators in the Korea Health Statistics. A current smoker was an individual who reported smoking 'every day' or 'sometimes'. Practicing physical activity was defined as performing either intense physical activity for at least 10 continuous minutes a day, 20 minutes total per day, 3 days a week during the preceding week, or moderate physical activity for at least 30 minutes a day, 5 days a week during the preceding week. Height and weight, which are components of BMI, were based on self-reported data. Simulation: Annual updates and risk transition

The study population was updated by aging each person by 1 year and changing the total
population size based on population statistics, population projections, and complete life tables
categorized by sex and age from Korean Statistics. For population projections, we assumed a
medium growth scenario in terms of birth rate, life expectancy, and international migration.
Each person's BMI was updated annually by applying a predictive equation that incorporates
his/her own characteristics. The transition probability for each stochastic characteristic was
calculated based on a generalized linear model.

We assumed that the current individual behavioral patterns persisted, and no new
 factors arose to prevent obesity, like the original POHEM-BMI. We also assumed that the

192 attributes of 19-year-old individuals, which were entered annually, remained similar each193 year.

194 Model validation and calibration

We established the model's validity by comparing the projected BMI median obtained from the prediction model to estimates obtained from the Korea Health Panel survey. We set the calibration cutoff point to 5% and adjusted the model by comparing the difference between the median BMI estimates observed from the Korea Health Panel survey and the values derived from the prediction model categorized by sex and age. We analyzed the BMIs of each group by comparing the 2016 data available from the Korea Health Panel with the most recent data. We accepted a difference of less than 5% overall in the sex- and age-categorized groups. Finally, we adjusted the demographics of the 2040 population so that the predictions were within a 5% margin of error. In this study, all necessary data for model building and projection were obtained from publicly available data and does not include any identifiable personal information. Hence, no ethical approval was required, in addition to the ethical and governance approvals granted by the Korea Institute for Health and Social Affairs (KIHASA), which conducts the Korea Health Panel Survey. All participants gave written informed consent before they completed the survey.

Projection

The model projected the BMI of each person from 2017 to 2040. Based on demographic characteristics, the projections were then aggregated by year for each of the predefined subgroups. The various trends observed in the Korean population data were used to generate algorithms that were applied to future projections.

5354 214 Model outputs

⁵⁶ 215 The BMI distributions were calculated overall and by sex. Individuals with a BMI ≥ 25 ⁵⁸ 216 kg/m² were obese according to the Guidelines for the Management of Obesity in Korea,

which is not the internationally accepted standard (Table 1). All analyses in this study were performed using STATA version 13 (StataCorp LLC, College Station, TX, USA). Table 1 BMI classification of South Korea **Body mass index** Classification (kg/m^2) Underweight < 18.5 Normal 18.5 - 22.9Pre-obese 23 - 24.9Obese class I 25 - 29.9Obese class Π 30 - 34.9Obese class III ≥ 35 Patient and public involvement No patient involved **RESULTS** We compared the total number of the individuals and their characteristics in the initial 2012 population to those in the projected 2040 population (Table 2). There were 39,842,730 adults who were 19 years of age or older in 2012 and 43,818,808 in 2040. The male: female ratio was nearly 1:1 in both 2012 and 2040. Rapid aging of the Korean population was clearly observed when comparing the 2 populations. The average age of adults was expected to increase by 10.9 years (from 45.69 years in 2012 to 56.59 years in

1 2	
3 4	2
5 6	2
7 8	2
9 10 11	2
12	2
13 14 15	2
16 17 18	2
19	•
20 21 22 23 24 25	2
23 24	2
26	
27 28 29	
30 31	
32 33	
34 35	
36 37	
38 39	
40 41 42	
42 43 44	
45 46	
47 48	
49 50	
51 52	
53 54	
55 56 57	
57 58 59	
59 60	

	11
232	2040 [from 44.57 to 55.54 years among men and 46.77 to 57.63 years among women]). In
233	2012, the proportion of young people (those in the 19–39 and 40–64-year age groups
234	combined) accounted for approximately 85.54% of the adult population, while the proportion
235	of individuals aged 65 years and older was relatively low at approximately 14%. However,
236	the age group structure in South Korea 28 years later (2040) is predicted to be quite different,
237	as the proportion of individuals 19-64 years (i.e., the working age population) was only
238	60.95% of the adult population, while the proportion of the elderly population (\geq 65 years)
239	was estimated to be almost 40% of the total adult population.
240	was estimated to be almost 40% of the total adult population.

4 5

6 7

8

9 10

11 12

13 14

15 16 17

18 19

20 21

22 23 24

25 26

27 28

29 30 31

32 33

34 35 36

37 38

44 45 46 BMJ Open

241 Table 2 Comparison of number of people, South Korea, 2012 and 2040 Population at baseline (2012) **Projected population (2040)** Women Total Women Total Men Men Perce Perce Number Perce Number Number Number Number Perce Perce Number Perce ntage ntage ntage ntage ntage ntage Number of 19,709,628 20,133,102 39,842,730 21,717,128 22,101,680 43,818,808 people Age 44.57±15 46.77±16. 45.69±16. 55.54±18.60 57.63±19 56.59±19.00 92 (mean±s.d .60 31 .33 .) 19-39 7,985,73 40.52 7,505,82 37.29 15,491,56 38.88 4,873,74 22.45% 4,588,86 20.76 9,462,607 21.60 % % 7 % % 0 7 % 4 1 40-64 47.49 45.85 40.97% 39.35 9,360,48 9,230,87 18,591,36 46.66 8,896,88 8,349,63 37.78 17,246,520 % % % % 9 0 % 6 4 1 65 and 2,363,40 11.98 3,396,40 16.87 5,759,809 14.45 7,946,50 36.59% 9,163,17 41.45 17,109,681 39.05 % % % % 9 % above 2 7 2

13

1 2												13
- 3 4		Smoker	8,879,03	45.05	450,946	2.24%	9,329,983	23.42				
5 6			7	%				%				
7 8 9		Physical	5,199,27	26.38		15.41	8,302,309	20.84				
10 11 12 13 14		activity	3	%	3,103,03 6	%		%				
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	242 243						only - http://bmj					
44 45					1				5			

Page 15 of 65

1

BMJ Open

1 2		14							
3 4	244	The model was well calibrated in both the initial population and from 2017 to 2040.							
5 6	245	Differences in each of the variables estimated between 2013 and 2016, which were derived							
7 8	246	from the Korea Health Panel data, were within the 5% range only when using the predictive							
9 10 11	247	model. Additionally, when compared to the population structure for 2040 (the final year) as							
12 13	248	predicted by Statistics Korea, the total population, gender, and age-specific ratio were similar.							
14 15	249	Figure 2 shows the median predicted BMIs between 2017 and 2040. Each median							
16 17	250	BMI value from 2013 to 2016 was estimated from the Korea Health Panel survey. The							
18 19 20	251	median BMI for the entire adult population is predicted to increase very slightly from 23.23							
21 22	252	kg/m ² in 2018 to 23.53 kg/m ² in 2036 and is expected to remain steady thereafter. The							
23 24	253	predicted median BMI trends are similar for men; the median BMI in adult men was							
25 26 27	254	projected to increase only slightly, from 23.74 kg/m ² in 2018 to 23.95 kg/m ² in 2036 and then							
28 29	255	almost plateau thereafter. However, women were expected to experience a relatively steep							
30 31	256	rise compared to that of men; the median BMI in adult women was projected to increase from							
32 33 34	257	22.66 kg/m ² in 2018 to 23.17 kg/m ² in 2040.							
35 36	258								
37 38	259	The BMI distributions for men and women from 2012 to 2040 are shown in Figure 3.							
39 40	260	There was no significant difference between the median BMIs in 2012 and 2040, but the							
41 42 43	261	results according to the BMI classifications showed large changes. The proportions of 'pre-							
44 45	262	obese' individuals in both sexes are predicted to increase dramatically over time, while the							
46 47	263	proportions of individuals who are classified as 'normal' and 'obese' will gradually decrease.							
48 49 50	264	As of 2025, 52.35% of all male adults were expected to be pre-obese, with that proportion							
51 52	265	expected to be close to 81.23% by 2040. Moreover, 53.24% of all women were expected to							
53 54	266	be 'pre-obese' by 2035, with the proportion rising to almost 59.07% by 2040.							
55 56 57	267								
58 59	268	According to the BMI classification by age group, in South Korea, in 2012, about							
60									

2	
3	
4	
5	
6	
7	
, 8	
9	
10	
11	
12	
13	
14	
15	
12 13 14 15 16	
16	
17	
18	
19	
20	
21	
22	
23	
24 25 26	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
34 35 36	
22	
36	
37	
38	
39	
40	
40	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55	
55	
56	
57	
58	
59	
60	
00	

1

20.36% of the population aged 19-39 were 'pre-obese', but in 2040, it increased to 39.59%,
almost double. The proportion of the 'normal' population was almost the same in 2012 and
2040, and the 'obese class I ' decreased by nearly half. However, in the population aged 40
to 64 and over 65, the proportion of 'pre-obese' increased almost three times in 2040
compared to that in 2012, and the proportion of 'normal' decreased to less than 20% (Table
3).

275

Population at baseline (2012) Projected population (2040) 19-39 40-64 65-19-39 40-64 65-Number of people 15,491,5 18,591,3 5,759,80 9,462,60 17,246,5 17,109,6 61 60 9 7 20 81 BMI (median)% 22.37 23.52 23.02 23.07 23.64 23.58 Distribution of people by BMI classification Underweight % 11.76 0.00 5.10 7.60 2.66 0.00 Normal % 37.81 42.12 19.89 18.40 45.66 45.68 Pre-obese % 39.59 20.36 26.51 24.10 76.60 80.31 28.40 24.85 3.51 1.29 20.67 11.70 Obese class I % 0.00 1.51 1.79 1.30 0.36 0.00 Obese class Ⅱ % 0.03 0.38 0.02 0.02 0.00 0.00 Obese class III %

Table 3 Comparison of number of people, by BMI classification, South Korea, 2012 and 2040

BMJ Open

DISCUSSION

The purpose of this study was to predict the prevalence of obesity in South Korea in the year 2040 using a microsimulation model. In this study, we strove to predict future adult obesity rates in South Korea using the POHEM-BMI, which was developed by Statistics Canada. Summarizing the predicted results, the median BMI of South Korea's adult population aged 19 years and older was expected to be 23.55 in 2040, while the percentage of 'pre-obese' individuals was expected to increase over time. While it is encouraging that the proportion of 'obese' people (i.e., those with BMIs $\geq 25 \text{ kg/m}^2$) in 2040 is predicted to be much lower than that in 2012, it is discouraging that the proportion of 'normal' individuals is also markedly lower. Most notably, the pre-obesity rate is predicted to rise dramatically. In addition to the sex and age variables, our model includes only smoking and physical activity as health-related behaviors. The distributions of these factors were assumed to remain equal across the years; hence, our data show that maintaining smoking and physical activity rates at 2012 levels among adults will lead to a sharp increase in the 'pre-obese' population by 2040. To the best of our knowledge, the only other study that predicted future obesity rates among South Korean adults was the investigation by Baik. [2] That study explored factors affecting adult as well as abdominal obesity, and constructed forecasting models to predict obesity prevalence rates in 2020 and 2030 using the Korea National Health and Nutritional Examination Survey (KNHANES). The prevalence rates of obesity among men and women in that study were predicted to be 47% and 32%, respectively, in 2020 and 62% and 37%, respectively, in 2030; these data were inconsistent with our results. The differences in prediction results appeared to be caused by the different secondary sources and prediction models in the two studies. First, in Baik's study, a prediction model was constructed by applying a linear regression model and an autoregressive integrated moving average model using the KNHANES data. The dependent variable in the prediction model was BMI, and the

 independent variables included the survey year, age, marital status, job status, income status, smoking, alcohol consumption, sleep duration, psychological factors, dietary intake, and fertility rate. In contrast, in this study, the Korea Health Panel data was used as the data source, and BMI was predicted by performing microsimulation with sex, age, smoking, physical activity, and previous years' BMIs as independent variables. Therefore, the method of measurement of the dependent variable, BMI differs between the studies; unlike the KNHANES, which contains body-measured height and weight information, the Korea Health Panel (although this is a representative data source) generates data based on self-reported by respondents, which may underestimate obesity. Inevitably, the obesity rate in the initial population according to the KNHANES tended to be higher; as such, a higher initial prevalence rate would lead to a higher projection.[34] We also tried to compare the results from this study with the predicted estimate by country, but few studies have empirically predicted the prevalence of obesity in the future using simulation models. One study compiled nationally-representative data from various sources and predicted the future prevalence of overweight and obesity in Indian adults aged 20-69 years will reach 30.5% and 9.5% among men, 27.4% and 13.9% among women, respectively, by 2040.[35] According to a study that estimated the prevalence of obesity in the future through regression modeling, 42% of Americans were expected to be obese by 2030.[36] Similarly, a study that predicted the prevalence of obesity in Australian adults by 2025 using a multiple linear regression model predicted that 83% of male adults over the age of 20 and 75% of female adults would be overweight or obese.[37] In all three countries, India, the United States, and Australia, overweight and obesity were defined according to the classifications defined by the WHO, and much higher values were found than those in Korea. We also compared our results to those predicted in Canada using the same model, and 59% of the adult Canadian population was predicted to be 'overweight or obese' by 2030.

Page 19 of 65

BMJ Open

This study defined obesity by applying the BMI classification system according to 2018 Korean Society for the Study of Obesity guideline for the management of obesity in Korea. It would be appropriate to use international standards for comparison; however, it is necessary to reflect the situation of individual countries in the management of obesity for the purpose of preventing and managing chronic diseases. Therefore, rather than emphasizing the BMI classification criteria, more research is needed to determine the BMI values that can significantly predict the occurrence of chronic diseases. In other words, it is necessary to continuously accumulate sufficient epidemiologic evidence for the relationship between the BMI and the actual risk of disease and death for Koreans, and based on such evidence, efforts to establish appropriate diagnostic and medical standards for Koreans are needed. In particular, the relationship is likely to vary by age and sex; hence, it should be considered too. Here, the obesity standard has been applied collectively regardless of sex and age. However, in order to deviate from a uniform approach to obesity, gender- and age-based approaches are needed, considering the changes in hormones and body composition. Because health management policies including obesity management require a large budget, it is most important to establish cost-effective policies. The results from this study made it possible to determine the obese high-risk group by sex and age group, and estimate medical needs. As it is necessary to apply obesity standards differently according to sex and age group, it is difficult to set the 'National Health Promotion Comprehensive Plan' goals. This plan needs to suggest additional, wider-ranging goals considering the characteristics of each sex and age group, rather than presenting goals for obesity prevalence among adult men and women. In this case, the goal should be presented at an achievable level in consideration of future prediction patterns. Finally, systematic public health interventions, which are tailored to individual characteristics need to be established. Findings from this study should be interpreted with consideration of several

limitations. First, since a microsimulation model for predicting obesity prevalence has not been developed in this country, we borrowed the model developed by Statistics Canada, and it may not fit the domestic situation; nonetheless, we defined each variable in the predictive equation according to the operational definition in Korea Health Statistics. However, if the model is more suited to the domestic situation, besides sex, age, smoking, physical activity, and previous year's BMI value, various factors related to BMI may be added to the predictors of BMI. However, in this study, as we faithfully followed the existing model and explored the possibility of domestic application, the process of constructing a prediction equation was omitted. In the future, research to develop a new model of microsimulation in the field of healthcare for domestic conditions will be very valuable. In this process, it is necessary to consider practical suitability and efficiency in selecting basic data, module-specific behavioral equations, and variables for use in the model. Second, we had limited data sources. There is a difference between the current prevalence of obesity calculated from the Korea Health Panel data used in this study and the Korea Health Statistics using the KNHANES. As of 2011, the prevalence of adult obesity in Korea Health Statistics was 31.9%, and the prevalence of adult obesity calculated by the Korea Health Panel data was 23.7%, a difference of 8.2%.[38] As mentioned earlier in the difference between the results of Baik's study, this difference originated from the method of measuring BMI in the two data sources. However, in the POHEM-BMI model used in this study, the BMI of the previous year was regarded as the main explanatory variable, and therefore, the Korea Health panel data that followed the same participants once a year was inevitably used. In addition, the original POHEM-BMI model includes the process of converting self-reported BMI into a measured BMI, but we omitted this due to limitations of the data source. Third, we assumed that the attributes of 19-year-old individuals entered each year remain at a similar level each year. This means that the individual attributes of 19-year-old adults are the same for 29 years

BMJ Open

2		
3 4	377	from 2012 to 2040; thus, it can be considered somewhat less realistic. In future studies, it is
5 6	378	expected that more meaningful and realistic results will be derived if the model is constructed
7 8 9	379	by reflecting the trend of changes in the attributes of the 19-year-old population and updating
) 10 11	380	it according to the year.
12 13	381	Nevertheless, our study is the first to examine the possibility of using
14 15 16	382	microsimulation to predict future BMI medians in South Korea. Additionally, the BMI of the
16 17 18	383	future adult population was predicted after considering the change in population structure at
19 20	384	the macro level as well as individual health behavior components at the micro level.
21 22	385	
23 24 25	386	CONCLUSION
26 27	387	The key finding of this study is that by 2040, 70.05% of Korean adults are predicted
28 29	388	to be pre-obese. Utilizing data sources available in Korea, the possibility of applying and
30 31 32	389	expanding on the concept of microsimulation was explored. In future studies, a model
32 33 34	390	suitable for South Korea needs to be developed, and the effectiveness of specific health
35 36	391	policies ought to be assessed by applying various relevant scenarios to the basic forecasting
37 38	392	model.
39 40 41	393	
42 43	394	Abbreviations
44 45	395	BMI: body mass index; KNHANES: Korea National Health and Nutritional
46 47 48	396	Examination Survey, POHEM: Population Health Model
48 49 50	397	Authors' Contributions
51 52	398	YS (the first author) designed the study, analyzed, and interpreted the data, and wrote
53 54	399	the paper. YE participated in the statistical analysis. DS aided in the interpretation of the data
55 56 57	400	and preparation of the manuscript. SJ (the corresponding author) directed this study. All
58 59 60	401	authors read and approved the final version of the manuscript.

