
Supplementary note 1: Consensus gene mapping of the datasets for autoencoder pretraining 

In order to pretrain multiple datasets jointly at the same time and to enable transferring similar gene-
gene relationships to the target data, we need to first map the gene names in each dataset to a 
consensus list of gene names. Currently, some genes do not have unique names and in SAVER-X, we 
create a mapping function to map possible gene names to a list of standard names to our best 
knowledge. 

For human, such a standard name list contains all the HGNC symbols (complete HGNC dataset 
downloaded from https://www.genenames.org/cgi-bin/statistics) and Ensemble gene IDs for those 
genes without an HGNC symbol. For mouse, the consensus list contains all the MGI symbols 
(downloaded from http://www.informatics.jax.org/downloads/reports/index.html) and Ensemble gene 
IDs for those genes without MGI symbols.  Ensemble gene IDs for both human and mouse were 
obtained using the useMart() function in the biomaRt R package. For the gene names in each dataset 
that are not exactly one of the names on the list, we checked for additional information on previous 
gene names, alias gene names and wiki gene names from the reference websites above and from the 
biomaRt R package. This provided us with the maximum number of genes that can be mapped to our 
consensus list. 

Then, we also need to determine what genes we include as an input/output node in the SAVER-X 
autoencoder. For both species, a gene from the consensus list is selected as one autoencoder node if it 
appears in at least half of all our pre-training datasets. Currently, we have 21183 genes for human and 
21122 genes for mouse. An autoencoder gene node is further determined to be shared in both species 
if both its mapping from human to mouse and vice-versa are unique using the getLDS() function in the 
bioMaRt R package. Currently, we have 15494 genes that are shared. Complete lists of the human, 
mouse and shared gene nodes are stored as datasets (data(human_nodes_ID), data(mouse_nodes_ID), 
data(shared_nodes_ID)) in the SAVERX R package. 

When we pretrain or train the autoencoder for a dataset, if a gene node is not uniquely measured in the 
dataset, we mark it as not measured (missing). We set the input of the not measured genes as 0 and 
exclude these genes when calculating the loss when training the autoencoder. For a target dataset, the 
predicted values of the genes not passed to the autoencoder will be their cross-cell averages, which 
are the predictions of the null model. Thus, we can take all the genes to the Bayesian shrinkage step 
and our final denoised data matrix has the same size as the original input matrix. 
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Supplementary note 2: SAVER-X choice of autoencoder tuning parameters and optimization details 

As a neural network, the autoencoder has a lot of tuning parameters. We have not tried all possibilities 
but have chosen the set of tuning parameters that currently gives satisfying empirical results. 

We set 3 encoder layers and 3 decoder layers for each of the sub-neural network. A larger autoencoder 
will be generally easier for the gradient descent methods to find optimal solution, but it also takes more 
RAM and longer time. We choose the three hidden layers to have 128, 64 and 32 nodes respectively 
(Figure S1) to reach a balance. In practice, we the find the down-stream analysis results to be relatively 
robust to the choice of the number of nodes and layers. All layers are fully connected dense layers.  

We follow most of the optimization settings same as the default settings of DCA 1. We use the RELU 
activation function with batch normalization. We do not use dropout, as finding it not improving 
optimization. Early stopping is used with 10% of the cells randomly chosen as a validation dataset. 
“RMSprop” in Keras is used as the optimization method. The pretraining batch size is fixed as 100 cells. 
The batch size for training the target dataset is adaptively set as max(32, number of cells/50) or can be 
user-specified. The autoencoder weights are initialized randomly using the “glorot_uniform” algorithm in 
Keras when trained without a pretraining model.  

 

 

 

 

Supplementary note 3: Density function forms for Negative Binomial, zero-inflated Negative Binomial 
and Gamma distributions 
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Supplementary note 4: In silico experiments on the PBMC T cell transfer learning 

In order to understand the performance and robustness of transfer learning under different pretraining 
scenarios, we design a fully controlled experiment. The experiment uses PBMC data (both the purified 
cells and a mixed population of ~68,000 cells from a fresh donor) from Zheng et. al. 2. Based on the 
original paper, the cell type labels of the purified cells are obtained by conventional trustable 
approaches while the cell types of the mixed cell population are estimated from the same single-cell 
data. Thus, the target dataset we use is a population of 500 T cells, consisting of 100 randomly 
selected purified cells from each of the five non-overlapping T cell types.  

