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Fig. S1. Overview of the results of MinION sequencing

(A) Analysis workflow for detecting splicing isoforms from MinION reads. Processes in the blue box
were performed with long-read sequencing data, and processes in the yellow box were performed
with short-read sequencing data. MinlON reads were mapped to the reference genome using
Minimap2, then filtered and corrected. Junctions in reads were compared with the RefSeq and short-
read data. Merged isoform patterns were converted to a GTF file and used to calculate of the TPM of
short-read RNA sequencing data. (B) Raw read length distribution of MinION sequencing in II-18.
(C) The proportion of MinlON reads covered the full-length of RefSeq transcripts. (D) A comparison
of gene expression levels for RefSeq genes in MinlON (RPM) and Illumina (TPM) in RERF-LC-Ad2.
Both values + 1 were log2-transformed. The RPM of MinlON reads were calculated from reads
assigned to a single gene. (E) The proportion of repetitive elements detected around the novel splice
sites in the isoforms.
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Fig. S2. Raw read length distribution of MinION sequencing in NSCLC cell lines
Raw read length distribution of MinION sequencing in each cell line.
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Fig. S3. Comparison of the gene expression levels for RefSeq genes in MinION and Illumina
Comparison of gene expression levels for RefSeq genes in MinlON (RPM) and [llumina (TPM). Both
values + 1 were log2-transformed. RPM of MinlON reads were calculated from reads assigned to a
single gene.
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Fig. S4. Full-length structures of fusion-genes in cell lines

(A) The full-length structure of EML4-ALK in H2228. (B) The full-length structure of ERGIC2-
CHRNAG6 in H1437. Some MinlON reads showed an unannotated exon and an alternative last exon in
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Fig. S7. Distribution of the number of exons in genes with isoforms in cell lines
Violin plots of the number of exons for each cell line. The plots are represented in a similar manner as
described for Fig. S6.
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Fig. S9. Summary of the results of comparison for genes with isoforms in cell lines

(A) Heatmap showing the p-values for the distributions of lengths, exons, and expression levels of
genes with isoforms for each cell line shown in Supplementary Figs. 5-8. P-values were calculated
using Dunn—Bonferroni post-hoc tests. (B-D) The detection probability for each isoform during the
subsampling of MinION reads in VMRC-LCD. We divided the isoforms into three classes, High,
Middle, and Low for each of the three categories as follows; (B) TPM: calculated from short-read
RNA sequencing data; (C) isoform-reads ratio: [the number of MinION reads covering the isoform
pattern] / [the total number of MinION reads assigned to the gene]; (D) isoform-reads: the number of
MinION reads covering the isoform pattern. The separation was made so that the numbers of the
entries for each category should be approximately the same.



Fig. S10. Gene ontology analysis for genes with isoforms in cell lines
The results of gene ontology enrichment analysis were visualized using a REVIGO treemap. The
panel sizes in the treemap are inversely proportional to the p-values.
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Fig. S11. The effect of UPF1 and SF3B1 knockdown in A549

(A) A simplified model of NMD complexes. UPF1 recognized transcripts containing PTC and
recruited several NMD factors. (B) A simplified model of the U2 snRNA complex. U2 snRNA
complex containing SF3B1 was recruited at the 3’ splice site. (C) The full-length structure of splicing
isoforms of SURF2 and primer sets used for detecting RefSeq- or isoform-specific regions in exon 2
(blue arrows) by RT-PCR and Bioanalyzer. Primers for common regions (green arrows) were used for
normalization. (D) The results of the DNA electrophoresis of UPFI-depleted A549 using the
Bioanalyzer. Arrows indicate RefSeq- or isoform-specific PCR products of SURF?2. (E) The full-
length structure of the splicing isoforms of PSMD?7 and primer sets for detecting RefSeq- or isoform-
specific regions in exon 3 (blue arrows) and exon 6 (purple arrows) by RT-PCR and the Bioanalyzer.
Primers for common regions were used for normalization. (F) The results of DNA electrophoresis in
SF3B1-depleted A549 using the Bioanalyzer. Arrows indicate RefSeq- or isoform-specific PCR
products of PSMD?7.
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Fig. S12. Characterization for isoforms in UPFI- or SF3B1-depleted A549

(A) Overrepresented motifs in 3' UTR of isoforms in UPF[-depleted A549 detected by MEME Suite.
(B) The number of isoforms in SF3B/-depleted A549 classified into each splicing event. (C) Splicing
consensus sequences detected in skipping exons or adjacent junctions of exon-skipping isoforms in
SF3BI-depleted A549. (D) Overrepresented motifs in skipping exons or adjacent junctions of exon-
skipping isoforms in SF3B1-depleted A549 detected by MEME Suite. T-rich motifs could be reflected
polypyrimidine tract (PPT) where U2AF and PPT-binding proteins can bind. G-rich motifs may
reflect potential binding sites for heterogeneous nuclear ribonucleoproteins regulating alternative
splicing.
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Fig. S13. Gene ontology analysis for genes with exon-skipping isoforms in SF3BI-depleted A549
The results of the gene ontology enrichment analysis were visualized using a REVIGO treemap. The
panel sizes in the treemap are inversely proportional to the p-values.
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Fig. S14. Detection of neoantigen candidates