1 2		21
2 3 4	402	Funding
5 6 7	403	This work was supported by the National Research Foundation of Korea (NRF) grant
7 8 9	404	funded by the Korea government (Ministry of Science and ICT) (No. 2017R1A2B4005876).
10 11	405	The funding agency had no role in the study design, analysis and interpretation of the data, or
12 13	406	the preparation of the manuscript.
14 15 16	407	Competing Interests
17 18	408	The authors declare that they have no competing interests.
19 20 21 22 23	409	Ethics approval
	410	This study used publicly available data of Korea Health Panel Survey 2011-2012
24 25	411	from the Korea Institute for Health and Social Affairs and the National Health Insurance,
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	412	population statistics based on resident registration, population projections, complete life
	413	tables and future mortality rates from Statistics Korea. The dataset does not contain any
	414	identifiable personal information. Ethical approval was given by the Institutional Review
	415	Board of Korea University, Seoul, Korea (IRB No. KUIRB-2020-0018-01).
	416	Data sharing statement
	417	The Korea Health Panel Survey data used in this article is available in
	418	https://www.khp.re.kr:444/eng/data/data.do. Detailed information on the survey design and
	419	data characteristics are provided at https://www.khp.re.kr:444/eng/survey/sampling.do.
44 45 46	420	Population statistics, population projections, and complete life tables are available from
47 48	421	http://kosis.kr/eng/.
49 50	422	
50 51 52 53 54 55 56 57 58 59 60	423	

1 2		22
2 3 4	424	REFERENCES
5 6	425	
7 8 9	426	1. Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of
) 10 11	427	overweight and obesity in children and adults during 1980-2013: a systematic analysis for
12 13	428	the Global Burden of Disease Study 2013. Lancet 2014;384:766-81.
14 15 16	429	https://doi.org/10.1016/S0140-6736(14)60460-8
10 17 18	430	2. Baik I. Forecasting obesity prevalence in Korean adults for the years 2020 and 2030 by the
19 20	431	analysis of contributing factors. Nutr Res Pract 2018;12:25–7.
21 22 22	432	https://dx.doi.org/10.4162%2Fnrp.2018.12.3.251
23 24 25	433	3. Kim D, Ahn C, Nam SY. Prevalence of obesity in Korea. Obesity Rev 2005;6:117–21.
26 27	434	https://doi.org/10.1111/j.1467-789X.2005.00173.x
28 29	435	4. Okosun IS, Chandra KMD, Choi S, et al. Hypertension and type 2 diabetes comorbidity in
30 31 32	436	adults in the United States: Risk of overall and regional adiposity. Obes Res 2001;9:1–9.
33 34	437	https://doi.org/10.1038/oby.2001.1
35 36	438	5. Krauss RM, Winston M, Fletcher BJ, et al. Obesity: impact on cardiovascular disease.
37 38 39	439	<i>Circulation</i> 1998;98:1472–6.
40 41	440	6. Chin K, Ohi M. Obesity and obstructive sleep apnea syndrome. Intern Med 1999;38:200-
42 43	441	2. https://doi.org/10.2169/internalmedicine.38.200
44 45	442	7. Wallström P, Bjartell A, Gullberg B, et al. A prospective Swedish study on body size, body
46 47 48	443	composition, diabetes, and prostate cancer risk. Brit J Cancer 2009;100:1799-805.
49 50	444	https://doi.org/10.1038/sj.bjc.6605077
51 52	445	8. Guh DP, Zhang W, Bansback N, et al. The incidence of comorbidities related to obesity
53 54 55	446	and overweight: a systematic review and meta-analysis. BMC Public Health 2009;9:88.
56 57	447	https://doi.org/10.1186/1471-2458-9-88
58 59 60	448	9. Coggon D, Reading I, Croft P, et al. Knee osteoarthritis and obesity. Int J Obes Relat

1		23
2 3 4	449	Metab Disord 2001;25:622-7. https://doi.org/10.1038/sj.ijo.0801585
5 6	450	10. Stenholm S, Rantanen T, Alanen E, et al. Obesity history as a predictor of walking
7 8 9	451	limitation at old age. Obesity 2007;15:929-38. https://doi.org/10.1038/oby.2007.583
9 10 11	452	11. Alley DE, Chang VW. The changing relationship of obesity and disability, 1988–2004.
12 13	453	JAMA 2007;298:2020-7. https://doi.org/10.1001/jama.298.17.2020
14 15	454	12. Larsson U, Karlsson J, Sullivan M. Impact of overweight and obesity on health-related
16 17 18	455	quality of life-a Swedish population study. Int J Obes Relat Metab Disord 2002;26:417-24.
19 20	456	https://doi.org/10.1038/sj.ijo.0801919
21 22	457	13. Zaninotto P, Pierce M, Breeze E, et al. BMI and waist circumference as predictors of
23 24 25	458	well-being in older adults: findings from the English Longitudinal Study of Ageing. Obesity
25 26 27	459	2010;18:1981-7. https://doi.org/10.1038/oby.2009.497
28 29	460	14. Emerging Risk Factors Collaboration, Wormser D, Kaptoge S, et al. Separate and
30 31 32	461	combined associations of body-mass index and abdominal adiposity with cardiovascular
32 33 34	462	disease: Collaborative analysis of 58 prospective studies. Lancet 2011;377:1085–95.
35 36	463	https://doi.org/10.1016/S0140-6736(11)60105-0
37 38	464	15. The Global Burden of Metabolic Risk Factors for Chronic Diseases Collaboration (BMI
39 40 41	465	Mediated Effects), Lu Y, Hajifathalian K, et al. Metabolic mediators of the effects of body-
42 43	466	mass index, overweight, and obesity on coronary heart disease and stroke: A pooled
44 45	467	analysis of 97 prospective cohorts with 1.8 million participants. Lancet 2014;383:970-83.
46 47 48	468	https://doi.org/10.1016/S0140-6736(13)61836-X
49 50	469	16. Renehan AG, Tyson M, Egger M, et al. Body-mass index and incidence of cancer: A
51 52	470	systematic review and meta-analysis of prospective observational studies. Lancet
53 54 55	471	2008;371:569-78. https://doi.org/10.1016/S0140-6736(08)60269-X
55 56 57	472	17. Bhimjiyani A, Knuchel-Takano A, Hunt D, et al. Tipping the scales: Why preventing
58 59 60	473	obesity makes economic sense. Technical Report 2016.

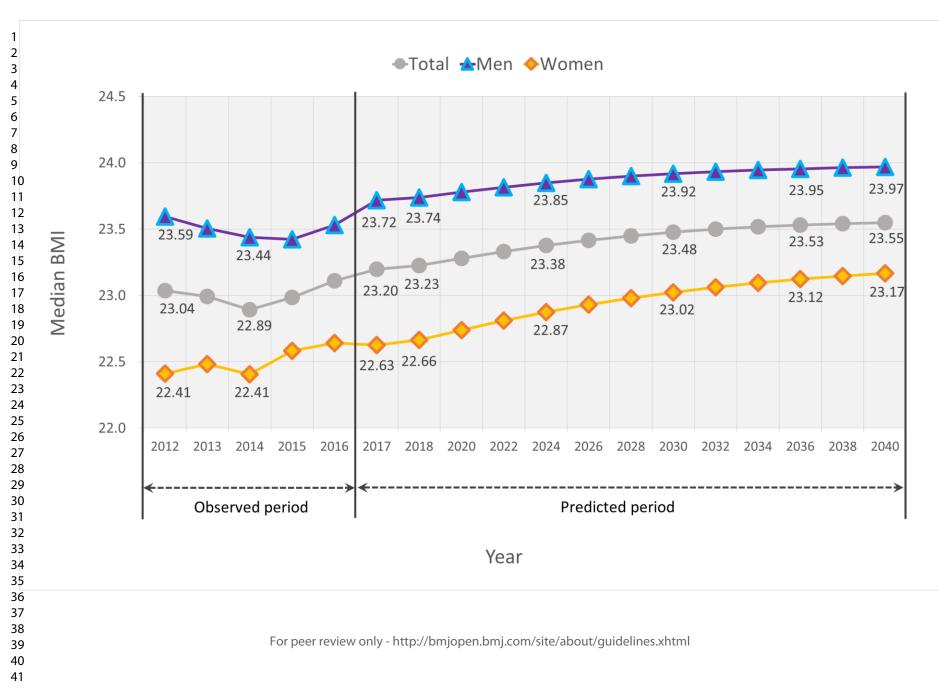
Page 25 of 65

BMJ Open

1		24
2 3 4	474	https://www.cancerresearchuk.org/sites/default/files/tipping_the_scales
5 6	475	<u>_cruk_full_report11.pdf</u> (accessed 26 Jan 2020).
7 8 9	476	18. Wang YC, McPherson K, Marsh T, et al. Health and economic burden of the projected
9 10 11	477	obesity trends in the USA and the UK. Lancet 2011;378:815-25.
12 13	478	https://doi.org/10.1016/S0140-6736(11)60814-3
14 15	479	19. Lee M. Half of the socioeconomic costs of obesity are 'medical costs'. Korea Biomedical
16 17 18	480	Review (2018, December 10).
19 20	481	http://www.docdocdoc.co.kr/news/articleView.html?idxno=1063317/ (accessed 2020,
21 22	482	January 29)
23 24 25	483	20. Low S, Chin MC, Ma S, et al. Rationale for redefining obesity in Asians. Ann Acad Med
26 27	484	Singapore 2009;38:66–9.
28 29	485	21. The World Health Organization Western Pacific Region, International Association for the
30 31 22	486	Study of Obesity. The Asia-Pacific Perspective: Redefining obesity and its treatment.
32 33 34	487	Sydney, Australia: Health Communications Australia Pty Limited; 2000.
35 36	488	22. Seo MH, Kim YH, Han K, et al. Prevalence of obesity and incidence of obesity-related
37 38	489	comorbidities in Koreans based on National Health Insurance Service Health Checkup Data
39 40 41	490	2006-2015 (J Obes Metab Syndr 2018;27:46–52). J Obes Metab Syndr 2018;27:198–9.
42 43	491	https://doi.org/10.7570/jomes.2018.27.3.198
44 45	492	23. Seo MH, Lee WY, Kim SS, et al. 2018 Korean Society for the Study of Obesity guideline
46 47 48	493	for the management of obesity in Korea. J Obes Metab Syndr 2019;28:40-5.
48 49 50	494	https://doi.org/10.7570/jomes.2019.28.1.40
51 52	495	24. Kim D. Estimation of disease and disease burden by health behavior. Sejong City: Korea
53 54	496	Institute for Health and Social Affairs 2018.
55 56 57	497	25. Çağlayan Ç, Terawaki H, Chen Q, et al. Microsimulation Modeling in Oncology. JCO
57 58 59 60	498	Clin Cancer Inform 2018;2:1-11. https://doi.org/10.1200/CCI.17.00029

Page 26 of 65

BMJ Open


1		25
2 3 4	499	26. Hennessy D, Garner R, Flanagan WM, et al. Development of a population-based
5 6	500	microsimulation model of body mass index. Health Rep 2017;28:20-30.
7 8	501	27. Spielauer M. Dynamic microsimulation of health care demand, health care finance and
9 10 11	502	the economic impact of health behaviours: survey and review. 2007 International Journal
12 13	503	of Microsimulation 2007;1:35–53.
14 15	504	28. The National Academies of Sciences, Engineering, and Medicine. Assessing prevalence
16 17 18	505	and trends in obesity: Navigating the evidence. Washington DC: The National Academies
19 20	506	Press 2016.
21 22	507	29. Soyiri IN, Reidpath DD. An overview of health forecasting. Environ Health Prev Med
23 24	508	2013;18:1-9. https://doi.org/10.1007/s12199-012-0294-6
25 26 27	509	30. Pineda E, Sanchez-Romero LM, Brown M, et al. Forecasting future trends in obesity
28 29 30 31	510	across Europe: The value of improving surveillance. Obes Facts 2018;11:360-71.
	511	https://doi.org/10.1159/000492115
32 33 34	512	31. Zucchelli E, Jones A, Rice N. The evaluation of health policies through dynamic
34 35 36	513	microsimulation methods. International Journal of Microsimulation 2012;5:2–20.
37 38	514	32. Hennessy DA, Flanagan WM, Tanuseputro P, et al. The Population Health Model
39 40	515	(POHEM): an overview of rationale, methods and applications. Popul Health Metrics
41 42 43	516	2015;13:24. https://doi.org/10.1186/s12963-015-0057-x
44 45	517	33. Manuel DG, Tuna M, Hennessy D, et al. Projections of preventable risks for
46 47	518	cardiovascular disease in Canada to 2021: a microsimulation modelling approach. CMAJ
48 49	519	Open 2014;2:E94-101. https://doi.org/10.9778/cmajo.2012-0015
50 51 52	520	34. Lin J, Thompson TJ, Cheng YJ, et al. Projection of the future diabetes burden in the
53 54	521	United States through 2060. Popul Health Metr 2018;16:9. https://doi.org/10.1186/s12963-
55 56	522	018-0166-4
57 58 59 60	523	35. Luhar S, Timæus IM, Jones R, et al. Forecasting the prevalence of overweight and obesity

2		
3 4	524	in India to 2040. PloS One 2020;15:e0229438.
5 6	525	36. Finkelstein EA, Khavjou OA, Thompson H, et al. Obesity and severe obesity forecasts
7 8 9	526	through 2030. Am J Prev Med 2012;42:563–70.
, 10 11	527	37. Haby MM, Markwick A, Peeters A, et al. Future predictions of body mass index and
12 13	528	overweight prevalence in Australia, 2005–2025. Health Promot Int 2012;27:250–60.
14 15 16	529	38. Choi JS, Choi SE, Yeom AR, et al. A Report on the Korea Health Panel Survey of 2011.
16 17 18	530	Korea Institute for Health and Affairs. 2013.
19 20	531	
21 22	532	
23 24		
25		
26		
27 28		
29		
30		
31 32		
32 33		
34		
35		
36 37		
38		
39		
40 41		
41 42		
43		
44 45		
45 46		
40 47		
48		
49 50		
50 51		
52		
53		
54 55		
55 56		
57		
58		
59 60		

1		27
2 3 4	533	Figure legends
5 6 7	534	Figure 1 Summary of data sources and methods used to generate and validate projections of
7 8 9	535	distribution of BMI categories in South Korea, 2012–2040
10 11	536	Figure 2 Population Health Model (POHEM) projections of median BMI in South Korea,
12 13	537	2012–2040
14 15 16	538	Figure 3A Projection of distribution of BMI, adults aged 19 years and older, South Korea,
10 17 18	539	2012–2040
19 20	540	Figure 3B Projection of distribution of BMI, men aged 19 years and older, South Korea,
21 22 23	541	2012–2040
23 24 25	542	Figure 3C Projection of distribution of BMI, women aged 19 years and older, South Korea,
26 27	543	2012–2040
28 29 30 31 32 33 34 35 36 37 38 30 41 42 43 44 50 51 52 53 54 55 57 89 60	544	2012-2040

PERGENER Summary of data sources and methods used to generate and validate projections of distribution of BMI categories in South Korea, 2012-2040

Step1: Generate an initial Korean population	Initialize a predictive model by generating synthetic cohort of actual Korean population aged 19 years or older in 2012 (<i>n</i> =39,842,730) using Korea Health Panel Survey (<i>n</i> =11,501). BMI, pre-BMI, smoking rate, and physical activity rate were imputed from information in the Korea Health Panel Survey.			
Step2:	Each year to 2040, update	synthetic cohort for c	demographic changes and E	BMI
Annual update	Age	Births and deaths	Immigration and emigration	BMI, pre-BMI, Smoking , Physical Activity
Data sources	Not applicable	Population statistics based on resident registration, population projections, and complete life tables by sex and age from Statistics Korea		Korea Health Panel Survey
Update method	Each person aged 1 yr	aged 19 years are ad applied to match	n projections, new entrants ded and the mortality rate is the population structure the future	The BMI values of each individual are updated annually by the BMI prediction equation
			V	
Step3: Validate and Calibrate model	Compare predicted estimates to survey estimates from 2013 to 2016 and calibrate the model to approximate survey estimates			
Step4: Projection	Project baseline BMI from 2017 to 2040 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml			

Figure 2 Population Health Model (POHEM) projections of meetian BMI in South Korea, 2012-2040

1 Α 2 3 Underweight Normal Pre-obese Obese class II Obese class I Obese class III 4 5 6 100% 7 1.61 Percentage in Obesity 2.34 4.41 6.55 10.02 8 classification 14.5 9 90% 19.14 10 24.88 23.08 11 80% 12 13 70% 14 15 36.07 45.62 55.24 63.61 23.77 25.63 16 60% 70.05 17 18 50% 19 20 40% 21 22 23 30% 41.48 44.13 24 42.79 25 20% 38.89 26 33.96 29.14 27 24.88 10% 28 29 8.05 4.53 30 0% 31 2012 2016 2020 2025 2030 2035 2040 32 33 ---> Observed period Predicted period 34 35 36 Year 37 38

PEigure Projection of distribution of BMI, (A) Adults, (BMAgrand (C) Women, aged 19 years and older, South Korea, 2012-2040