For the pretraining dataset, we consider 4 scenarios: 

1. All the non-T PBMC cells: including 30,314 cells from the 4 non-T purified cell types and 15,109 
cells from the mixed population that are labeled as non-T cells. 

2. T cells all types: including randomly sampled 5,000 cells from each of the purified T cell 
population 

3. T cells but without regulatory T cells: the second scenario but without the 5,000 CD4+/CD25+ 
Regulatory T Cells 

4. T cells with regulatory T cells enriched: the second scenario and with all other purified 
CD4+/CD25+ regulatory T cells and 14,112 cells from the mixed population that are labeled as 
CD4+/CD25+ regulatory T cells. 

Here the pretraining data and target data are sequenced using the same protocol, in the same lab and 
with similar sequencing depth, thus we focus on understanding what can be transferred when the cell 
type population is different between the target and pretraining dataset. 

We choose the regulatory T cells as they are hard to be separated from the CD4+ memory T cells using 
scRNA-seq data. The last two scenarios can help use understand whether we need all cell types to be 
presented in the pretrained data and whether enriching a cell type in the pretraining dataset can help 
denoising that cell type in the target data. The results of this experiment (Figure 2c, Figure S4) show that 
transfer learning is quite robust to these different scenarios. Even in the first scenario pretraining can 
help, since the non-T immune cells shared some similar characteristics as the T cells (such as gene 
characteristics of the naïve state of immune cells).  



Supplementary note 5: Comparison between SAVER-X without pre-training and the autoencoder-
based denoising methods DCA 1 and scVI 3 

All three methods: SAVER-X, DCA and scVI are based on the autoencoder architecture. However, 
besides the key feature that SAVER-X transfers from external data, SAVER-X also differs from the 
other two approaches by employing cross validation and by using an empirical Bayes shrinkage step.  
The empirical Bayes shrinkage estimates the final denoised expression levels as weighted averages 
between the autoencoder outputs and the observed counts.  

The empirical Bayes step is based on the assumption that the technical noise in UMI-based scRNA-seq 
counts follows a Poisson-alpha model, which is supported with extensive empirical experiments using 
the ERCC spike-in genes from 9 public datasets 4. Through down-sampling experiments with the 
Poisson-alpha technical noise model on four public datasets 5–8, this final empirical Bayes step is found 
to be effective in bias reduction in the denoised matrix for SAVER-X.  Furthermore, we show that 
empirical Bayes shrinkage effectively reduces bias even when coupled with DCA and scVI. 

To produce the down-sampled data for each dataset, we first select high-quality cells and genes with 
high expression (details see Online Methods of Huang et al. 9) from the original dataset to treat as the 
true expression  λ𝑐𝑐𝑐𝑐. Then we generated down-sampled datasets following the Poisson-alpha noise 
model, 𝑥𝑥𝑐𝑐𝑐𝑐~Poisson�𝑙𝑙𝑐𝑐𝜆𝜆𝑐𝑐𝑐𝑐�, by randomly drawing from a Poisson distribution with mean parameter 
𝑙𝑙𝑐𝑐𝜆𝜆𝑐𝑐𝑐𝑐, where 𝑙𝑙𝑐𝑐 is the cell-specific efficiency loss. As in Huang et al., to mimic variation in efficiency 
across cells, we sampled 𝑙𝑙𝑐𝑐 as follows: 

1. 10% efficiency: 𝑙𝑙𝑐𝑐~Gamma(10, 100), used on Baron et al. 6, Chen et al. 7 and La Manno et al. 8 

2. 5%  efficiency: 𝑙𝑙𝑐𝑐~Gamma(10, 200), used on Zeisel et al. 10 

We calculate the gene-gene correlations in the denoised matrix for all gene. For each gene pair, we 
calculate the difference between their correlation in the denoised matrix and in the reference matrix (the 
original matrix before down-sampling). For SAVER-X and DCA/scVI with empirical Bayes shrinkage, we 
calculate post-denoising adjusted correlations, using both the estimates and posterior variances (see 
Online Methods of Huang et al. 9). Figure S1 shows the density plots of these differences in each of the 
four datasets. A density plot that is shifted towards the positive direction reveals that the method 
introduces spurious relationships between genes and produces inflated correlation estimates.  A 
density plot that is tightly concentrated around zero signifies that the method gives unbiased estimates 
of gene-gene correlations. 