(A) The analysis workflow for detecting neoantigen candidates in combination with the long-read and
short-read sequencing datasets. Reads from short-read DNA-seq were mapped to the reference
genome using BWA-mem. Somatic mutations were called and annotated by GATK and VEP. HLA
typing was performed using OptiType. After translating to peptides from aberrant splicing isoforms
and somatic mutations, we extracted all possible 9-mer peptides that were not represented in RefSeq
or in the GENCODE. The NetMHC score was calculated by combining the peptide sequences and
HLA types. (B) The number of somatic mutations in each cell line. Missense mutations accounted for
the majority of the detected mutations. (C) Comparison of the length of changed amino acids in
aberrant splicing isoforms using RefSeq.
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Fig. S15. Comparisons between the results of short-read RNA sequencing and proteome analysis
Correlations between the gene expression levels calculated by short-read RNA sequencing (TPM) and
the number of peptides detected by proteome analysis for each gene in the cell lines. Both values + 1
were log2-transformed. The red points represent genes with isoforms whose peptides were detected
by proteome analysis. The green area highlights 0-TPM genes and the blue area highlights 0-peptide
genes.
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Fig. S16. Full-length structures of aberrant splicing isoforms detected by the proteome analysis
(A) The full-length structure of splicing isoforms of ESY72 in II-18. Some MinION reads showed an
unannotated exon between exons 13 and 14. (B) The full-length structure of splicing isoforms of
FAM1264 in H1650. Some MinlON reads showed an unannotated exon between exons 10 and 11. (C)
The full-length structure of splicing isoforms of RRBPI in H2228. Some MinlON reads showed an
alternative last exon. (D) The full-length structure of splicing isoforms of SUN/ in RERF-LC-Ad2.
Some MinlON reads showed exon shuffling of the first exon and unannotated exons between RefSeq
exons 5 and 6.
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Fig. S17. KRT7 transcripts registered in the Ensembl database

(A, B) Full-length structures of KRT7 transcripts (A) and a magnified inset of alternative 5 splice site

region (B) in Ensembl. KRT7-204 (ENST00000547613) contained an isoform-specific junction
(shown in Figs. 4g and h).
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Fig. S18. Aberrant splicing isoforms detected in clinical specimens

(A) The number of isoforms classified for each splicing event. Light gray bars indicate isoforms
represented in GENCODE, and other-colored bars indicate unannotated isoforms. (B) The proportion
of splicing events in unannotated isoforms. Combination patterns accounted for 14.5%. (C) The
number of PTC-containing splicing isoforms in each specimen are shown in gray. (D) The number of
somatic mutations in each specimen.
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Fig. S19. Full-length structures of aberrant splicing isoforms tested in ELISpot assays

(A) The full-length structure of splicing isoforms of CEACAMG6 in case 4. Some MinlON reads
showed an alternative last exon. (B) The full-length structure of splicing isoforms of EROIA in case 2.
Some MinlON reads showed an alternative last exon. (C) The full-length structure of splicing
isoforms of HOOK? in case 7. Some MinlON reads showed an alternative last exon. (D) The full-
length structure of splicing isoforms of MCEE in case 7. Some MinlON reads showed an alternative
5" splice site in the first exon. (E) The full-length structure of splicing isoforms of PKM in case 4.
Some MinlON reads showed an alternative last exon. (F) The full-length structure of splicing
isoforms of SCGB3A42 in case 6. Some MinlON reads showed an unannotated exon before the first
exon. (G) The full-length structure of splicing isoforms of SELENBP]I in case 4. Some MinlON reads
showed intron retention between exons 3 and 4. (H) The full-length structure of splicing isoforms of
TMC4 in case 1. Some MinlON reads showed an alternative last exon. (I) The full-length structure of
splicing isoforms of TMEM454 in case 4. Some MinlON reads showed unannotated exons before
exon 2 and after exon 5 of RefSeq. (J) The full-length structure of splicing isoforms of TUFM in case
1. Some MinlON reads showed intron retention between exons 7 and 8. (K) The full-length structure
of splicing isoforms of UQCRB in case 3. Some MinlON reads showed an alternative last exon.
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Fig. S20. Overview of analysis using TCGA datasets

(A) The analysis workflow for counting aberrant isoforms in the TCGA datasets using our isoform
catalog. Reads from short-read RNA sequencing of TCGA were mapped to the reference genome and
our reference catalog using STAR. Reads aligned to isoform-specific regions were counted, and
extracted isoforms covered at least 20 reads. A normal reference panel was created by merging normal
datasets to extract tumor-specific isoforms. We also removed isoforms whose junctions were
expressed in the lung tissues of the GTEx database. (B) The number of junctions found in the GTEx
datasets in isoforms that were represented in GENCODE (left panel) and not represented in
GENCODE (right panel). (C) Correlation between the number of isoforms and the TMB in the TCGA
datasets for lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), colon
adenocarcinoma (COAD) and pancreatic adenocarcinoma (PAAD). No significant correlation was
observed. (D) Comparisons of the distribution of the number of isoforms in specimens in each cancer
stage. (E) Heatmaps showing the GSVA enrichment scores of gene sets of specific immune cell
signatures.
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