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

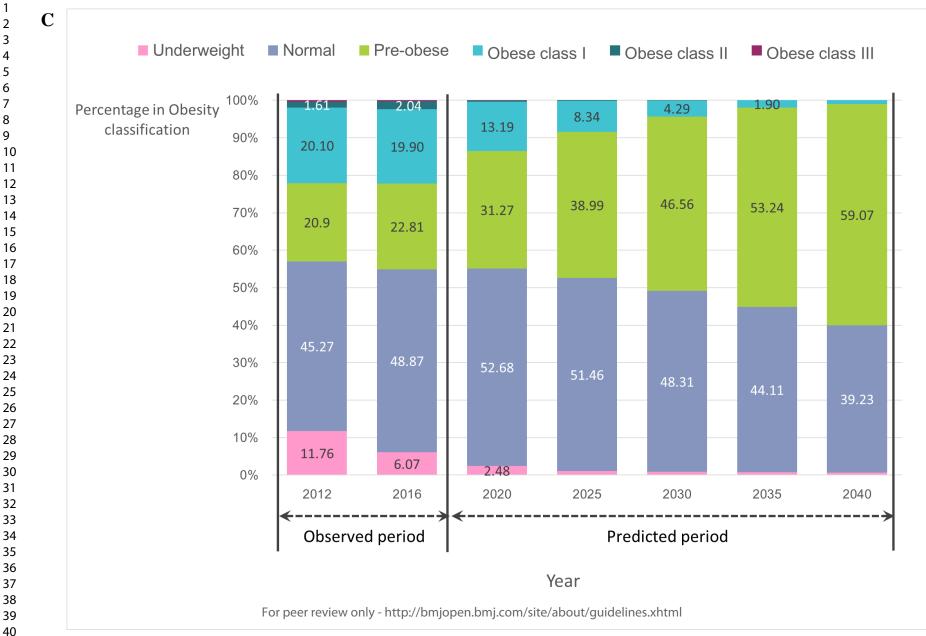
2012-2040 1 B 2 3 Underweight Normal Pre-obese Obese class I Obese class II Obese class III 4 5 6 100% 7 1.61 Percentage in Obesity 2.70 7.88 8 11.26 classification 15.83 9 90% 20.74 25.17 10 26.89 29.77 11 80% 12 13 70% 14 15 16 60% 17 29.00 26.71 40.95 52.35 18 64.05 74.14 81.23 50% 19 20 40% 21 22 23 30% 24 37.62 25 38.44 20% 26 32.75 27 26.14 19.42 10% 28 13.93 10.26 29 4.26 2.68 30 0% 31 2016 2025 2012 2020 2030 2035 2040

Figure 3 Projection of distribution of BMI, (A) Adults, (BMVReservand (C) Women, aged 19 years and older, South Keogea? of 65

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Year

Predicted period


Observed period

39 40 41

32 33

34 35 36

PEigure Projection of distribution of BMI, (A) Adults, (BMMene and (C) Women, aged 19 years and older, South Korea, 2012-2040

1

1	
2 3	
4	
5	
6 7	
/ 8	
9	
10	
11	
12 13	
14	
15	
16 17	
18	
19	
20	
20 21 22	
22	
24	
25	
26 27	
28	
29	
30 21	
31 32	
33	
34	
35 36	
37	
38	
39	
40 41	
42	
43	
44	
45 46	
47	
48	
49 50	
50	
52	
53	
54 55	
56	
57	
58	

25

1	Title: Projecting the prevalence of obesity in South Korea through 2040: a
2	microsimulation modeling approach
3	
4	Authors: Yoon-Sun Jung ^{a*} , Young-Eun Kim ^b , Dun-Sol Go ^c , Seok-Jun Yoon ^d
5	Affiliations:
6	^a Department of Public Health, Graduate School, Korea University, Seoul, Korea
7	^b Big Data Department, National Health Insurance Service, Wonju, Korea
8	^c Department of Health Care Policy Research, Korea Institute for Health and Social Affairs
9	^d Department of Preventive Medicine, Korea University College of Medicine, Seoul, Korea
10	Corresponding author:
11	Seok-Jun Yoon, M.D., Ph.D.
12	Department of Preventive Medicine, Korea University College of Medicine,
13	73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Korea
14	E-mail: yoonsj02@korea.ac.kr
15	
16	E-mail addresses:
17	sunnyaurora@nate.com (Yoon-Sun Jung)
18	kimyes4454@gmail.com (Young-Eun Kim) kds237@gmail.com (Dun-Sol Go)
19	kds237@gmail.com (Dun-Sol Go)
20	
21	Keywords: Microsimulation, body mass index, obesity, Population Health Model, South
22	Korea
23	
24	Word count: 4,373

1		2
2 3 4	26	ABSTRACT
5 6	27	
7 8 9	28	Objective To project the prevalence of obesity in 2040 among individuals 19 years and older
10 11	29	in South Korea.
12 13	30	Design, setting, and participants Using the 'Population Health Model-Body Mass Index'
14 15	31	(POHEM-BMI) microsimulation model, the prevalence of obesity in Korean adults 19 years
16 17 18	32	and older was projected until 2040. The model integrated individual survey data from the
19 20	33	Korea Health Panel Survey of 2011 and 2012, population statistics based on resident
21 22	34	registration, population projections, and complete life tables categorized by sex and age.
23 24 25	35	Birth rate, life expectancy, and international migration were based on a medium growth
26 27	36	scenario. The base population of Korean adults in 2012, devised through data aggregation,
28 29	37	was 39,842,730. The prediction equations were formulated using BMI as the dependent
30 31 32	38	variable; the individual's sex, age, smoking status, physical activity, and preceding year's
33 34	39	BMI were used as predictive factors.
35 36	40	Outcome measure BMI categorized by sex.
37 38	41	Results The median BMI for Korean adults in 2040 was forecast to be 23.55 kg/m^2 (23.97
39 40 41	42	and 23.17 kg/m ² for men and women, respectively). According to the Korean BMI
42 43	43	classification, 70.05% of all adults were forecast to be 'pre-obese' (i.e., have BMIs 23 to
44 45	44	24.9) by 2040 (81.23% of men and 59.07% of women) and 24.88% to be 'normal'.
46 47 48	45	Conclusions We explored the possibility of applying and expanding on the concept of
49 50	46	microsimulation in the field of healthcare by combining data sources available in KoreaIn-
51 52	47	future studies, it is necessary to develop a microsimulation model suitable for Korea's-
53 54	48	domestic situation, and it is necessary to evaluate the effectiveness of special health policies-
55 56 57	49	by applying various prediction scenarios to the basic model. and found that more than half of
58 59 60	50	the adults in this study population will be pre-obese, and the proportions of "obesity" and

2 3	F 1	"	
4	51	n	ormal" will decrease compared with those in 2012. The results of our study will aid in
5 6 7	52	dev	vising healthy strategies and spreading public awareness for preventing this condition.
, 8 9	53		
10 11	54		Strengths and limitations of this study
12 13	55	•	To the best of our knowledge, this is the first study to use a microsimulation model to
14 15	56		predict future obesity prevalence in Korea considering the change in population structure
16 17 18	57		(macro level) as well as individual health behavior components (micro level).
19 20	58	•	The results of our study aid has the greatest significance in exploring the possibility of
21 22	59		applying and expanding the concept of microsimulation in the field of healthcare by
23 24 25	60		combining data sources available in Korea. suggesting additional and wider-ranging
26 27	61		strategies for obesity prevention by considering sex and age group in the formulation of
28 29	62		the 'National Health Promotion Comprehensive Plan'.
30 31 32	63	•	Although a representative data source was used in this study, the prevalence of obesity
33 34	64		may be underestimated because it is based on a self-reported BMI value.
35 36	65	٠	The estimated BMI value differs from the Korea Health Statistics, which is based on the
37 38 20	66		data measured by actual measurement.
39 40 41	67	•	There is a limitation that it does not accurately reflect the domestic situation because it
42 43	68		borrows a micro-simulation model developed abroad. This study uses a micro-simulation
44 45	69		model developed abroad, and hence, may not reflect the domestic situations accurately.
46 47 48	70	•	Another limitation is that we assumed the attributes of 19-year-old individuals to remain
49 50	71		similar each year.
51 52 53	72		
54 55 56 57 58	73		
59 60			

4

1 2		4
2 3 4	74	BACKGROUND
5 6	75	The prevalence of overweight and obesity has increased markedly over the past 3 decades,
7 8 9	76	and concerns about health risks associated with obesity have become almost universal.[1]
10 11	77	The increasing rate of obesity is a growing public health concern not only in Western
12 13	78	countries but also in South Korea.[2] From the 1990s through the beginning of the new
14 15	79	millennium, the prevalence of adult and child obesity has increased rapidly and continues to
16 17 18	80	rise steadily in parallel with rapid social and economic development.[3]
19 20	81	Obesity is not only a major public health problem in itself, but also a factor in the
21 22	82	development of many chronic diseases; hence, it constitutes a strain on individuals and health
23 24 25	83	systems worldwide. In the Global Burden of Disease Study,[4] globally in 2017, a high body-
26 27	84	mass index (BMI) accounted for 4.72 million deaths and 148.0 million disability-adjusted
28 29 30 31 32 33 34 35 36 37 38 39 40 41	85	life-years. It is associated with an increased risk of many disorders, including diabetes,
	86	hypertension, dyslipidemia, heart disease, stroke, sleep apnea, early death, and cancer.[4-8]
	87	Moreover, obesity among older people increases the risk of knee osteoarthritis[9] and reduces
	88	functional capacity and quality of life.[10-13] The prevalence of these conditions rises in
	89	proportion to the increase in obesity[14-17] commensurate with increased obesity and is
	90	associated with significant morbidity, higher risks of mortality, and increased economic costs
42 43	91	for both individuals and the society at large.[18] A study of data from the National Health
44 45	92	Insurance Service in Korea found that the socioeconomic cost of obesity in 2016 was
46 47 48	93	approximately 9,665.32 million US dollars.[19]
49 50	94	Meanwhile, with respect to worldwide comparisons, whether cutoff points for
51 52	95	overweight and obesity should be lower for Asians than for another ethnic groups remains
53 54 55	96	debatable.[20] The World Health Organization has proposed BMIs of $18.5-22.9 \text{ kg/m}^2$ as
56 57	97	optimal, 23–24.9 kg/m ² as overweight, 25–29.9 kg/m ² as moderate obesity, and \geq 30 kg/m ²
58 59 60	98	as severe obesity for Asians.[21] However, it is more important to determine particular BMI-

.32 million US dollars.[19] with respect to worldwide comparisons, whether cutoff points for ity should be lower for Asians than for another ethnic groups remains Vorld Health Organization has proposed BMIs of $18.5-22.9 \text{ kg/m}^2$ as m^2 as overweight, 25–29.9 kg/m² as moderate obesity, and ≥ 30 kg/m² Asians.[21] However, it is more important to determine particular BMI-

Page 38 of 65

BMJ Open

1 2		5								
2 3 4	99	values that increase the likelihood of developing particular chronic disease, depending on the								
5 6	100	sex and age of the individual. The Korean Society of Obesity, which was established to								
7 8 9	101	improve obesity management through research and education, revised its clinical practical								
9 10 11	102	guidelines for the prevention and treatment of obesity in 2018. The new guidelines renamed								
12 13	103	the "overweight" category to "pre-obese", and divided obesity into 3 categories, thereby								
14 15 16	104	aiming to highlight the risk of obesity instead of promoting the term "overweight." The most								
16 17 18	105	recent guidance is based in part on data of 84,690,131 Korean adults extracted from the								
19 20	106	Korean National Health Insurance Service Health Checkup Database between 2006 and 2015.								
21 22	107	By including the entire population registered in the National Health Insurance Service								
23 24 25	108	Database, they calculated the first and second cutoff points corresponding to the increased								
26 27	109	risk of any of the 3 accompanying diseases (type 2 diabetes, hypertension, and dyslipidemia)								
28 29	110	The first cutoff BMI level was 23 kg/m ² , and the second cutoff BMI level was The first and								
30 31 32	111	second BMI cutoff levels were reported to be 23 kg/m ² and 25 kg/m ² , respectively,								
33 34	112	suggesting the necessity of obesity criteria that accurately reflect the risk of chronic disease								
35 36	113	among Koreans.[22,23]								
37 38 39	114	A study of data from the National Health Insurance Service in Korea found that the								
39 40 41	115	socioeconomic cost of obesity in 2016 was approximately 9,665.32 million US dollars;								
42 43	116	medical expenses accounted for 51.3% of this amount, followed by decreasing productivity-								
44 45	117	(20.5%), productivity loss (13.1%), early mortality (10.0%), care costs (4.3%), and								
46 47 48	118	transportation costs (0.8%).[24] Several studies on the long-term trends of obesity prevalence								
49 50	119	in South Korea found that obesity is increasing in men but not in women.[25-27] Although								
51 52	120	numerous investigators in other countries have attempted to predict the future prevalence of								
53 54 55	121	obesity, only one such study by Inkyung Baik was recently performed in South Korea.[2]								
56 57	122	More recent trends still need to be investigated through predictive studies, and the accurate								
58 59 60	123	prediction of obesity prevalence remains an important public health-related goal in the								

Page 39 of 65

BMJ Open

BMJ Open
6
country. To efficiently establish and execute an effective healthcare policy, which would
require a large budget, it is necessary to select future targets for policy interventions (such as
high-risk groups) to predict healthcare needs and prevent budget waste.
Past prediction models incorporated a country's entire population; as such,
macroscopic inferences based on average projections for the future society were generalized.
However, when establishing a healthcare policy, it is necessary to estimate the future disease
burden and medical needs of the entire population based on future projections that reflect
individual characteristics because a real-world understanding of factors that are influenced by
policies or institutions is required. Individuals are independent entities with different
characteristics and needs that govern their future decisions and behaviors. By applying these
needs, health-related projections can be modeled to reflect health risk factors such as sex,
age, life cycle activities, smoking, etc., and the effects of policy interventions can be
quantified [24] In this regard, we aimed to predict the prevalence of obesity in Korea by

high-risk groups) to predict h are needs and prevent budget waste. Past prediction mode proprieted a country's entire population; as such, macroscopic inferences based rerage projections for the future society were generalized. However, when establishing there policy, it is necessary to estimate the future disease burden and medical needs of tire population based on future projections that reflect individual characteristics beca real-world understanding of factors that are influenced by policies or institutions is requ ndividuals are independent entities with different characteristics and needs that n their future decisions and behaviors. By applying these needs, health-related projection n be modeled to reflect health risk factors such as sex, age, life cycle activities, smol etc., and the effects of policy interventions can be quantified.[24] In this regard, we aimed to predict the prevalence of obesity in Korea by using microsimulation, which is optimal for considering individual properties. Microsimulation is a modeling technique, which typically uses individual microunits, each with its own set of properties, to simulate downstream events based on the probability of transition between predefined states and their changes over time. When used in medicine, microsimulation can be particularly powerful because it preserves the patterns of previous behaviors and conditions, and allows for a clearer representation and understanding of how various processes affect the total outcome of the population over time. [25] In other words, microsimulation can predict the burden of disease by modeling various health risk factors that occur during an individual's lifetime. Given macro-effects such as changes in population structures in the forecasting model, microsimulation is very useful as it can estimate both disease burdens and medical needs across the country.[24] Collecting individual events from-

within a population that has varying attributes can be used to predict and plan outcomes (such

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

2 3	140	
4	149	as incidence, prevalence, and cost), and can also be used to assess the clinical and cost
5 6 7	150	effectiveness of alternative health interventions.[29] Microsimulation modeling is particularly
7 8 9	151	useful for studying BMI trends because it can simultaneously explain population dynamics
10 11	152	such as aging, migration, and mortality. Additionally, the longitudinal framework of these
12 13	153	models allows for interpreting a person's change in BMI as it is affected by factors such as a
14 15	154	person's physical activity and behavior, and thus, acts as a contributing factor for other
16 17 18	155	diseases.[26] However, while microsimulation models have been steadily evolving across
19 20	156	health- and economy-related fields in many European countries,[27] they are yet to be
21 22	157	actively utilized in South Korea (especially for healthcare).
23 24 25	158	Obesity prevalence and trend estimates provide important information for research,
26 27	159	policy, and intervention.[28] As mentioned above, it is necessary to estimate the magnitude-
28 29	160	of obesity because it has been identified as a risk factor for various chronic diseases. Because
30 31 32	161	health forecasting predicts disease episodes and portends future events, it facilitates
33 34	162	healthcare strategies by promoting the setting of goals to reduce obesity, establish health
35 36	163	promotion interventions, and optimize resource allocation.[29] Obesity trends may also be
37 38 30	164	used to urge governments to implement preventative approaches for reducing obesity.[30]
39 40 41	165	Based on the above findings, we performed this study to project the future trends in obesity
42 43	166	prevalence in South Korea up to the year 2040.
44 45	167	
46 47 48	168	METHODS
49 50	169	Model
51 52	170	We used the Population Health Model (POHEM)-BMI to estimate the prevalence of
53 54 55	171	obesity among adults 19 years and older in South Korea from 2012 through 2040. In brief,
56 57	172	POHEM is a time-continuous, population-based, dynamic microsimulation model with
58 59 60	173	individual underlying units of analysis used worldwide. Dynamic microsimulation, in the

Page 41 of 65

BMJ Open

1		8
2 3 4	174	context of social science and population health, is a simulation of individuals (i.e., micro-
5 6	175	level) and their behaviors, statuses, and actions (dynamics) over time.[31] These are modeled
7 8 9	176	as desired using multiple sources of empirical data, including cross-sectional surveys,
, 10 11	177	administrative databases, vital statistics, and census data.[32]
12 13	178	Through dynamic simulation, POHEM creates a population and ages it, one person at a time,
14 15 16	179	until death.[33] The model dynamically simulates an individual's disease state, risk factors,
17 18	180	and health determinants to describe and plan health outcomes.[32] POHEM is accessible
19 20	181	because it wants the general process to be constant across the country's population, with the
21 22 22	182	exception of variables unique to each country, such as marriage and mortality. The POHEM
23 24 25	183	models include cardiovascular disease, various cancers, osteoarthritis, physical activity, and
26 27	184	neurological events. The model used in this study was the POHEM-BMI; the performance of
28 29	185	each prediction step is shown in Figure 1.
30 31 32	186	Base population
33 34	187	To create the base population for the POHEM-BMI model, we used the 2011–2012 Korea
35 36	188	Health Panel survey and the resident registration-based population statistics. The base
37 38	189	population for POHEM-BMI (n=39,842,730), reflected the Korean population. Each Korean
39 40 41	190	respondent 19 years of age and older (n=11,501) in 2012 was replicated using their survey-
42 43	191	recorded weights to generate a simulated cohort of approximately 39,842,730 individuals.
44 45	192	Korea Health Panel survey data are nationally representative, and incorporate health status,
46 47 48	193	chronic diseases, health risk behaviors, and socio-demographic characteristics. Among them,
49 50	194	we extracted sex, age, current smoking status, physical activity, and the previous and current
51 52	195	years' BMI values; these variables were required for the predictive equation. We then used a
53 54 55	196	multiple linear regression model to estimate the BMI value using the extracted independent
55 56 57	197	variables as predictors. The POHEM-BMI model is auto-regressive and includes previous
58 59 60	198	BMI values as a main explanatory variable.[26] For comparison with other international

studies using this model, the variable composition was the same, but the variable definition was not. The definition of variables was consistent with the definition of indicators in the Korea Health Statistics. A current smoker was an individual who reported smoking 'every day' or 'sometimes'. Practicing physical activity was defined as performing either intense physical activity for at least 10 continuous minutes a day, 20 minutes total per day, 3 days a week during the preceding week, or moderate physical activity for at least 30 minutes a day, 5 days a week during the preceding week. Height and weight, which are components of BMI, were based on self-reported data. Simulation: Annual updates and risk transition The study population was updated by aging each person by 1 year and changing the total population size based on population statistics, population projections, and complete life tables categorized by sex and age from Korean Statistics. For population projections, we assumed a medium growth scenario in terms of birth rate, life expectancy, and international migration. Each person's BMI was updated annually by applying a predictive equation that incorporates his/her own characteristics. The transition probability for each stochastic characteristic was calculated based on a generalized linear model. We assumed that the current individual behavioral patterns persisted, and no new factors arose to prevent obesity, like the original POHEM-BMI. We also assumed that the attributes of 19-year-old individuals, which were entered annually, remained similar each year. Model validation and calibration We established the model's validity by comparing the projected BMI median obtained from the prediction model to estimates obtained from the Korea Health Panel survey. We set the calibration cutoff point to 5% and adjusted the model by comparing the difference between the median BMI estimates observed from the Korea Health Panel survey