We compare SAVER-X without pretraining with DCA and scVI. For DCA, we use their default values for 
the tuning parameters. For scVI, we keep all genes in the data as inputs to their autoencoder to allow a 
fair comparison and set all other tuning parameters to their default values. First, note that the 
differences for SAVER-X are tightly concentrated around zero in all four data sets, thus demonstrating 
that SAVER-X does not spuriously inflate correlation.  Furthermore, note that both DCA and scVI 
produce severely inflated correlations that are larger than the true gene-gene correlations. However, if 
we add a final empirical Bayes shrinkage step to either DCA or scVI, like the last step of SAVER-X, this 
bias in gene-gene correlations can be greatly reduced (density curves are more concentrated around 
0). 

This analysis shows that direct estimates obtained from autoencoders can be biased and should be 
treated with caution. With properly modeled technical noise, the empirical Bayes shrinkage step in 
SAVER-X can greatly reduce bias in the denoised data.   



Supplementary note 6: Data integration after denoising with SAVER-X 

Currently, SAVER-X cannot remove the batch effects in the target data. However, it can be combined 
with current data integration and alignment methods to remove batch effects after data denoising. We 
can achieve that by simply align the denoised data matrices using existing data integration/alignment 
methods.  

We considered a scenario where we attempt to align cells from healthy human peripheral and cord 
blood tissues (PBMC and CBMC, respectively) 11. We used SAVER-X immune cell pretraining model to 
denoise both the CBMC and PBMC datasets separately, each of which contains ~8,000 cells. As 
illustration (Figure S9a), we used a popular data integration pipeline, Seurat CCA version 2 12, to align 
the raw data using the first 20 CCs. This allowed us to identify the major cell types in the blood and 
demonstrated a good concordance of these types among the two datasets. We used marker genes for 
each of the major cell types as described in the original paper 11 to ascribe cell type identity to the 
identified clusters. We then used the Seurat CCA pipeline to align the SAVER-X denoised PBMC and 
CBMC datasets also using 20 CCs and identifying the cell types based on the marker gene expression 
profiles (Figure S9b). We found that not only is it feasible to align denoised data using the existing 
pipeline, but that the alignment of the denoised datasets also retains many of the salient visualization 
features that emerge when the two raw datasets are aligned. We see that denoising improves the 
visualization of the B cell clusters and was helpful in separating CD4+ T cells from CD8+ T cells. 
Comparison of the top and bottom left panels in Figure S9 shows that the identified clusters, for 
instance, for NK cells, monocytes and T cells, clearly contain cells from both the datasets, suggesting 
that the denoising process does not bias the existing data alignment pipelines. 

Altogether, this analysis component demonstrated that denoised data can be readily used in existing 
scRNA-seq data alignment tools. 
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Table S1: Testbed to illustrate the performance of SAVER-X and transfer learning.  

 

Pre-training data Test Data Transfer across… Design Validation metric 

HCA (bone marrow, 
cord blood)  

10x website, purified 
data of 9 cell types 

Lab, tissue Reduce cell 
number, 
Subsampling of 
reads 

Known cell type labels, 
stability of known 
marker genes 

10x PBMC T cells, all 
samples 

10x T cells, labeled 
samples 

Samples Reduce cell 
number, 
Subsampling of 
reads 

10x PBMC + HCA Azizi et.al. (2018) 
breast cancer tumor 
cells 

Lab, tissue, 
technology, 
condition 

No subsampling. Cell type labels from 
the original paper, 
known marker gene 
enrichment 

Mouse cells from La 
Manno et. al. (2016).  

Human cells from La 
Manno et. al. (2016). 

Species Subsampling of 
reads 

Cell type labels from 
the original paper, 
compare to original full 
data, preserving fold 
change  

Mouse brain cells from 
“Tabula Muris” 

Species, anatomical 
regions, subject 
ages, labs 

Human + mouse cells 
from La Manno et. al. 
(2016). 

Species   

Human + mouse cells 
from multiple 
published datasets 

Species, anatomical 
regions, subject 
ages, labs, 
technology 

  

 



Table S2: Pre-training datasets for each pre-trained models on the SAVER-X web portal. 

