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The Supplement Material is organized as follows. Section 1 includes the modified algo-
rithm for our regularized low rank estimation procedure when response and covariates are

not centered. Section 2 presents some additional simulation results.

1 Estimation procedure without centering

In the main paper, we assume that z; has mean 0 and variance 1 for every 1 <[ < s and
{Y;,1 < i < n} has mean 0. If these assumptions are not satisfied, then one approach
is to standardize (center and scale) our covariates x;s and center our responses Y;s. An
alternative approach is to introduce another intercept matrix term By in our model even
without centering. In this case, our model is given by
Y;=Bo+ Y zq+B,+E; (1)
=1
Define By, = [Bo, B, € M] = [Bo, By, By ] € RPFUHED and X, = [1,X 5] -
For our estimation procedure, we will calculate the regularized least square estimator of B
by minimizing
@ (Bin) = 5 Y IYi =B~ Y wu+Bill A Y Bl 2)
i=1 leM leM
Denote R(Biye) = (2n) " >0, [[Yi — Bo — >, gy za * Bil|7 and VR(B;,,;) denotes the
first-order gradient of R(B;,;) with respect to B;,;. Specifically, let B,,, Sl(fl), and VR(S®), ;
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be the (dg + 1)th to the (dg + d)th columns of the corresponding p X q(|M\| + 1) matrices
Bin, S, and VR(S®), respectively, and By, S t), and VR(S®)y be the first to the dth
columns of the corresponding p X ¢(|M| + 1) matrices By, S®, and VR(S®).

To solve the minimization problem (2), we can still apply the Nesterov gradient method

and modify our original algorithm a little bit. Our algorithm can be stated as follows:

1. Initialize B® = BW o =0 and o™ =1, t =1, and 6§ = n/{ Amax (X, Xint) }-

int

2. repeat
S0 = BO 4 (2V-1)(BO — B-D),
(Biemp)o = (S¥)o;
ford=1": \M\ |,
i (Awemp)i, = S — 6VR(S®),,;

ii. Compute singular value decomposition (SVD) (Ayemp )i, = Us,diag(ay, ) Vi ;
iii. by, = ay, — Ad * 1;
iv. By )iy = Uy, diag(by, ) V7

end

Combine (Biemp)o and {(Biemp)i,, 1 < d < |M\|} sub matrices and get the entire

matrix Biemp;

B(t+1) - Btemp;

Q) — {1+ /1+ (200)2}/2; t=1t+1,

3. until objective function @Q*(B®) converges.

For the above p x (|/Q | + 1)g matrices Aemp and Biemp, (Atemp)i, and (Biemyp)i, denote the

(dg + 1)—th to the (dg + ¢)—th columns of the corresponding matrices, respectively.

2 Additional Simulation Results

Following the simulation study in Section 4.2 of the main paper, we first present additional
simulation results for the case (02,s,) = (1,5000) in Figure S1 and those for the case
(02, 5,) = (25,5000) in Figure S2. The findings are similar to those given in Section 4.2 of

the main paper.



Next, we consider the same simulation setting as Section 4.1 of the main paper. Specif-
ically, we set the first four coefficient matrices as the four shapes of images including the
cross (Byg), square (By), triangle (Bgy), and butterfly (Byg). For all remaining coefficients,
they were set as zero. We set the number of covariates to be s = 2,000 and 5,000. We
consider the same autoregressive type of covariance matrix for x; with p; = 0.5 and the
same covariance matrix for E;,. We still consider two different signal to noise ratios with
02 = 1 and 02 = 25. For py, we use pp = 0.5. We consider different threshold values 7
from 1 to 200. We run 100 replicates of Monte Carlo Studies to evaluate the finite sample
performance of our screening procedure. We present the curves of percentage of the average
true nonzero coverage proportion for different threshold values in Figure S3. The simulation
results reveal that all methods perform very similarly, since the sizes of all effective regions
of interest are quite large.