Page 43 of 65

1

BMJ Open

1 2		10
2 3 4	224	and the values derived from the prediction model categorized by sex and age. We analyzed
5 6	225	the BMIs of each group by comparing the 2016 data available from the Korea Health Panel
7 8 9	226	with the most recent data. We accepted a difference of less than 5% overall in the sex- and
9 10 11	227	age-categorized groups. Finally, we adjusted the demographics of the 2040 population so that
12 13	228	the predictions were within a 5% margin of error. In this study, all necessary data for model
14 15	229	building and projection were obtained from publicly available data and does not include any
16 17 18	230	identifiable personal information. Hence, no ethical approval was required, in addition to the
19 20	231	ethical and governance approvals granted by the Korea Institute for Health and Social Affairs
21 22	232	(KIHASA), which conducts the Korea Health Panel Survey. All participants gave written
23 24 25	233	informed consent before they completed the survey.
25 26 27	234	Projection
28 29	235	The model projected the BMI of each person from 2017 to 2040. Based on demographic
30 31 32	236	characteristics, the projections were then aggregated by year for each of the predefined
32 33 34	237	subgroups. The various trends observed in the Korean population data were used to generate
35 36	238	algorithms that were applied to future projections.
37 38	239	Model outputs
39 40 41	240	The BMI distributions were calculated overall and by sex. Individuals with a BMI \geq 25
42 43	241	kg/m ² were obese according to the Guidelines for the Management of Obesity in Korea,
44 45 46	242	which is not the internationally accepted standard (Table 1). All analyses in this study were
40 47 48	243	performed using STATA version 13 (StataCorp LLC, College Station, TX, USA).
49 50	244	
51 52 53	245	Table 1 BMI classification of South Korea
54 55		Body mass index
56 57		Classification (kg/m ²)
58 59		
60		

		BMJ Open
	Underweight	< 18.5
	Normal	18.5 – 22.9
	Pre-obese	23 - 24.9
	Obese class I	25 – 29.9
	Obese class II	30 - 34.9
	Obese class	≥ 35
246		<u> </u>
247	Patient and public involvem	nt
248	No patient involved	
249		
250	RESULTS	
251	We compared the to	tal number of the individuals and their characteristics in the
252	initial 2012 population to th	ose in the projected 2040 population (Table 2). There were
253	39,842,730 adults who were	19 years of age or older in 2012 and 43,818,808 in 2040. The
254	male: female ratio was near	y 1:1 in both 2012 and 2040. Rapid aging of the Korean
255	population was clearly obse	eved when comparing the 2 populations. The average age of
256	adults was expected to incre	ase by 10.9 years (from 45.69 years in 2012 to 56.59 years in
257	2040 [from 44.57 to 55.54 y	ears among men and 46.77 to 57.63 years among women]). In
258	2012, the proportion of you	ng people (those in the 19–39 and 40–64-year age groups

 combined) accounted for approximately 85.54% of the adult population, while the proportion

the age group structure in South Korea 28 years later (2040) is predicted to be quite different,

of individuals aged 65 years and older was relatively low at approximately 14%. However,

as the proportion of individuals 19-64 years (i.e., the working age population) was only

1 2		
3 4 5	263	60.95% of the adult population, while the proportion of the elderly population (\geq 65 years)
6 7	264	was estimated to be almost 40% of the total adult population.
8 9	265	
10 11 12		
12 13		
14 15 16		
10 17 18		
19 20		
21 22		
23 24		
25 26		
27 28		
29 30		
31 32		
33 34 25		
35 36 37		
37 38 39		
40 41		
42 43		
44 45		
46 47		
48 49		
50 51		
52 53 54		
54 55 56		
50 57 58		
50 59 60		

Table 2 Comparison of number of people, South Korea, 2012 and 2040

		Рор	ulation at b	aseline (.	2012)		Projected population (2040)							
	Men		Men Women		Total		Men		Women		Total			
	Number	Perce	Number	Perce	Number	Perce	Number	Perce	Number	Perce	Number	Perce		
		ntage	\sim	ntage		ntage		ntage		ntage		ntage		
Number of	19,709	,628	20,133	,102	39,842,	730	21,7	17,128	22,101	,680	43,818,	808		
people			~ ? ? ?											
Age	44.57±15		46.77±16.		45.69±16.		55.54±18.60		57.63±19		56.59±19.00			
(mean±s.d	.60		92		31		1		.33					
.)							194							
19-39	7,985,73	40.52	7,505,82	37.29	15,491,56	38.88	4,873,74	22.45%	4,588,86	20.76	9,462,607	21.6		
	7	%	4	%	1	%	0		7	%		q		
40-64	9,360,48	47.49	9,230,87	45.85	18,591,36	46.66	8,896,88	8,896,88 40.97%		37.78	17,246,520	39.3		
	9	%	1	%	0	%	6	6		%		0		
65 and	2,363,40	11.98	3,396,40	16.87	5,759,809	14.45	7,946,50	946,50 36.59%		41.45	17,109,681	39.0		
above	2	%	7	%		%	2		9	%		%		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 47 of 65

BMJ Open

1 2													14
3 4		Smoker	8,879,03	45.05	450,946	2.24%	9,329,983	23.42					
5 6 7			7	%				%					
/ 8 9		Physical	5,199,27	26.38		15.41	8,302,309	20.84					
0 11		activity	3	%	3,103,03	%		%					
2 3					6								
4 5	267					6				200			
6 7	268												
8 9													
0 1													
2 3													
24 25													
6 7													
8 9													
0 1													
2 3													
4 5													
6 7													
8													
0													
1 2													
3 4					For pe	er review o	nly - http://bmj	open.bmj.	com/site/ab	out/guidelines.>	khtml		
5													

270 approximately 41.48% of the adult population was 'normal' in 2012, whereas only 24.88% of the population was predicted to be the same in-

271 2040. (see Table 3) On the other hand, the 'pre-obese' group was expected to account for approximately 70% of the total adult population.

Table 3 Comparison of number of people, by BMI classification, South Korea, 2012 and 2040

	Population at baseline (2012)							Projected population (2040)						
	Men		Women		Total		Men		Women		Total			
	Number	(Percen tage)	Number	(Percen tage)	Number	(Perce ntage)	Number	(Percent age)	Number	(Perc entag e)	Number	(Perce ntage)		
BMI (median)	23.	59	22.	41	23.0)4	23.	97	23.1	7	23.5	55		
Number of p	beople by Bl	MI classific	cation				0	61						
Underweight	840,251	(4.26)	2,368,05	(11.76)	3,208,30	(8.05)	98,95 4	(0.46)	152,500	(0.69	251,454	(0.57)		
			1		2)				
Normal	7,414,31	(37.62)	1 9,114,01	(45.27)	2 16,528,3	(41.48	2,228,567	(10.26)	8,671,481) (39.2	10,900,0 4	(24.88)		
Normal	7,414,31 1	(37.62)		(45.27)		(41.48)	2,228,567	(10.26)	8,671,481) (39.2 3)	10,900,0 4 8	(24.88)		

ruge is of os						Biris op				
1 2										
3		6		3		9,472,53)	8		
4 5						Q				
6 7						<i>y</i>				
8	Obese class	5,867,36	(29.77)	4 ,046,60	(20.10)	-	(24.88	1,712,332	(7.88)	22

						9							
	Obese class	5,867,36	(29.77)	4,046,60	(20.10)	-	(24.88	1,712,332	(7.88)	221,829	(1.00	1,934,161	(4.41)
	Ŧ	9		7		9,913,97))		
				Ör		6							
	Obese class	-318,297	-(1.61)	_	(1.61)		(1.61)	33,455	(0.15)	388	(0.00	33,843	(0.08)
	Ŧ			324,205	66	642,502)		
	Obese class-		-(0.02)		- (0.36)	6	(0.19)		(0.01)	0	(0.00		(0.00)
	₩			72,55 1		77,085	6)		
73 74								0	から				

θ

7)

2		
3 4	275	The model was well calibrated in both the initial population and from 2017 to 2040.
5 6	276	Differences in each of the variables estimated between 2013 and 2016, which were derived
7 8 9	277	from the Korea Health Panel data, were within the 5% range only when using the predictive
10 11	278	model. Additionally, when compared to the population structure for 2040 (the final year) as
12 13	279	predicted by Statistics Korea, the total population, gender, and age-specific ratio were similar.
14 15	280	Figure 2 shows the median predicted BMIs between 2017 and 2040. Each median
16 17 18	281	BMI value from 2013 to 2016 was estimated from the Korea Health Panel survey. The
19 20	282	median BMI for the entire adult population is predicted to increase very slightly from 23.23
21 22	283	kg/m^2 in 2018 to 23.53 kg/m^2 in 2036 and is expected to remain steady thereafter. The
23 24 25	284	predicted median BMI trends are similar for men; the median BMI in adult men was
26 27	285	projected to increase only slightly, from 23.74 kg/m ² in 2018 to 23.95 kg/m ² in 2036 and then
28 29	286	almost plateau thereafter. However, women were expected to experience a relatively steep
30 31 32	287	rise compared to that of men; the median BMI in adult women was projected to increase from
32 33 34	288	22.66 kg/m ² in 2018 to 23.17 kg/m ² in 2040.
35 36	289	
37 38	290	The BMI distributions for men and women from 2012 to 2040 are shown in Figure 3.
39 40 41	291	There was no significant difference between the median BMIs in 2012 and 2040, but the
42 43	292	results according to the BMI classifications showed large changes. The proportions of 'pre-
44 45	293	obese' individuals in both sexes are predicted to increase dramatically over time, while the
46 47 48	294	proportions of individuals who are classified as 'normal' and 'obese' will gradually decrease.
49 50	295	As of 2025, 52.35% of all male adults were expected to be pre-obese, with that proportion
51 52	296	expected to be close to 81.23% by 2040. Moreover, 53.24% of all women were expected to
53 54 55	297	be 'pre-obese' by 2035, with the proportion rising to almost 59.07% by 2040.
55 56 57	298	
58 59 60	299	According to the BMI classification by age group, in South Korea, in 2012, about

BMJ Open

almost dou	almost double. The proportion of the 'normal' population was almost the same in 2012 and										
	2040, and the 'obese class I ' decreased by nearly half. However, in the population aged 40										
to 64 and over 65, the proportion of 'pre-obese' increased almost three times in 2040											
compared to that in 2012, and the proportion of 'normal' decreased to less than 20% (Table											
3).											
Table 3 Comparison of number of people, by BMI classification, South Korea, 2012 and 2040											
		Populatio	on at baselir	ne (2012)	Projecte	d population	n (2040)				
		19-39	40-64	65-	19-39	40-64	65-				
Number o	of people	15,491,5	18,591,3	5,759,80	9,462,60	17,246,5	17,109,				
		61	60	9	7	20	8				
BMI (mee	dian)%	22.37	23.52	23.02	23.07	23.64	23.5				
Distribution of people by BMI classification											
Underwei	ght %	11.76	5.10	7.60	2.66	0.00	0.0				
Normal %	,)	45.66	37.81	42.12	45.68	19.89	18.4				
Pre-obese	%	20.36	26.51	24.10	39.59	76.60	80.3				
	ss I %	20.67	28.40	24.85	11.70	3.51	1.2				
Obese cla			1.79	1.30	0.36	0.00	0.0				
Obese cla Obese cla	ss II %	1.51	1.79								

DISCUSSION

The purpose of this study was to predict the prevalence of obesity in South Korea in the year 2040 using a microsimulation model. In this study, we strove to predict future adult obesity rates in South Korea using the POHEM-BMI, which was developed by Statistics Canada. Summarizing the predicted results, the median BMI of South Korea's adult population aged 19 years and older was expected to be 23.55 in 2040, while the percentage of 'pre-obese' individuals was expected to increase over time. While it is encouraging that the proportion of 'obese' people (i.e., those with BMIs $\geq 25 \text{ kg/m}^2$) in 2040 is predicted to be much lower than that in 2012, it is discouraging that the proportion of 'normal' individuals is also markedly lower. Most notably, the pre-obesity rate is predicted to rise dramatically. In addition to the sex and age variables, our model includes only smoking and physical activity as health-related behaviors. The distributions of these factors were assumed to remain equal across the years; hence, our data show that maintaining smoking and physical activity rates at 2012 levels among adults will lead to a sharp increase in the 'pre-obese' population by 2040. To the best of our knowledge, the only other study that predicted future obesity rates among South Korean adults was the investigation by Baik.[2] That study explored factors affecting adult as well as abdominal obesity, and constructed forecasting models to predict obesity prevalence rates in 2020 and 2030 using the Korea National Health and Nutritional Examination Survey (KNHANES). The prevalence rates of obesity among men and women in that study were predicted to be 47% and 32%, respectively, in 2020 and 62% and 37%, respectively, in 2030; these data were inconsistent with our results. The differences in prediction results appeared to be caused by the different secondary sources and prediction models in the two studies. First, in Baik's study, a prediction model was constructed by applying a linear regression model and an autoregressive integrated moving average model using the KNHANES data. The dependent variable in the prediction model was BMI, and the

Page 53 of 65

BMJ Open

 333 independent variables included the survey year, age, marital status, job status 224 bit is a bit in the last status in the survey is a bit in the survey is a bit	
5	
6 334 smoking, alcohol consumption, sleep duration, psychological factors, dietary	intake, and
 7 8 9 335 fertility rate. In contrast, in this study, the Korea Health Panel data was used a 	as the data
10 11 336 source, and BMI was predicted by performing microsimulation with sex, age, 11	, smoking,
 12 337 physical activity, and previous years' BMIs as independent variables. Therefore 	ore, the method
 14 15 338 of measurement of the dependent variable, BMI differs between the studies; u 16 	unlike the
 17 339 KNHANES, which contains body-measured height and weight information, t 18 	he Korea Health
$\begin{array}{c} 19\\ 20 \end{array}$ 340 Panel (although this is a representative data source) generates data based on s	self-reported by
 21 22 23 341 respondents, which may underestimate obesity. The differences appeared to b 23 	be caused by the
 24 342 different secondary sources used in the 2 studies, as well as the different inde 25 	pendent -
 343 variables and prediction methodologies. In particular, Inevitably, the obesity : 	rate in the initial
28 29 344 population according to the KNHANES tended to be higher; as such, a higher 20	r initial
 30 31 345 prevalence rate would lead to a higher projection.[34] Most importantly, Baik 32 	c's study did not
 33 346 consider the preceding year's BMI, which was a major independent variable i 34 	n our study; this-
35 36 347 may be a major explanation for the differences in findings between the 2 stud	lies.
 37 38 348 We also tried to compare the results from this study with the predicte 39 	ed estimate by
40 349 country, but few studies have empirically predicted the prevalence of obesity	in the future
 42 43 450 using simulation models. One study compiled nationally-representative data for a study compiled nationally compiled nating compiled nating compiled nationally compil	from various
 44 45 46 46 46 46 46 	an adults aged
47 352 20-69 years will reach 30.5% and 9.5% among men, 27.4% and 13.9% among 48	g women,
⁴⁹ ₅₀ 353 respectively, by 2040.[35] According to a study that estimated the prevalence	e of obesity in
 51 52 53 54 the future through regression modeling, 42% of Americans were expected to 53 	be obese by
 54 355 2030.[36] Similarly, a study that predicted the prevalence of obesity in Austra 55 	alian adults by
 356 356 2025 using a multiple linear regression model predicted that 83% of male adu 57 	ults over the age
 ⁵⁸ ⁵⁹ ⁶⁰ of 20 and 75% of female adults would be overweight or obese.[37] In all three 	e countries,

India, the United States, and Australia, overweight and obesity were defined according to the classifications defined by the WHO, and much higher values were found than those in Korea. We also compared our results to those predicted in Canada using the same model, and 59% of the adult Canadian population was predicted to be 'overweight or obese' by 2030. This study defined obesity by applying the BMI classification system according to 2018 Korean Society for the Study of Obesity guideline for the management of obesity in Korea. It would be appropriate to use international standards for comparison; however, it is necessary to reflect the situation of individual countries in the management of obesity for the purpose of preventing and managing chronic diseases. Therefore, rather than emphasizing the BMI classification criteria, more research is needed to determine the BMI values that can significantly predict the occurrence of chronic diseases. In other words, it is necessary to continuously accumulate sufficient epidemiologic evidence for the relationship between the BMI and the actual risk of disease and death for Koreans, and based on such evidence, efforts to establish appropriate diagnostic and medical standards for Koreans are needed. In particular, the relationship is likely to vary by age and sex; hence, it should be considered too. Here, the obesity standard has been applied collectively regardless of sex and age. However, in order to deviate from a uniform approach to obesity, gender- and age-based approaches are needed, considering the changes in hormones and body composition. Because health management policies including obesity management require a large budget, it is most important to establish cost-effective policies. The results from this study made it possible to determine the obese high-risk group by sex and age group, and estimate medical needs. As it is necessary to apply obesity standards differently according to sex and age group, it is difficult to set the 'National Health Promotion Comprehensive Plan' goals. This plan needs to suggest additional, wider-ranging goals considering the characteristics of each sex and age group, rather than presenting goals for obesity prevalence among adult men