 
 

Tissue / Cell type Datasets 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mouse 
Models 

Bladder GSE108097 1 (GSM2889480) 

Bone Marrow GSE108097 1 (GSM2906396, GSM2906399 - GSM2906404) 

Adult Brain GSE93374 (Campbell 2017 2), GSE75330 (Marques 2016 3), 
GSE74672 (Romanov 2017 4), GSE71585 (Tasic 2016 5), GSE60361 
(Zeisel 2015 6), GSE59739 (Usoskin 2015 7),  GSE87544 (Chen 
2017 8), GSE108097 1 (GSM2906405, GSM2906406) 

Developing Brain GSE76381 (La Manno 2016 9), GSE108097 1 (GSM2906415, 
GSM2906454, GSM2906455) 

Calvaria GSE108097 1 (GSM2906445, GSM2906446) 

Embryo GSE57246 (Biase 2014 10), GSE45719 (Deng 2014 11), GSE53386 
(Fan 2015 12) 

Mesenchyme GSE108097 1 (GSM2906412) 

Embryonic Stem cells GSE65525 (Klein 2015 13), GSE108097 1 (GSM2906413, 
GSM2906414, GSM2935549) 

Gonads GSE108097 1 (GSM2906416, GSM2906423) 

Heart GSE108097 1 (GSM2906447) 

Hematopoietic Stem 
cells 

GSE76983 (Grun 2016 14) 

Intestine GSE108097 1 (GSM2906417, GSM2906467 - GSM2906470) 

Kidney GSE107585 (Park 2018 15), GSE108097 1 (GSM2906418, 
GSM2906419, GSM2906425, GSM2906426) 

Liver GSE108097 1 (GSM2906421, GSM2906427, GSM2906428) 

Lung GSE108097 1 (GSM2906422, GSM2906429 - GSM2906431) 

Mammary Gland GSE108097 1 (GSM2906432 - GSM2906442, GSM2889483, 
GSM2889484) 

Muscle GSE108097 1 (GSM2906444, GSM2906448, GSM2906449) 

Ovary GSE108097 1 (GSM2906456, GSM2906457) 

Pancreas GSE84133 (Baron 2016 16), GSE108097 1 (GSM2906458, 
GSM3004530, GSM3004531) 

Peripheral Blood GSE108097 1 (GSM2906459 - GSM2906464) 

Placenta GSE108097 1 (GSM2906465, GSM2906466) 

Prostate GSE108097 1 (GSM2906481, GSM2906482) 

Retina GSE63472 (Macosko 2015 17), GSE81904 (Shekhar 2016 18) 

Rib GSE108097 1 (GSM2906450 - GSM2906452) 

Skin GSE108097 1 (GSM2906453) 

Spleen GSE108097 1 (GSM2906471) 

Stomach GSE108097 1 (GSM2906424, GSM2906472) 

Testis GSE108097 1 (GSM2906473, GSM2906474) 

Thymus GSE108097 1 (GSM2906475, GSM2906476) 

Trophoblast Stem cells GSE108097 1 (GSM2906477) 



Uterus GSE108097 1 (GSM2906478, GSM2906479) 

 
 
 

Joint 
Species 
(shared) 
Models 

Adult Brain Human: (Lake 2016 19)                                                                                                                                      
Mouse: GSE93374 (Campbell 2017), GSE75330 (Marques, 2016), 
GSE74672 (Romanov 2017), GSE71585 (Tasic 2016), GSE60361 
(Zeisel 2015), GSE59739 (Usoskin 2015), GSE87544 (Chen 2017), 
GSE108097 (GSM2906405, GSM2906406) 

Developing Brain Human: GSE75140 (Camp 2015 20), GSE76381 (La Manno 2016 9), 
SRP041736 (Pollen 2014 21), GSE104276 (Zhong 2018 22)                                                              
Mouse: GSE76381 (La Manno 2016), GSE108097 (GSM2906415, 
GSM2906454, GSM2906455) 

Pancreas Human: GSE84133 (Baron 2016 16), GSE85241 (Muraro 2016 23), 
E-MTAB-5061 (Segerstolpe 2016 24), GSE81608 (Xin 2016)                                                                                                                                                         
Mouse: GSE84133 (Baron 2016), GSE108097 (GSM2906458, 
GSM3004530, GSM3004531) 

 
Human 
Models 

Immune cells (both 
innate and adaptive) 

HCA, 10X website (4k and 8k from a healthy donor, aggregate of 
t_3k and t_4k, fresh 68k PBMC, purified data for each cell type 
from Zheng 2017 25) 

T cells T cells of the PBMC cells from the 10X website 
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