We further compare our estimates with centering and those without centering. We simu-
late 64 x 64 matrix responses according to model (1) with s = 4 covariates. All the settings
are the same as those in Section 4.1 of the main paper except that we independently gener-
ate all scalar covariates x; from N(1,X,) and include an intercept matrix By, where each
element of By is set as 2. We only consider the case as po = 0.5. To evaluate the estimation
accuracy, we compute the mean squared errors of B; and calculate the prediction errors of ]§l

test

by generating n**** = 500 independent testing observations. Table S1 presents the estimation

results from both methods. The results reveal that both methods perform similarly.
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Figure S1. Screening results for the case (02, s,) = (1,5000): the curves of percentage of
the average true nonzero coverage proportion. The black solid, blue dashed, red dotted and
purple dashed dotted lines correspond to the rank-one screening, the L1 entrywise norm
screening, the Frobenius norm screening and the global Wald test screening. respectively.
Panels (a)-(i) correspond to (n,ps,qs) = (100,4,4), (200,4,4), (500, 4, 4), (100, 8, 8),
(200,38, 8), (500, 8, 8), (100, 16, 16), (200, 16, 16), and (500, 16, 16), respectively.
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Figure S2. Screening results for the case (02, s,) = (25,5000): the curves of percentage of
the average true nonzero coverage proportion. The black solid, blue dashed, red dotted,
and purple dashed dotted lines correspond to the rank-one screening, the L1 entrywise

norm screening, the Frobenius norm screening, and the global Wald test screening,
respectively. Panels (a)-(i) correspond to
(n,ps, qs) = (100,4,4), (200, 4, 4), (500, 4,4), (100, 8, 8), (200, 8, 8),
(500, 8,8), (100, 16, 16), (200, 16, 16), and (500, 16, 16), respectively.
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Figure S3. Screening results for true coefficients the same as Section 4.1 in the main paper:
the curves of percentage of the average true nonzero coverage proportion. The black solid,
blue dashed, red dotted, and purple dashed dotted lines correspond to the rank-one
screening, the L1 entrywise norm screening, the Frobenius norm screening, and the global
Wald test screening, respectively. Panels (a)-(d) correspond to cases when
(n, sn, 0?) = (100, 2000, 1), (100, 5000, 1), (200, 2000, 1), (200, 5000, 1) respectively. Panels
(e)-(h) correspond to cases when

(n, 50, 02) = (100, 2000, 25), (100, 5000, 25), (200, 2000, 25), (200, 5000, 25) respectively.



Table S1: The means of PEs and MSEs for our estimates with centering and without

centering, and their associated standard errors in the parentheses. For each case, 100

simulated datasets are used.

(n,o?) Method MSE(B;)  MSE(B,)  MSE(B;)  MSE(B,) PE
(100,1) No Centering  15.25(0.40)  12.56(0.37)  43.93(0.61)  46.11(0.86)  1.03(0.0005)
Centering ~ 11.67(0.21)  9.96(0.22)  43.21(0.43)  44.83(0.52)  1.03(0.0002)
(200,1) No Centering ~ 10.28(0.51)  7.62(0.23)  25.86(0.37)  26.48(0.48)  1.02(0.0004)
Centering  7.27(0.09)  6.73(0.10)  23.77(0.20)  23.08(0.23)  1.02(0.0001)
(500,1) No Centering  5.80(0.32)  4.13(0.15)  11.97(0.20)  12.96(0.38)  1.01(0.0003)
Centering  3.46(0.03)  3.53(0.03)  10.54(0.06)  9.75(0.06)  1.01(0.00003)
(100,25) No Centering 191.47(10.72) 137.76(3.95) 252.38(3.59) 318.34(9.54) 25.44(0.0098)
Centering  121.61(1.69) 119.58(2.37) 227.58(2.01) 263.90(2.77) 25.37(0.0027)
(200,25) No Centering ~ 84.38(1.13)  68.46(1.26) 175.97(1.43) 200.36(1.83) 25.27(0.0014)
Centering  79.44(1.01)  71.27(1.25) 171.12(1.21) 201.43(1.63) 25.26(0.0013)
(500,25) No Centering ~ 43.68(0.57)  36.87(0.55) 111.45(0.90) 124.90(0.84) 25.10(0.0005)
Centering  42.17(0.50)  39.7(0.59)  110.16(0.79) 125.08(0.75) 25.10(0.0005)