Page 55 of 65

1 2

BMJ Open

2 3 4 5 6	383	and women. In this case, the goal should be presented at an achievable level in consideration
	384	of future prediction patterns. Finally, systematic public health interventions, which are
7 8	385	tailored to individual characteristics need to be established.
9 10 11	386	Findings from this study should be interpreted with consideration of several
12 13	387	limitations. First, since a microsimulation model for predicting obesity prevalence has not
14 15 16 17 18	388	been developed in this country, we borrowed the model developed by Statistics Canada, and
	389	it may not fit the domestic situation; nonetheless, we defined each variable in the predictive
19 20	390	equation according to the operational definition in Korea Health Statistics. However, if the
21 22	391	model is more suited to the domestic situation, besides sex, age, smoking, physical activity,
23 24 25	392	and previous year's BMI value, various factors related to BMI may be added to the predictors
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	393	of BMI. However, in this study, as we faithfully followed the existing model and explored the
	394	possibility of domestic application, the process of constructing a prediction equation was
	395	omitted. Therefore, not only is the definition of obesity different, but the predictors of BMI-
	396	include only sex, age, smoking, physical activity, and preceding year's BMI values. In the
	397	future, research to develop a new model of microsimulation in the field of healthcare for
	398	domestic conditions will be very valuable. In this process, it is necessary to consider practical
39 40 41	399	suitability and efficiency in selecting basic data, module-specific behavioral equations, and
42 43	400	variables for use in the model. Second, we had limited data sources. There is a difference
44 45	401	between the current prevalence of obesity calculated from the Korea Health Panel data used
46 47 48	402	in this study and the Korea Health Statistics using the KNHANES. As of 2011, the
49 50	403	prevalence of adult obesity in Korea Health Statistics was 31.9%, and the prevalence of adult
51 52	404	obesity calculated by the Korea Health Panel data was 23.7%, a difference of 8.2%.[38]
53 54 55	405	Unlike the Korea Health Statistics, which contains body-measured height and weight
55 56 57	406	information, the Korea Health Panel (although this is a representative data source) generates-
58 59	407	data based on self-reported by respondents, which may underestimate obesity. As mentioned
60		

1 2		25
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	408	earlier in the difference between the results of Baik's study, this difference originated from
	409	the method of measuring BMI in the two data sources. However, in the POHEM-BMI model
	410	used in this study, the BMI of the previous year was regarded as the main explanatory
	411	variable, and therefore, the Korea Health panel data that followed the same participants once
	412	a year was inevitably used. In addition, the original POHEM-BMI model includes the process
	413	of converting self-reported BMI into a measured BMI, but we omitted this due to limitations
	414	of the data source. Third, we assumed that the attributes of 19-year-old individuals entered
19 20	415	each year remain at a similar level each year. This means that the individual attributes of 19-
21 22	416	year-old adults are the same for 29 years from 2012 to 2040; thus, it can be considered
23 24 25	417	somewhat less realistic. In future studies, it is expected that more meaningful and realistic
26 27	418	results will be derived if the model is constructed by reflecting the trend of changes in the
28 29 30 31 32 33 34 35 36 37 38 39 40 41	419	attributes of the 19-year-old population and updating it according to the year.
	420	Nevertheless, our study is the first to examine the possibility of using
	421	microsimulation to predict future BMI medians in South Korea. Additionally, the BMI of the
	422	future adult population was predicted after considering the change in population structure at
	423	the macro level as well as individual health behavior components at the micro level.
	424	
42 43	425	CONCLUSION
44 45	426	The key finding of this study is that by 2040, 70.05% of Korean adults are predicted
46 47 48	427	to be pre-obese. Utilizing data sources available in Korea, the possibility of applying and
49 50	428	expanding on the concept of microsimulation was explored. In future studies, a model
51 52	429	suitable for South Korea needs to be developed, and the effectiveness of specific health
53 54 55	430	policies ought to be assessed by applying various relevant scenarios to the basic forecasting
55 56 57	431	model.
58 59 60	432	

2	Λ
2	4

2 3 4	433	Abbreviations
5 6	434	BMI: body mass index; KNHANES: Korea National Health and Nutritional
7 8 9	435	Examination Survey, POHEM: Population Health Model
9 10 11	436	Authors' Contributions
12 13	437	YS (the first author) designed the study, analyzed, and interpreted the data, and wrote
14 15 16	438	the paper. YE participated in the statistical analysis. DS aided in the interpretation of the data
17 18	439	and preparation of the manuscript. SJ (the corresponding author) directed this study. All
19 20	440	authors read and approved the final version of the manuscript.
21 22	441	Funding
23 24 25	442	This work was supported by the National Research Foundation of Korea (NRF) grant
23 26 27 28 29 30 31 32	443	funded by the Korea government (Ministry of Science and ICT) (No. 2017R1A2B4005876).
	444	The funding agency had no role in the study design, analysis and interpretation of the data, or
	445	the preparation of the manuscript.
33 34	446	Competing Interests
35 36	447	The authors declare that they have no competing interests.
37 38 39	448	Ethics approval
40 41	449	This study used publicly available data of Korea Health Panel Survey 2011-2012
42 43	450	from the Korea Institute for Health and Social Affairs and the National Health Insurance,
44 45	451	population statistics based on resident registration, population projections, complete life
46 47 48	452	tables and future mortality rates from Statistics Korea. The dataset does not contain any
49 50	453	identifiable personal information. Ethical approval was given by the Institutional Review
51 52	454	Board of Korea University, Seoul, Korea (IRB No. KUIRB-2020-0018-01).
53 54 55	455	Data sharing statement
56 57	456	The Korea Health Panel Survey data used in this article is available in
58 59 60	457	https://www.khp.re.kr:444/eng/data/data.do. Detailed information on the survey design and

1 2		
2 3 4	458	data characteristics are provided at https://www.khp.re.kr:444/eng/survey/sampling.do.
5 6	459	Population statistics, population projections, and complete life tables are available from
7 8	460	http://kosis.kr/eng/.
10	461	
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 23 34 35 36 37 38 9 40 1 42 43	461	
44 45		
46 47 48		
49 50		
51 52 53		
54 55		
56 57		
58 59		
60		

1		26
2 3 4	463	REFERENCES
5 6	464	
7 8 9	465	1. Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of
9 10 11	466	overweight and obesity in children and adults during 1980-2013: a systematic analysis for
12 13	467	the Global Burden of Disease Study 2013. Lancet 2014;384:766-81.
14 15 16	468	https://doi.org/10.1016/S0140-6736(14)60460-8
16 17 18	469	2. Baik I. Forecasting obesity prevalence in Korean adults for the years 2020 and 2030 by the
19 20	470	analysis of contributing factors. Nutr Res Pract 2018;12:25–7.
21 22	471	https://dx.doi.org/10.4162%2Fnrp.2018.12.3.251
23 24 25	472	3. Kim D, Ahn C, Nam SY. Prevalence of obesity in Korea. Obesity Rev 2005;6:117–21.
26 27	473	https://doi.org/10.1111/j.1467-789X.2005.00173.x
28 29	474	4. Okosun IS, Chandra KMD, Choi S, et al. Hypertension and type 2 diabetes comorbidity in
30 31 32	475	adults in the United States: Risk of overall and regional adiposity. Obes Res 2001;9:1–9.
33 34	476	https://doi.org/10.1038/oby.2001.1
35 36	477	5. Krauss RM, Winston M, Fletcher BJ, et al. Obesity: impact on cardiovascular disease.
37 38 39	478	<i>Circulation</i> 1998;98:1472–6.
39 40 41	479	6. Chin K, Ohi M. Obesity and obstructive sleep apnea syndrome. Intern Med 1999;38:200-
42 43	480	2. https://doi.org/10.2169/internalmedicine.38.200
44 45	481	7. Wallström P, Bjartell A, Gullberg B, et al. A prospective Swedish study on body size, body
46 47 48	482	composition, diabetes, and prostate cancer risk. Brit J Cancer 2009;100:1799-805.
49 50	483	https://doi.org/10.1038/sj.bjc.6605077
51 52	484	8. Guh DP, Zhang W, Bansback N, et al. The incidence of comorbidities related to obesity
53 54 55	485	and overweight: a systematic review and meta-analysis. BMC Public Health 2009;9:88.
56 57	486	https://doi.org/10.1186/1471-2458-9-88
58 59 60	487	9. Coggon D, Reading I, Croft P, et al. Knee osteoarthritis and obesity. Int J Obes Relat

1		27
2 3 4	488	Metab Disord 2001;25:622-7. https://doi.org/10.1038/sj.ijo.0801585
5 6	489	10. Stenholm S, Rantanen T, Alanen E, et al. Obesity history as a predictor of walking
7 8 9	490	limitation at old age. Obesity 2007;15:929-38. https://doi.org/10.1038/oby.2007.583
9 10 11	491	11. Alley DE, Chang VW. The changing relationship of obesity and disability, 1988–2004.
12 13	492	JAMA 2007;298:2020-7. https://doi.org/10.1001/jama.298.17.2020
14 15 16	493	12. Larsson U, Karlsson J, Sullivan M. Impact of overweight and obesity on health-related
10 17 18	494	quality of life-a Swedish population study. Int J Obes Relat Metab Disord 2002;26:417-24.
19 20	495	https://doi.org/10.1038/sj.ijo.0801919
21 22 22	496	13. Zaninotto P, Pierce M, Breeze E, et al. BMI and waist circumference as predictors of
23 24 25	497	well-being in older adults: findings from the English Longitudinal Study of Ageing. Obesity
26 27	498	2010;18:1981-7. https://doi.org/10.1038/oby.2009.497
28 29	499	14. Emerging Risk Factors Collaboration, Wormser D, Kaptoge S, et al. Separate and
30 31 32	500	combined associations of body-mass index and abdominal adiposity with cardiovascular
33 34	501	disease: Collaborative analysis of 58 prospective studies. <i>Lancet</i> 2011;377:1085–95.
35 36	502	https://doi.org/10.1016/S0140-6736(11)60105-0
37 38 39	503	15. The Global Burden of Metabolic Risk Factors for Chronic Diseases Collaboration (BMI
39 40 41	504	Mediated Effects), Lu Y, Hajifathalian K, et al. Metabolic mediators of the effects of body-
42 43	505	mass index, overweight, and obesity on coronary heart disease and stroke: A pooled
44 45 46	506	analysis of 97 prospective cohorts with 1.8 million participants. <i>Lancet</i> 2014;383:970–83.
46 47 48	507	https://doi.org/10.1016/S0140-6736(13)61836-X
49 50	508	16. Renehan AG, Tyson M, Egger M, et al. Body-mass index and incidence of cancer: A
51 52	509	systematic review and meta-analysis of prospective observational studies. Lancet
53 54 55	510	2008;371:569-78. https://doi.org/10.1016/S0140-6736(08)60269-X
56 57	511	17. Bhimjiyani A, Knuchel-Takano A, Hunt D, et al. Tipping the scales: Why preventing
58 59 60	512	obesity makes economic sense. Technical Report 2016.

Page 61 of 65

1

BMJ Open

2 3 4 5 6 7 8	513	https://www.cancerresearchuk.org/sites/default/files/tipping_the_scales
	514	<u>_cruk_full_report11.pdf</u> (accessed 26 Jan 2020).
	515	18. Wang YC, McPherson K, Marsh T, et al. Health and economic burden of the projected
9 10 11	516	obesity trends in the USA and the UK. Lancet 2011;378:815-25.
12 13	517	https://doi.org/10.1016/S0140-6736(11)60814-3
14 15	518	19. Lee M. Half of the socioeconomic costs of obesity are 'medical costs'. Korea Biomedical
16 17 18	519	Review (2018, December 10).
19 20	520	http://www.docdocdoc.co.kr/news/articleView.html?idxno=1063317/ (accessed 2020,
21 22	521	January 29)
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	522	20. Low S, Chin MC, Ma S, et al. Rationale for redefining obesity in Asians. Ann Acad Med
	523	Singapore 2009;38:66–9.
	524	21. The World Health Organization Western Pacific Region, International Association for the
	525	Study of Obesity. The Asia-Pacific Perspective: Redefining obesity and its treatment.
	526	Sydney, Australia: Health Communications Australia Pty Limited; 2000.
	527	22. Seo MH, Kim YH, Han K, et al. Prevalence of obesity and incidence of obesity-related
	528	comorbidities in Koreans based on National Health Insurance Service Health Checkup Data
	529	2006-2015 (J Obes Metab Syndr 2018;27:46–52). J Obes Metab Syndr 2018;27:198–9.
42 43	530	https://doi.org/10.7570/jomes.2018.27.3.198
44 45 46	531	23. Seo MH, Lee WY, Kim SS, et al. 2018 Korean Society for the Study of Obesity guideline
46 47 48	532	for the management of obesity in Korea. J Obes Metab Syndr 2019;28:40-5.
49 50	533	https://doi.org/10.7570/jomes.2019.28.1.40
51 52	534	24. Kim D. Estimation of disease and disease burden by health behavior. Sejong City: Korea
53 54 55	535	Institute for Health and Social Affairs 2018.
56 57	536	25. Çağlayan Ç, Terawaki H, Chen Q, et al. Microsimulation Modeling in Oncology. JCO
58 59 60	537	Clin Cancer Inform 2018;2:1-11. https://doi.org/10.1200/CCI.17.00029

Page 62 of 65

1		29
2 3 4	538	26. Hennessy D, Garner R, Flanagan WM, et al. Development of a population-based
5 6	539	microsimulation model of body mass index. Health Rep 2017;28:20-30.
7 8 9	540	27. Spielauer M. Dynamic microsimulation of health care demand, health care finance and
10 11	541	the economic impact of health behaviours: survey and review. 2007 International Journal
12 13	542	of Microsimulation 2007;1:35–53.
14 15 16	543	28. The National Academies of Sciences, Engineering, and Medicine. Assessing prevalence
16 17 18	544	and trends in obesity: Navigating the evidence. Washington DC: The National Academies
19 20	545	Press 2016.
21 22	546	29. Soyiri IN, Reidpath DD. An overview of health forecasting. Environ Health Prev Med
23 24 25	547	2013;18:1-9. https://doi.org/10.1007/s12199-012-0294-6
26 27	548	30. Pineda E, Sanchez-Romero LM, Brown M, et al. Forecasting future trends in obesity
28 29	549	across Europe: The value of improving surveillance. Obes Facts 2018;11:360–71.
30 31 32	550	https://doi.org/10.1159/000492115
33 34	551	31. Zucchelli E, Jones A, Rice N. The evaluation of health policies through dynamic
35 36	552	microsimulation methods. International Journal of Microsimulation 2012;5:2–20.
37 38 39	553	32. Hennessy DA, Flanagan WM, Tanuseputro P, et al. The Population Health Model
40 41	554	(POHEM): an overview of rationale, methods and applications. Popul Health Metrics
42 43	555	2015;13:24. https://doi.org/10.1186/s12963-015-0057-x
44 45	556	33. Manuel DG, Tuna M, Hennessy D, et al. Projections of preventable risks for
46 47 48	557	cardiovascular disease in Canada to 2021: a microsimulation modelling approach. CMAJ
49 50	558	Open 2014;2:E94–101. https://doi.org/10.9778/cmajo.2012-0015
51 52	559	34. Lin J, Thompson TJ, Cheng YJ, et al. Projection of the future diabetes burden in the
53 54 55	560	United States through 2060. Popul Health Metr 2018;16:9. https://doi.org/10.1186/s12963-
56 57	561	018-0166-4
58 59 60	562	35. Luhar S, Timæus IM, Jones R, et al. Forecasting the prevalence of overweight and obesity

1		3
2 3 4	563	in India to 2040. <i>PloS One</i> 2020;15:e0229438.
5 6	564	36. Finkelstein EA, Khavjou OA, Thompson H, et al. Obesity and severe obesity forecasts
7 8 9	565	through 2030. Am J Prev Med 2012;42:563–70.
10 11	566	37. Haby MM, Markwick A, Peeters A, et al. Future predictions of body mass index and
12 13	567	overweight prevalence in Australia, 2005–2025. Health Promot Int 2012;27:250–60.
14 15 16	568	38. Choi JS, Choi SE, Yeom AR, et al. A Report on the Korea Health Panel Survey of 2011.
17 18	569	Korea Institute for Health and Affairs. 2013.
19 20	570	
21 22	571	
23 24 25		
26 27		
28 29		
30 31		
32 33		
34 35		
36 37		
38 39		
40 41		
42 43		
44 45		
46		
47 48		
49 50		
51 52		
53 54		
55 56		
57 58		
59		
60		

1		31
2 3 4	572	Figure legends
5 6	573	Figure 1 Summary of data sources and methods used to generate and validate projections of
7 8 9	574	distribution of BMI categories in South Korea, 2012–2040
10 11	575	Figure 2 Population Health Model (POHEM) projections of median BMI in South Korea,
12 13	576	2012–2040
14 15 16	577	Figure 3A Projection of distribution of BMI, adults aged 19 years and older, South Korea,
10 17 18	578	2012–2040
19 20	579	Figure 3B Projection of distribution of BMI, men aged 19 years and older, South Korea,
21 22 23	580	2012–2040
23 24 25	581	Figure 3C Projection of distribution of BMI, women aged 19 years and older, South Korea,
26 27	582	2012–2040
28 29 30 31 32 33 34 35 36 37 38 30 41 42 43 44 50 51 52 53 54 55 56 57 8 9 60	583	2012-2040

STROBE Statement—checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Pag No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or	1-2
		the abstract	
		(b) Provide in the abstract an informative and balanced summary of what	2
		was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4-6
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	7
Setting	5	Describe the setting, locations, and relevant dates, including periods of	7-8
5		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and	8-9
•		methods of selection of participants. Describe methods of follow-up	
		Case-control study—Give the eligibility criteria, and the sources and	
		methods of case ascertainment and control selection. Give the rationale	
		for the choice of cases and controls	
		Cross-sectional study—Give the eligibility criteria, and the sources and	
		methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and	-
		number of exposed and unexposed	
		Case-control study—For matched studies, give matching criteria and the	
		number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	7-9
		and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods	7-9
measurement		of assessment (measurement). Describe comparability of assessment	
		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	9
Study size	10	Explain how the study size was arrived at	7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	7-8
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	7-9
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	-
		(c) Explain how missing data were addressed	-
		(d) Cohort study—If applicable, explain how loss to follow-up was	9
		addressed	
		Case-control study-If applicable, explain how matching of cases and	
		controls was addressed	
		Cross-sectional study-If applicable, describe analytical methods taking	
		account of sampling strategy	
		(<u>e</u>) Describe any sensitivity analyses	_

Continued on next page

10-

13

14

10-11

14

_

_

14-

15

14-15

_

_

16

18-

20

18-

20

19

21

Participants	13*	(a) Report numbers of individuals at each stage of study-eg numbers pote
i alticipanto	10	eligible, examined for eligibility, confirmed eligible, included in the study,
		completing follow-up, and analysed
		(b) Give reasons for non-participation at each stage
		(c) Consider use of a flow diagram
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, soc
data		information on exposures and potential confounders
		(b) Indicate number of participants with missing data for each variable of in
		(c) Cohort study—Summarise follow-up time (eg, average and total amour
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures o
		Case-control study-Report numbers in each exposure category, or summa
		measures of exposure
		Cross-sectional study-Report numbers of outcome events or summary me
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estim
		their precision (eg, 95% confidence interval). Make clear which confounde
		adjusted for and why they were included
		(b) Report category boundaries when continuous variables were categorize
		(c) If relevant, consider translating estimates of relative risk into absolute risk
		meaningful time period
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and
		sensitivity analyses
Discussion		L.
Key results	18	Summarise key results with reference to study objectives
Limitations	19	Discuss limitations of the study, taking into account sources of potential bia
		imprecision. Discuss both direction and magnitude of any potential bias
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limit
		multiplicity of analyses, results from similar studies, and other relevant evid
Generalisability	21	Discuss the generalisability (external validity) of the study results
Other informatio	n	
Funding	22	Give the source of funding and the role of the funders for the present study
		applicable, for the original study on which the present article is based
	anar	ately for cases and controls in case-control studies and, if applicable, for expo
*Give information s	separa	activity for cases and conditions in case-condition studies and, it applicable, for expl

52

53

54

55 56

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Projecting the prevalence of obesity in South Korea through 2040: a microsimulation modeling approach

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-037629.R3
Article Type:	Original research
Date Submitted by the Author:	03-Dec-2020
Complete List of Authors:	Jung, Yoon-Sun; Korea University, Department of Public Health, Graduate School, Korea University, Seoul, Korea Kim, Young-Eun ; National Health Insurance Service, Big Data Department, National Health Insurance Service, Wonju, Korea Go, Dun-Sol; Korea Institute for Health and Social Affairs, Department of Health Care Policy Research, Korea Institute for Health and Social Affairs, Sejong, Korea Yoon, Seok-Jun; Korea University, Department of Preventive Medicine, Korea University College of Medicine, Seoul, Korea
Primary Subject Heading :	Public health
Secondary Subject Heading:	Health policy
Keywords:	PUBLIC HEALTH, Health policy < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, PREVENTIVE MEDICINE

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

8	Ì

1 2	
3 4	1
5 6	2
7 8	3
9 10 11	4
12 13	5
14 15	6
16 17 18	7
19 20	8
21 22	9
23 24	10
25 26 27	11
28 29	12
30 31	13
32 33 34	14
35 36	15
37 38	16
39 40	17
41 42 43	18
44 45	19
46 47	20
48 49	21
50 51 52	22
53 54	23
55 56	24
57 58	25
59 60	

Word count: 4,421

1	Title: Projecting the prevalence of obesity in South Korea through 2040: a
2	microsimulation modeling approach
3	
4	Authors: Yoon-Sun Jung ^{a*} , Young-Eun Kim ^b , Dun-Sol Go ^c , Seok-Jun Yoon ^d
5	Affiliations:
6	^a Department of Public Health, Graduate School, Korea University, Seoul, Korea
7	^b Big Data Department, National Health Insurance Service, Wonju, Korea
8	^c Department of Health Care Policy Research, Korea Institute for Health and Social Affairs,
9	Sejong, Korea
10	^d Department of Preventive Medicine, Korea University College of Medicine, Seoul, Korea
11	Corresponding author:
12	Seok-Jun Yoon, M.D., Ph.D.
13	Department of Preventive Medicine, Korea University College of Medicine,
14	73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Korea
15	E-mail: yoonsj02@korea.ac.kr
16	
17	E-mail addresses:
18	sunnyaurora@nate.com (Yoon-Sun Jung)
19	kimyes4454@gmail.com (Young-Eun Kim)
20	kds237@gmail.com (Dun-Sol Go)
21	
22	Keywords: Microsimulation, body mass index, obesity, Population Health Model, South
23	Korea

1		2
2 3 4	26	ABSTRACT
5 6	27	
7 8 9	28	Objective To project the prevalence of obesity in 2040 among individuals 19 years and older
10 11	29	in South Korea.
12 13	30	Design, setting, and participants Using the 'Population Health Model-Body Mass Index'
14 15 16	31	(POHEM-BMI) microsimulation model, the prevalence of obesity in Korean adults 19 years
17 18	32	and older was projected until 2040. The model integrated individual survey data from the
19 20	33	Korea Health Panel Survey of 2011 and 2012, population statistics based on resident
21 22 23	34	registration, population projections, and complete life tables categorized by sex and age.
23 24 25	35	Birth rate, life expectancy, and international migration were based on a medium growth
26 27	36	scenario. The base population of Korean adults in 2012, devised through data aggregation,
28 29	37	was 39,842,730. The prediction equations were formulated using BMI as the dependent
30 31 32	38	variable; the individual's sex, age, smoking status, physical activity, and preceding year's
33 34	39	BMI were used as predictive factors.
35 36	40	Outcome measure BMI categorized by sex.
37 38 39	41	Results The median BMI for Korean adults in 2040 was expected to be 23.55 kg/m^2 (23.97
40 41	42	and 23.17 kg/m ² for men and women, respectively). According to the Korean BMI
42 43	43	classification, 70.05% of all adults were expected to be 'pre-obese' (i.e., have BMIs 23 to
44 45 46	44	24.9) by 2040 (81.23% of men and 59.07% of women) and 24.88% to be 'normal'.
40 47 48	45	Conclusions We explored the possibility of applying and expanding on the concept of
49 50	46	microsimulation in the field of healthcare by combining data sources available in Korea and
51 52	47	found that more than half of the adults in this study population will be pre-obese, and the
53 54 55	48	proportions of "obesity" and "normal" will decrease compared with those in 2012. The
56 57	49	results of our study will aid in devising healthy strategies and spreading public awareness for
58 59 60	50	preventing this condition.

1 2			3
2 3 4	51		
5 6	52		Strengths and limitations of this study
7 8 9	53	•	To the best of our knowledge, this is the first study to use a microsimulation model to
9 10 11	54		predict future obesity prevalence in Korea considering the change in population structure
12 13	55		(macro level) as well as individual health behavior components (micro level).
14 15	56	•	The results of our study will be beneficial in suggesting additional and wider ranging
16 17 18	57		goals for obesity prevention, by taking into consideration the influence of sex and age in
19 20	58		the formulation of the 'National Health Plan'.
21 22	59	•	Although a representative data source was used in this study, the prevalence of obesity
23 24 25	60		may be underestimated because it is based on a self-reported BMI value.
26 27	61	•	This study uses a micro-simulation model developed abroad, and hence, may not reflect
28 29 30 31 32	62		the domestic situations accurately.
	63	•	Another limitation is that we assumed the attributes of 19-year-old individuals to remain
33 34	64		similar each year.
35 36	65		
37 38 39	66		
40 41			
42 43			
44 45			
46 47			
48 49			
50 51			
52			
53 54			
55 56			
57			
58 59			
60			

BMJ Open

4

2	
3	
4	1
5	
б	1
7	
8	
9 10	
10	
12	
13	
14	
15	
16	
17	
18	
19 20	
20 21	
22	
23	
24	
25	
26	
27	
28	
29 30	
31	
32	
33	
34	
35	
36	
37 38	
39 40	
41	
42	
43	
44	
45	
46	
47 48	
40 49	
51	
52	
53	
50 51 52 53 54 55	
55	
56 57	
57 58	
58 59	
59 60	

67 BACKGROUND

The prevalence of overweight and obesity has increased markedly over the past 3 decades, and concerns about health risks associated with obesity have become almost universal.[1] The increasing rate of obesity is a growing public health concern not only in Western countries but also in South Korea.[2] From the 1990s through the beginning of the new millennium, the prevalence of adult and child obesity has increased rapidly and continues to rise steadily in parallel with rapid social and economic development.[3]

74 Obesity, a major public health problem and a factor in the development of many 75 chronic diseases, constitutes a strain on individuals and health systems worldwide. The 76 associated disorders of obesity include diabetes, hypertension, dyslipidemia, heart disease, 77 stroke, sleep apnea, early death, and cancer.[4-8] Moreover, obesity among older people 78 increases the risk of knee osteoarthritis[9] and reduces functional capacity and quality of 79 life.[10-13] The prevalence of these conditions rises in proportion to the increase in 80 obesity[14-17] and is associated with increased economic costs for both individuals and the 81 society at large.[18] A study using the National Health Insurance Service data in Korea found 82 that the socioeconomic cost of obesity in 2016 was approximately 9,665.32 million US 83 Dollars.[19]

84 Meanwhile, with respect to worldwide comparisons, whether cutoff points for 85 overweight and obesity should be lower for Asians than for another ethnic groups remains 86 debatable.[20] The World Health Organization has proposed BMIs of 18.5-22.9, 23-24.9, 25–29.9, and \geq 30 kg/m² as optimal, overweight, moderate, and severe obesity for Asians, 87 respectively.[21] The Korean Society of Obesity, which was established to improve obesity 88 89 management through research and education, revised its clinical practical guidelines for the 90 prevention and treatment of obesity in 2018. The new guidelines renamed the "overweight" category to "pre-obese", and divided obesity into 3 categories, to highlight the risk of obesity, 91

instead of promoting the term "overweight." The most recent guideline is based in part on data of 84,690,131 Korean adults extracted from the Korean National Health Insurance Service Health Checkup Database between 2006 and 2015. By including the entire population registered in the National Health Insurance Service Database, they calculated the first and second cutoff points corresponding to the increased risk of any of the 3 accompanying diseases (type 2 diabetes, hypertension, and dyslipidemia). The first (23 kg/m^2) and second (25 kg/m²) cutoff BMI levels suggest the necessity of obesity criteria that accurately reflect the risk of chronic disease among Koreans.[22,23] Although numerous investigators in other countries have attempted to predict the future prevalence of obesity, only one such study by Inkyung Baik was recently performed in South Korea.[2] More recent trends still need to be investigated through predictive studies, and the accurate prediction of obesity prevalence remains an important public health-related goal in the country. To efficiently establish and execute an effective healthcare policy, which would require a large budget, it is necessary to select future targets for policy interventions (such as high-risk groups) to predict healthcare needs and prevent budget waste. Past prediction models incorporated a country's entire population; as such, macroscopic inferences based on average projections for the future society were generalized. However, when establishing a healthcare policy, it is necessary to predict the future burden of disease and medical needs of the entire population based on a real-world understanding of individual-level factors that are influenced by policies or institutions. Individuals are independent entities with different characteristics and needs, and health-related projections can be modeled to reflect these individual characteristics, including health risk factors.[24] In this regard, we aimed to predict the prevalence of obesity in Korea by using microsimulation, which is optimal for considering individual properties. Microsimulation, a modeling technique, typically uses individual microunits, each

Page 7 of 31

BMJ Open

1			6
2 3 4	117	with its own set of properties, to simulate downstream events based on the probability of	
5 6 7	118	transition between predefined states and their changes over time. When used in medicine,	
7 8 9	119	microsimulation can be particularly powerful because it preserves the patterns of previous	
10 11	120	behaviors and conditions, and allows for a clearer representation and understanding of how	
12 13	121	various processes affect the total outcome of the population over time.[25] Given macro-	
14 15 16	122	effects such as changes in population structures in the forecasting model, microsimulation is	S
17 18	123	very useful as it can estimate both disease burdens and medical needs across the country.[24	4]
19 20	124	Microsimulation modeling is particularly useful for studying BMI trends because it can	
21 22 23	125	simultaneously explain population dynamics such as aging and mortality.[26] However,	
23 24 25	126	while microsimulation models have been steadily evolving across health- and economy-	
26 27	127	related fields in many European countries,[27] they are yet to be actively utilized in South	
28 29	128	Korea (especially for healthcare).	
30 31 32	129	Obesity prevalence and trend estimates provide important information for research,	,
33 34	130	policy, and intervention.[28] Because health forecasting predicts disease episodes and	
35 36	131	portends future events, it facilitates healthcare strategies by promoting the setting of goals to	0
37 38 39	132	reduce obesity, establish health promotion interventions, and optimize resource	
40 41	133	allocation.[29] Obesity trends may also be used to urge governments to implement	
42 43	134	preventative approaches for reducing obesity.[30] Based on the above findings, we perform	ied
44 45	135	this study to project the future trends in obesity prevalence in South Korea up to the year	
46 47 48	136	2040.	
49 50	137		
51 52 53 54 55	138	METHODS	
	139	Model	
55 56 57	140	We used the Population Health Model (POHEM)-BMI[26] to estimate the prevalen	ice
58 59 60	141	of obesity among adults 19 years and older in South Korea from 2012 through 2040. In brie	ef,

POHEM is a time-continuous, population-based, dynamic microsimulation model with individual underlying units of analysis used worldwide. Dynamic microsimulation, in the context of social science and population health, is a simulation of individuals (i.e., micro-level) and their behaviors, statuses, and actions (dynamics) over time.[31] These are modeled as desired using multiple sources of empirical data, including cross-sectional surveys, administrative databases, vital statistics, and census data.[32] Through dynamic simulation, POHEM creates a population and ages it, one person at a time, until death.[33] The model dynamically simulates an individual's disease state, risk factors, and health determinants to describe and plan health outcomes.[32] POHEM is accessible because it wants the general process to be constant across the country's population, with the exception of variables unique to each country, such as marriage and mortality. The POHEM models include cardiovascular disease, various cancers, osteoarthritis, physical activity, and neurological events. The model used in this study was the POHEM-BMI; the performance of each prediction step is shown in Figure 1. **Base population** To create the base population for the POHEM-BMI model, we used the 2011–2012 Korea Health Panel survey[34] and the resident registration-based population statistics.[35] The base population for POHEM-BMI (n=39,842,730), reflected the Korean population. Each Korean respondent 19 years of age and older (n=11,501) in 2012 was replicated using their survey-recorded weights to generate a simulated cohort of approximately 39,842,730 individuals. Korea Health Panel survey data are nationally representative, and incorporate health status, chronic diseases, health risk behaviors, and socio-demographic characteristics. Among them, we extracted sex, age, current smoking status, physical activity, and the previous and current years' BMI values; these variables were required for the predictive equation. We then used a multiple linear regression model to estimate the BMI value using

Page 9 of 31

1

BMJ Open

2		
3 4	167	the extracted independent variables as predictors. The POHEM-BMI model is auto-regressive
5 6	168	and includes previous BMI values as the main explanatory variable.[26] We matched the
7 8	169	composition of the variables considered as covariates in the POHEM-BMI model. We did not
9 10 11	170	match the operational definition of the variables because we applied the Korea Health Panel
12 13	171	Survey data (not the survey data obtained in Canada where the POHEM model was
14 15	172	developed). The definitions of the variables in this study are consistent with the definitions of
16 17 19	173	the indicators in the Korea Health Statistics.[36] A current smoker was an individual who
18 19 20	174	reported smoking 'every day' or 'sometimes'. Practicing physical activity was defined as
21 22	175	performing either intense physical activity for at least 10 continuous minutes a day, 20
23 24	176	minutes total per day, 3 days a week during the preceding week, or moderate physical activity
25 26 27	177	for at least 30 minutes a day, 5 days a week during the preceding week. Height and weight,
27 28 29	178	which are components of BMI, were based on self-reported data.
30 31	179	Simulation: Annual updates and risk transition
32 33	180	The study population was updated by aging each person by 1 year and changing the total
34 35 36	181	population size based on population statistics, population projections, and complete life tables
37 38	182	categorized by sex and age from the Korean Statistics. For population projections, we
39 40	183	assumed a medium growth scenario in terms of birth rate, life expectancy, and international
41 42	184	migration. Each person's BMI was updated annually by applying a predictive equation that
43 44	185	incorporates individual's own characteristics. The transition probability for each stochastic
45 46		
47 48	186	characteristic was calculated based on a generalized linear model.
49 50	187	We assumed that the current individual behavioral patterns persisted, and no new
51 52	188	factors arose to prevent obesity, like in the original POHEM-BMI. We also assumed that the
53 54 55	189	attributes of 19-year-old individuals, which were entered annually, remained similar each
55 56 57	190	year. Therefore, in this model, since each individual's smoking status and physical activity in
58 59 60	191	the initial population remained the same until 2040, the model predicted the BMI when the

adult smoking and physical activity rates in the initial year (2012) persisted until 2040.

193 Model validation and calibration

In order to establish the validity of the prediction model, we adjusted the model by comparing the 2013 to 2016 median BMIs projected from the model with the 2013 to 2016 Korea Health Panel Survey median BMI estimates. We compared the median BMI values for each sex and age group from 2013 to 2016, and accepted a difference between the median BMI values in the prediction model and in the Korea Health Panel Survey to less than 5% by setting the calibration cutoff point to 5%. Finally, we adjusted the demographics of the 2040 population so that the predictions were within the 5% margin of error. In this study, all the necessary data for model building and projection were obtained from publicly available data and do not include any identifiable personal information. Hence, no ethical approval was required in addition to the ethical and governance approvals granted by the Korea Institute for Health and Social Affairs (KIHASA), which conducts the Korea Health Panel Survey. All participants gave written informed consent before they completed the survey.

Projection

The model, validated through calibration, projected the BMI of each person from 2017 to 208 2040. Based on the demographic characteristics, the projections were then aggregated by year 209 for each of the predefined subgroups. The various trends observed in the Korean population 210 data were used to generate algorithms that were applied to future projections.

7 211 Model outputs

The BMI distributions were calculated overall and by sex. Individuals with a BMI ≥ 25 kg/m² were regarded as obese according to the Guidelines for the Management of Obesity in Korea, which is not the internationally accepted standard (Table 1). All analyses in this study were performed using STATA version 13 (StataCorp LLC, College Station, TX, USA).

Table 1 BMI classification of South Korea

		Body mass index
	Classification	(kg/m ²)
	Underweight	< 18.5
	Normal	18.5 - 22.9
	Pre-obese	23 - 24.9
	Obese class I	25 - 29.9
	Obese class II	30-34.9
	Obese class III	≥ 35
218		6
219	Patient and public involve	ement
220	No patient involved	
221		
222	RESULTS	
223	We compared the t	otal number of the individuals a
224	initial 2012 population to the	nose in the projected 2040 popul
225	39 842 730 adults who wer	e 19 years of age or older in 201

and their characteristics in the lation (Table 2). There were 39,842,730 adults who were 19 years of age or older in 2012 and 43,818,808 in 2040. The male: female ratio was nearly 1:1 in both 2012 and 2040. Rapid aging of the Korean population was clearly observed when comparing the 2 populations. The mean age of adults was expected to increase by 10.9 years (from 45.69 years in 2012 to 56.59 years in 2040 [from 44.57 to 55.54 years among men and 46.77 to 57.63 years among women]). In 2012, the proportion of young people (those in the 19–39 and 40–64-year age groups combined) accounted for approximately 85.54% of the adult population, while the proportion of

individuals aged 65 years and older was relatively low at approximately 14%. However, the age group structure in South Korea 28 years later (2040) is predicted to be quite different, as the proportion of individuals 19-64 years (i.e., the working age population) was only 60.95% of the adult population, while the proportion of the elderly population (≥ 65 years) was estimated to be almost 40% of the total adult population. As of 2012, men and women smoking rates were 45.05% and 2.24%, respectively, and physical activity rates were 15.41% and 20.84%, respectively. In this study, only the BMI was updated annually by the predictive ιmoking ι.... α. equation, so the adult smoking rate and physical activity rate in 2040 are the same as in the initial 2012 population.

		Po	pulation at be	useline (201	12)		Projected population (2040)					
	Men		Women		Total		Men		Women		Total	
	Number	%	Number	%	Number	%	Number	%	Number	%	Number	%
Number of	19,709,628		20,133,102		39,842,730		21,717,128		22,101,680		43,818,808	
people												
Age (mean±s.d.)	44.57=	±15.60	46.7	77±16.92	45.69	±16.31	55.:	54±18.60	57.6.	3±19.33	56.59	0±19.00
19-39 years	7,985,737	40.52	7,505,824	37.29%	15,491,561	38.88%	4,873,740	22.45%	4,588,867	20.76%	9,462,607	21.60%
		%										
40-64 years	9,360,489	47.49%	9,230,871	45.85%	18,591,360	46.66%	8,896,886	40.97%	8,349,634	37.78%	17,246,520	39.35%
65 years and	2,363,402	11.98%	3,396,407	16.87%	5,759,809	14.45%	7,946,502	36.59%	9,163,179	41.45%	17,109,681	39.05%
above												
Smoker	8,879,037	45.05%	450,946	2.24%	9,329,983	23.42%						
Physical activity	5,199,273	26.38%	3,103,036	15.41%	8,302,309	20.84%						
s.d. standa	ard deviation											
244												
2 1 1												

The model was well calibrated to establish the validity. The difference in median BMI between that estimated from the 2013 and 2016 Korea Health Panel survey and that predicted by the 2013 and 2016 model was within the 5% range. Additionally, when compared to the population structure for 2040 (the final year) as predicted by Statistics Korea, the total population, gender, and age-specific ratio in the prediction model were similar.

Figure 2 shows the median BMI of the adult population from 2012 when the initial population was generated to 2040, the final projected year. Each median BMI value from 2013 to 2016 was estimated from the Korea Health Panel survey, and the median BMI from 2017 to 2040 is the predicted value determined by the model. The median BMI for the entire adult population is predicted to increase very slightly from 23.23 kg/m² in 2018 to 23.53 kg/m² in 2036 and is expected to remain steady thereafter. The predicted median BMI trends are similar for men; the median BMI in adult men was projected to increase only slightly, from 23.74 kg/m² in 2018 to 23.95 kg/m² in 2036 and then almost plateau thereafter. However, women were expected to experience a relatively steep rise compared to that of men; the median BMI in adult women was projected to increase from 22.66 kg/m² in 2018 to 23.17 kg/m² in 2040. The model in this study, used to predict the BMI of the population, did not include any uncertainty parameters for the estimates.

The BMI distributions for men and women from 2012 to 2040 are shown in Figure 3. There was no significant difference between the median BMIs in 2012 and 2040, but the results according to the BMI classifications showed large changes. The proportions of 'preobese' individuals in both sexes are predicted to increase dramatically over time, while the proportions of individuals who are classified as 'normal' and 'obese' will gradually decrease. As of 2025, 52.35% of all male adults were expected to be pre-obese, with that proportion

BMJ Open

270	expected to be clo	ose to 81.23% by 2	2040. Moreove	er, 53.24% of a	ll women we	ere expected to)
271	be 'pre-obese' by	2035, with the pr	oportion rising	to almost 59.0)7% by 2040		
272							
273	Accordin	ng to the BMI class	sification by ag	ge group, in So	uth Korea, ii	n 2012, about	
274	20.36% of the po	pulation aged 19-3	39 were 'pre-ol	bese', but in 20)40, it increa	sed to 39.59%	2
75	almost double. T	he proportion of th	e 'normal' pop	ulation was alr	nost the sam	e in 2012 and	
6	2040, and the 'ob	bese class I' decre	eased by nearly	y half. Howeve	er, in the pop	ulation aged 4	0
7	to 64 and over 65	, the proportion of	f 'pre-obese' in	creased almos	t three times	in 2040	
8	compared to that	in 2012, and the p	roportion of 'n	ormal' decreas	sed to less th	an 20% (Table	e
79	3).	0					
0	,						
31	Table 3 Comparis	on of the number of	people according	g to the BMI clas	sification by a	ge group, South	
82	_	2 and 2040			-		
		Popula	tion at baseline (2	2012)	Proje	ected population	(2040)
		19-39 years	40-64 years	65- years	19-39 years	40-64 years	65- years
N	lumber of people	15,491,561	18,591,360	5,759,809	9,462,607	17,246,520	17,109,681
BMI (median)		22.37	23.52	23.02	23.07	23.64	17,109,001
	Distribution of peopl	e by BMI classificatio	'n				23.58
U		c by Divit classification	/11				
N	Inderweight %	11.76	5.10	7.60	2.66	0.00	
	Inderweight % Iormal %	2		7.60 42.12	2.66	0.00 19.89	23.58
P	C	11.76	5.10				23.58
	Iormal %	11.76 45.66	5.10 37.81	42.12	45.68	19.89	23.58 0.00 18.40 80.31
0	lormal % re-obese %	11.76 45.66 20.36	5.10 37.81 26.51	42.12 24.10	45.68 39.59	19.89 76.60	23.58 0.00 18.40
0	lormal % re-obese % Deese class I %	11.76 45.66 20.36 20.67	5.10 37.81 26.51 28.40	42.12 24.10 24.85	45.68 39.59 11.70	19.89 76.60 3.51	23.: 0.0 18.4 80.2 1.2

DISCUSSION

The purpose of this study was to predict the prevalence of obesity in South Korea in the year 2040 using a microsimulation model. In this study, we strove to predict future adult obesity rates in South Korea using the POHEM-BMI, which was developed by Statistics Canada. Summarizing the predicted results, the median BMI of South Korea's adult population aged 19 years and older was expected to be 23.55 in 2040, while the percentage of 'pre-obese' individuals was expected to increase over time. While it is encouraging that the proportion of 'obese' people (i.e., those with BMIs $\geq 25 \text{ kg/m}^2$) in 2040 is predicted to be much lower than that in 2012, it is discouraging that the proportion of 'normal' individuals is also markedly lower. Most notably, the pre-obesity rate is predicted to rise dramatically. In addition to the sex and age variables, our model includes only smoking and physical activity as health-related behaviors. It was assumed that the status of these health risk factors remain consistent from the initial population period to the final projected year of 2040; hence, our results showed that maintaining smoking and physical activity rates in 2012 among adults will lead to a sharp increase in the 'pre-obese' population by 2040. To the best of our knowledge, the only other study that predicted future obesity rates among South Korean adults was the investigation by Baik.^[2] That study explored factors

affecting adult as well as abdominal obesity, and constructed forecasting models to predict obesity prevalence rates in 2020 and 2030 using the Korea National Health and Nutritional Examination Survey (KNHANES). The prevalence rates of obesity among men and women in that study were predicted to be 47% and 32%, respectively, in 2020 and 62% and 37%, respectively, in 2030; these data were inconsistent with our results. The differences in prediction results appeared to be caused by the different secondary sources and prediction models in the two studies. First, in Baik's study, a prediction model was constructed by applying a linear regression model and an autoregressive integrated moving average model

Page 17 of 31

BMJ Open

1		16
2 3 4	308	using the KNHANES data. The dependent variable in the prediction model was BMI, and the
5 6	309	independent variables included the survey year, age, marital status, job status, income status,
7 8 9	310	smoking, alcohol consumption, sleep duration, psychological factors, dietary intake, and
10 11	311	fertility rate. In contrast, in this study, the Korea Health Panel data was used as the data
12 13	312	source, and BMI was predicted by performing microsimulation with sex, age, smoking,
14 15 16	313	physical activity, and previous years' BMIs as independent variables. Therefore, the method
17 18	314	of measurement of the dependent variable, BMI differs between the studies; unlike the
19 20	315	KNHANES, which contains body-measured height and weight information, the Korea Health
21 22 23	316	Panel (although this is a representative data source) generates data based on self-reported by
23 24 25	317	respondents, which may underestimate obesity. Inevitably, the obesity rate in the initial
26 27	318	population according to the KNHANES tended to be higher; as such, a higher initial
28 29	319	prevalence rate would lead to a higher projection.[37]
30 31 32	320	We also tried to compare the results from this study with the predicted estimate by
33 34	321	country, but few studies have empirically predicted the prevalence of obesity in the future
35 36	322	using simulation models. One study compiled nationally-representative data from various
37 38 39	323	sources and predicted the future prevalence of overweight and obesity in Indian adults aged
40 41	324	20-69 years will reach 30.5% and 9.5% among men, 27.4% and 13.9% among women,
42 43	325	respectively, by 2040.[38] According to a study that estimated the prevalence of obesity in
44 45 46	326	the future through regression modeling, 42% of Americans were expected to be obese by
40 47 48	327	2030.[39] Similarly, a study that predicted the prevalence of obesity in Australian adults by
49 50	328	2025 using a multiple linear regression model predicted that 83% of male adults over the age
51 52	329	of 20 and 75% of female adults would be overweight or obese.[40] In all three countries,
53 54 55	330	India, the United States, and Australia, overweight and obesity were defined according to the
56 57	331	classifications defined by the WHO, and much higher values were found than those in Korea.
58 59 60	332	We also compared our results to those predicted in Canada using the same model, and 59% of

2	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	
4	
5	
6	
7	
, Q	
0	
9	
10	
11	
12	
13	
14	
15	
16 17	
17	
18	
19	
20	
21	
22	
23	
23	
24	
25	
20	
 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 	
28	
29	
30	
31	
32	
33	
34	
35	
36	
36 37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50 57	
58	
59	
60	

1

the adult Canadian population was predicted to be 'overweight or obese' by 2030.

334 This study defined obesity by applying the BMI classification system according to 335 2018 Korean Society for the Study of Obesity guideline for the management of obesity in 336 Korea. It would be appropriate to use international standards for comparison; however, it is 337 necessary to reflect the situation of individual countries in the management of obesity for the 338 purpose of preventing and managing chronic diseases. Therefore, rather than emphasizing the 339 BMI classification criteria, more research is needed to determine the BMI values that can 340 significantly predict the occurrence of chronic diseases. In other words, it is necessary to 341 continuously accumulate sufficient epidemiologic evidence for the relationship between the 342 BMI and the actual risk of disease and death for Koreans, and based on such evidence, efforts 343 to establish appropriate diagnostic and medical standards for Koreans are needed. In 344 particular, the relationship is likely to vary by age and sex; hence, it should be considered too. 345 Here, the obesity standard has been applied collectively regardless of sex and age. However, 346 in order to deviate from a uniform approach to obesity, gender- and age-based approaches are 347 needed, considering the changes in hormones and body composition. 348 Because health management policies including obesity management require a large

349 budget, it is most important to establish cost-effective policies. The results from this study made it possible to determine the obese high-risk group by sex and age group, and to estimate 350 351 medical needs. As it is necessary to apply obesity standards differently according to sex and 352 age group, it is difficult to set the 'National Health Plan' [41] goals. This plan needs to 353 suggest additional, wider ranging goals considering the characteristics of each sex and age 354 group, rather than presenting goals for obesity prevalence among adult men and women. In 355 this case, the goal should be presented at an achievable level in consideration of future prediction patterns. Finally, systematic public health interventions, which are tailored to 356 357 individual characteristics need to be established.

Page 19 of 31

BMJ Open

Findings from this study should be interpreted with consideration to several limitations. First, since a microsimulation model for predicting obesity prevalence has not been developed in South Korea, we adapted the model developed by Statistics Canada, and this may not fit our domestic situation. If the BMI predictors are suitable for our domestic situation, that is, if variables that are important for predicting BMI of Koreans are constructed through empirical analysis or literature review, the composition of the covariates may be different from that of the existing POHEM-BMI model. However, in this study, since we explored the possibility of a domestic application of the model and carefully adapted the existing model, the process of constructing a prediction equation was omitted. In the future, research to develop a new model of microsimulation in the field of healthcare for domestic conditions will be very valuable. In this process, it is necessary to consider practical suitability and efficiency in selecting basic data, module-specific behavioral equations, and variables for use in the model. Second, we had limited data sources. The prevalence of obesity calculated in this study is different from that of the Korea Health Statistics using the KNHANES, and as of 2011, the prevalence of adult obesity in the Korea Health Statistics was 8.2% higher than that of the Korea Health Panel Survey. [42] Although the method of measuring BMI in KNHANES is more accurate, in the POHEM-BMI model used in this study, the BMI of the previous year was regarded as the main explanatory variable, and therefore, the Korea Health panel data that followed-up the same participants once a year was inevitably used. In addition, the original POHEM-BMI model includes the process of converting self-reported BMI into a measured BMI, but we omitted this due to limitations of the data source. Third, we assumed that the attributes of 19-year-old individuals entered each year remain at a similar level each year. This means that the individual attributes of 19-year-old adults are the same for 29 years from 2012 to 2040; thus, it can be considered somewhat less realistic. In future studies, it is expected that more meaningful and realistic results will be derived if the model is constructed

2		
3 4	383	by reflecting the trend of changes in the attributes of the 19-year-old population and updating
5 6	384	it according to the year.
7 8 9	385	Nevertheless, our study is the first to examine the possibility of using
9 10 11	386	microsimulation to predict future BMI medians in South Korea. Additionally, the BMI of the
12 13	387	future adult population was predicted after considering the change in population structure at
14 15	388	the macro level as well as individual health behavior components at the micro level.
16 17 18	389	
10 19 20	390	CONCLUSION
21 22	391	The key finding of this study is that by 2040, 70.05% of Korean adults are predicted
23 24 25	392	to be pre-obese. Utilizing data sources available in Korea, the possibility of applying and
26 27	393	expanding on the concept of microsimulation was explored. In future studies, a model
28 29	394	suitable for South Korea needs to be developed, and the effectiveness of specific health
30 31 32	395	policies ought to be assessed by applying various relevant scenarios to the basic forecasting
33 34	396	model.
35 36	397	model.
37 38 39	398	Abbreviations
40 41	399	BMI: body mass index; KNHANES: Korea National Health and Nutritional
42 43	400	Examination Survey, POHEM: Population Health Model; s.d. standard deviation
44 45	401	Authors' contributions
46 47 48	402	YS (the first author) designed the study, analyzed, and interpreted the data, and wrote
49 50	403	the paper. YE participated in the statistical analysis. DS aided in the interpretation of the data
51 52	404	and preparation of the manuscript. SJ (the corresponding author) directed this study. All
53 54 55	405	authors read and approved the final version of the manuscript.
56 57	406	Funding
58 59 60	407	This work was supported by the National Research Foundation of Korea (NRF) grant

BMJ Open

\mathbf{a}	\mathbf{n}	
	v	

1		20
2 3 4	408	funded by the Korea government (Ministry of Science and ICT) (No. 2017R1A2B4005876).
5 6 7	409	The funding agency had no role in the study design, analysis and interpretation of the data, or
7 8 9	410	the preparation of the manuscript.
10 11	411	Competing Interests
12 13 14	412	The authors declare that they have no competing interests.
14 15 16	413	Ethics approval
17 18	414	This study used publicly available data of Korea Health Panel Survey 2011-2012
19 20 21	415	from the Korea Institute for Health and Social Affairs and the National Health Insurance,
21 22 23	416	population statistics based on resident registration, population projections, complete life
24 25	417	tables and future mortality rates from Statistics Korea. The dataset does not contain any
26 27	418	identifiable personal information. Ethical approval was given by the Institutional Review
28 29 30	419	Board of Korea University, Seoul, Korea (IRB No. KUIRB-2020-0018-01).
31 32	420	Data sharing statement
33 34	421	The Korea Health Panel Survey data used in this article is available in
35 36 37	422	https://www.khp.re.kr:444/eng/data/data.do. Detailed information on the survey design and
37 38 39	423	data characteristics are provided at https://www.khp.re.kr:444/eng/survey/sampling.do.
40 41	424	Population statistics, population projections, and complete life tables are available from
42 43	425	http://kosis.kr/eng/.
44 45 46	426	
47 48	427	
49 50		
50 51		
52		
53		
54 55		
56		
57		
58 59		
60		

1		21
2 3 4	428	REFERENCES
5 6	429	
7 8 9	430	1. Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of
9 10 11	431	overweight and obesity in children and adults during 1980-2013: a systematic analysis for
12 13	432	the Global Burden of Disease Study 2013. Lancet 2014;384:766-81.
14 15 16	433	https://doi.org/10.1016/S0140-6736(14)60460-8
16 17 18	434	2. Baik I. Forecasting obesity prevalence in Korean adults for the years 2020 and 2030 by the
19 20	435	analysis of contributing factors. Nutr Res Pract 2018;12:25–7.
21 22	436	https://dx.doi.org/10.4162%2Fnrp.2018.12.3.251
23 24 25	437	3. Kim D, Ahn C, Nam SY. Prevalence of obesity in Korea. Obesity Rev 2005;6:117–21.
26 27	438	https://doi.org/10.1111/j.1467-789X.2005.00173.x
28 29	439	4. Okosun IS, Chandra KMD, Choi S, et al. Hypertension and type 2 diabetes comorbidity in
30 31 32	440	adults in the United States: Risk of overall and regional adiposity. Obes Res 2001;9:1–9.
33 34	441	https://doi.org/10.1038/oby.2001.1
35 36	442	5. Krauss RM, Winston M, Fletcher BJ, et al. Obesity: impact on cardiovascular disease.
37 38 39	443	<i>Circulation</i> 1998;98:1472–6.
39 40 41	444	6. Chin K, Ohi M. Obesity and obstructive sleep apnea syndrome. Intern Med 1999;38:200–
42 43	445	2. https://doi.org/10.2169/internalmedicine.38.200
44 45	446	7. Wallström P, Bjartell A, Gullberg B, et al. A prospective Swedish study on body size, body
46 47 48	447	composition, diabetes, and prostate cancer risk. Brit J Cancer 2009;100:1799-805.
49 50	448	https://doi.org/10.1038/sj.bjc.6605077
51 52	449	8. Guh DP, Zhang W, Bansback N, et al. The incidence of comorbidities related to obesity
53 54 55	450	and overweight: a systematic review and meta-analysis. BMC Public Health 2009;9:88.
56 57	451	https://doi.org/10.1186/1471-2458-9-88
58 59 60	452	9. Coggon D, Reading I, Croft P, et al. Knee osteoarthritis and obesity. Int J Obes Relat

BMJ Open

1		22
2 3 4	453	Metab Disord 2001;25:622-7. https://doi.org/10.1038/sj.ijo.0801585
5 6	454	10. Stenholm S, Rantanen T, Alanen E, et al. Obesity history as a predictor of walking
7 8 9	455	limitation at old age. Obesity 2007;15:929-38. https://doi.org/10.1038/oby.2007.583
9 10 11	456	11. Alley DE, Chang VW. The changing relationship of obesity and disability, 1988–2004.
12 13	457	JAMA 2007;298:2020-7. https://doi.org/10.1001/jama.298.17.2020
14 15 16	458	12. Larsson U, Karlsson J, Sullivan M. Impact of overweight and obesity on health-related
10 17 18	459	quality of life-a Swedish population study. Int J Obes Relat Metab Disord 2002;26:417-24.
19 20	460	https://doi.org/10.1038/sj.ijo.0801919
21 22 22	461	13. Zaninotto P, Pierce M, Breeze E, et al. BMI and waist circumference as predictors of
23 24 25	462	well-being in older adults: findings from the English Longitudinal Study of Ageing. Obesity
26 27	463	2010;18:1981-7. https://doi.org/10.1038/oby.2009.497
28 29	464	14. Emerging Risk Factors Collaboration, Wormser D, Kaptoge S, et al. Separate and
30 31 32	465	combined associations of body-mass index and abdominal adiposity with cardiovascular
33 34	466	disease: Collaborative analysis of 58 prospective studies. <i>Lancet</i> 2011;377:1085–95.
35 36	467	https://doi.org/10.1016/S0140-6736(11)60105-0
37 38 39	468	15. The Global Burden of Metabolic Risk Factors for Chronic Diseases Collaboration (BMI
40 41	469	Mediated Effects), Lu Y, Hajifathalian K, et al. Metabolic mediators of the effects of body-
42 43	470	mass index, overweight, and obesity on coronary heart disease and stroke: A pooled
44 45 46	471	analysis of 97 prospective cohorts with 1.8 million participants. Lancet 2014;383:970-83.
40 47 48	472	https://doi.org/10.1016/S0140-6736(13)61836-X
49 50	473	16. Renehan AG, Tyson M, Egger M, et al. Body-mass index and incidence of cancer: A
51 52	474	systematic review and meta-analysis of prospective observational studies. Lancet
53 54 55	475	2008;371:569-78. https://doi.org/10.1016/S0140-6736(08)60269-X
56 57	476	17. Bhimjiyani A, Knuchel-Takano A, Hunt D, et al. Tipping the scales: Why preventing
58 59	477	obesity makes economic sense. Technical Report 2016.
60		

BMJ Open

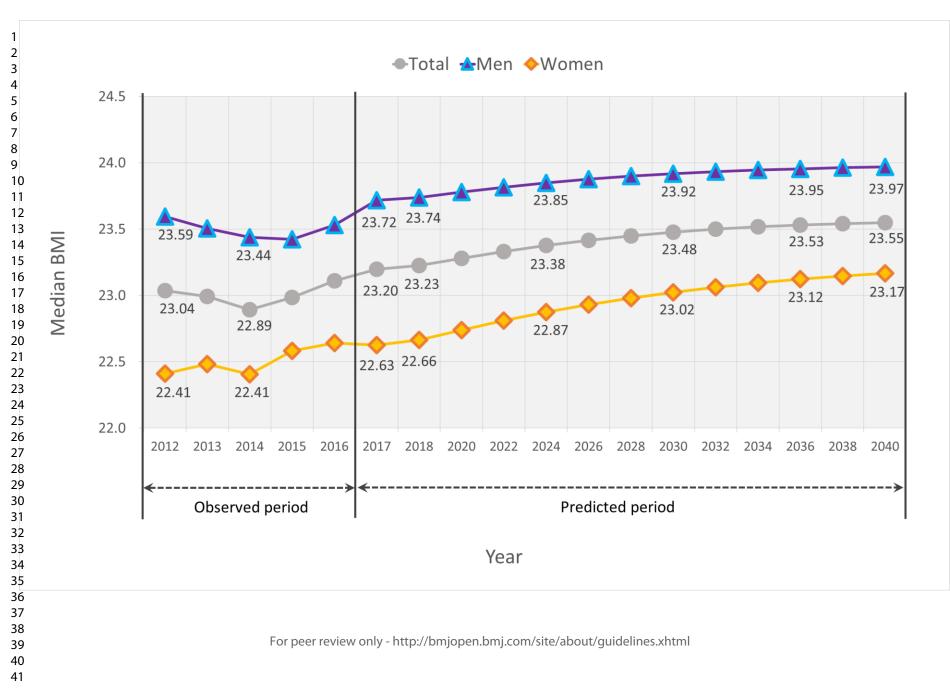
1		23
2 3 4	478	https://www.cancerresearchuk.org/sites/default/files/tipping_the_scales
5 6	479	<u>_cruk_full_report11.pdf</u> (accessed 26 Jan 2020).
7 8 9	480	18. Wang YC, McPherson K, Marsh T, et al. Health and economic burden of the projected
10 11	481	obesity trends in the USA and the UK. Lancet 2011;378:815-25.
12 13	482	https://doi.org/10.1016/S0140-6736(11)60814-3
14 15 16	483	19. Lee M. Half of the socioeconomic costs of obesity are 'medical costs'. Korea Biomedical
10 17 18	484	Review (2018, December 10).
19 20	485	http://www.docdocdoc.co.kr/news/articleView.html?idxno=1063317/ (accessed 29 Jan
21 22	486	2020)
23 24 25	487	20. Low S, Chin MC, Ma S, et al. Rationale for redefining obesity in Asians. Ann Acad Med
26 27	488	Singapore 2009;38:66–9.
28 29	489	21. The World Health Organization Western Pacific Region, International Association for the
30 31 32	490	Study of Obesity. The Asia-Pacific Perspective: Redefining obesity and its treatment.
33 34	491	Sydney, Australia: Health Communications Australia Pty Limited; 2000.
35 36	492	22. Seo MH, Kim YH, Han K, et al. Prevalence of obesity and incidence of obesity-related
37 38 39	493	comorbidities in Koreans based on National Health Insurance Service Health Checkup Data
39 40 41	494	2006-2015 (J Obes Metab Syndr 2018;27:46–52). J Obes Metab Syndr 2018;27:198–9.
42 43	495	https://doi.org/10.7570/jomes.2018.27.3.198
44 45	496	23. Seo MH, Lee WY, Kim SS, et al. 2018 Korean Society for the Study of Obesity guideline
46 47 48	497	for the management of obesity in Korea. J Obes Metab Syndr 2019;28:40-5.
49 50	498	https://doi.org/10.7570/jomes.2019.28.1.40
51 52	499	24. Kim D. Estimation of disease and disease burden by health behavior. Sejong City: Korea
53 54 55	500	Institute for Health and Social Affairs 2018.
55 56 57	501	25. Çağlayan Ç, Terawaki H, Chen Q, et al. Microsimulation Modeling in Oncology. JCO
58 59 60	502	Clin Cancer Inform 2018;2:1-11. https://doi.org/10.1200/CCI.17.00029

Page 25 of 31

1

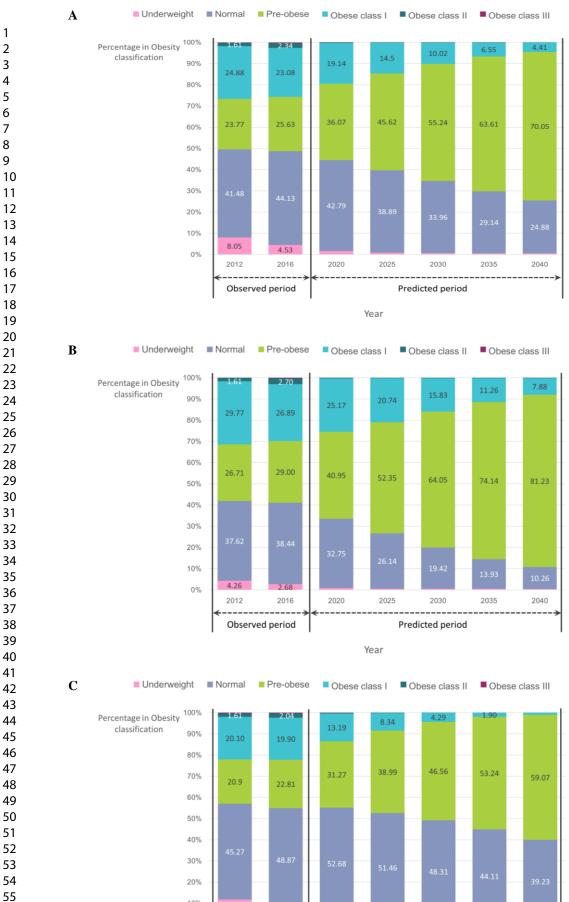
BMJ Open

2 3 4	503	26. Hennessy D, Garner R, Flanagan WM, et al. Development of a population-based
5 6	504	microsimulation model of body mass index. Health Rep 2017;28:20-30.
7 8	505	27. Spielauer M. Dynamic microsimulation of health care demand, health care finance and
9 10 11	506	the economic impact of health behaviours: survey and review. 2007 International Journal
12 13	507	of Microsimulation 2007;1:35–53.
14 15	508	28. The National Academies of Sciences, Engineering, and Medicine. Assessing prevalence
16 17 18	509	and trends in obesity: Navigating the evidence. Washington DC: The National Academies
19 20	510	Press 2016.
21 22 23	511	29. Soyiri IN, Reidpath DD. An overview of health forecasting. Environ Health Prev Med
23 24 25	512	2013;18:1-9. https://doi.org/10.1007/s12199-012-0294-6
26 27	513	30. Pineda E, Sanchez-Romero LM, Brown M, et al. Forecasting future trends in obesity
28 29	514	across Europe: The value of improving surveillance. Obes Facts 2018;11:360-71.
30 31 32	515	https://doi.org/10.1159/000492115
33 34	516	31. Zucchelli E, Jones A, Rice N. The evaluation of health policies through dynamic
35 36	517	microsimulation methods. International Journal of Microsimulation 2012;5:2–20.
37 38 39	518	32. Hennessy DA, Flanagan WM, Tanuseputro P, et al. The Population Health Model
40 41	519	(POHEM): an overview of rationale, methods and applications. Popul Health Metrics
42 43	520	2015;13:24. https://doi.org/10.1186/s12963-015-0057-x
44 45 46	521	33. Manuel DG, Tuna M, Hennessy D, et al. Projections of preventable risks for
40 47 48	522	cardiovascular disease in Canada to 2021: a microsimulation modelling approach. CMAJ
49 50	523	Open 2014;2:E94–101. https://doi.org/10.9778/cmajo.2012-0015
51 52 53	524	34. Korea Health Panel Study. https://www.khp.re.kr:444/eng/main.do (accessed 30 Nov
53 54 55	525	2020).
56 57	526	35. KOrean Statistical Information Service. https://kosis.kr/eng/ (accessed 30 Nov 2020).
58 59 60	527	36. Korea National Health and Nutrition Examination Survey.


2 3 4	528	https://knhanes.cdc.go.kr/knhanes/eng/index.do (accessed 30 Nov 2020).
5 6	529	37. Lin J, Thompson TJ, Cheng YJ, et al. Projection of the future diabetes burden in the
7 8 9	530	United States through 2060. Popul Health Metr 2018;16:9. https://doi.org/10.1186/s12963-
10 11	531	018-0166-4
12 13	532	38. Luhar S, Timæus IM, Jones R, et al. Forecasting the prevalence of overweight and obesity
14 15 16	533	in India to 2040. <i>PloS One</i> 2020;15:e0229438.
17 18	534	39. Finkelstein EA, Khavjou OA, Thompson H, et al. Obesity and severe obesity forecasts
19 20	535	through 2030. Am J Prev Med 2012;42:563–70.
21 22 23	536	40. Haby MM, Markwick A, Peeters A, et al. Future predictions of body mass index and
24 25	537	overweight prevalence in Australia, 2005–2025. Health Promot Int 2012;27:250–60.
26 27	538	41. Ministry of Health and Welfare. National Health Plan 2020.
28 29 30	539	https://www.mindbank.info/item/4070 (accessed 26 Nov 2020).
31 32	540	42. Choi JS, Choi SE, Yeom AR, et al. A Report on the Korea Health Panel Survey of 2011.
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 	541	Korea Institute for Health and Affairs. 2013.
58 59 60		

1

of the data sources and methods used to generate and validate the
s of the distribution of BMI categories in South Korea, 2012–2040
on Health Model (POHEM) projections of median BMI in South Korea,
0
ion of the distribution of BMI, adults aged 19 years and older, South
12–2040
ion of the distribution of BMI, men aged 19 years and older, South Korea,
0
ion of the distribution of BMI, women aged 19 years and older, South
12–2040
12-2040


Figure 1 Summary of the data sources and methods used **BMg@per**ate and validate the projections of the distributiofa@f^{28 of 31} BMI categories in South Korea, 2012-2040

Step1: Generate an initial Korean population		0) using Korea Health	n Panel Survey (<i>n</i> =11,501). I	n population aged 19 years or BMI, pre-BMI, smoking rate, th Panel Survey.	
			V		
Step2:	Each year to 2040, update	synthetic cohort for a	demographic changes and E	3MI	
Annual update	Age	Births and deaths	Immigration and emigration	BMI, pre-BMI, Smoking , Physical Activity	
Data sources	Not applicable	registration, p and con	istics based on resident oopulation projections, nplete life tables e from Statistics Korea	Korea Health Panel Survey	
Update method	Each person aged 1 yr	aged 19 years are ac applied to match	n projections, new entrants Ided and the mortality rate is the population structure the future	The BMI values of each individual are updated annually by the BMI prediction equation	
			V		
Step3: Validate and Calibrate model	Compare predicted estimates to survey estimates from 2013 to 2016 and calibrate the model to approximate survey estimates				
			\downarrow		
Step4: Projection	Project baseline BMI from 2 For peer review only - h		site/about/guidelines.xhtml		

PErigerés2 Population Health Model (POHEM) projections BMJ median BMI in South Korea, 2012-2040

Figure 3 Projection of the distribution of BMI, (A) Adults, (B)BMdrOpper(C) Women, aged 19 years and older, South KoreRa3/e13020/H91

For peer review and the state of the state o

STROBE Statement—checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Pag No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1-2
		(b) Provide in the abstract an informative and balanced summary of what	2
		was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4-6
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	7
Setting	5	Describe the setting, locations, and relevant dates, including periods of	7-8
-		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and	8-9
		methods of selection of participants. Describe methods of follow-up	
		Case-control study—Give the eligibility criteria, and the sources and	
		methods of case ascertainment and control selection. Give the rationale	
		for the choice of cases and controls	
		Cross-sectional study—Give the eligibility criteria, and the sources and	
		methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and	-
		number of exposed and unexposed	
		Case-control study—For matched studies, give matching criteria and the	
		number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	7-9
		and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods	7-9
measurement		of assessment (measurement). Describe comparability of assessment	
		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	9
Study size	10	Explain how the study size was arrived at	7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	7-8
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for	7-9
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	-
		(c) Explain how missing data were addressed	-
		(d) Cohort study—If applicable, explain how loss to follow-up was	9
		addressed	
		Case-control study—If applicable, explain how matching of cases and	
		controls was addressed	
		<i>Cross-sectional study</i> —If applicable, describe analytical methods taking	
			1
		account of sampling strategy	

Continued on next page

Participants	13*	(a) Report numbers of individuals at each stage of study-eg numbers potentially	10
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	-
		(c) Consider use of a flow diagram	-
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	10-
data		information on exposures and potential confounders	13
		(b) Indicate number of participants with missing data for each variable of interest	14
		(c) <i>Cohort study</i> —Summarise follow-up time (eg, average and total amount)	10-
			11
Outcome data	15*	Cohort study-Report numbers of outcome events or summary measures over time	14
		Case-control study—Report numbers in each exposure category, or summary	-
		measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	-
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	13
		their precision (eg, 95% confidence interval). Make clear which confounders were	14
		adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	13-
			14
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	-
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	-
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	15
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	18
		imprecision. Discuss both direction and magnitude of any potential bias	19
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	15
		multiplicity of analyses, results from similar studies, and other relevant evidence	19
Generalisability	21	Discuss the generalisability (external validity) of the study results	19
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	19
		applicable, for the original study on which the present article is based	20

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.