
## Supplementary Material

Figure 1: Selection of Included Studies and search strategy



## Search strategy

- 1. digital\*.mp.
- 2. film\*.mp.
- 3. mammograph\*.mp.
- 4. Mammography/
- 5.3 or 4
- 6. 1 and 2 and 5

Table 1: Characteristics of studies

| Author                                                         | Study type                     | Country          | Population                 | Film      | Digital   | Screening<br>interval | Screening age range |
|----------------------------------------------------------------|--------------------------------|------------------|----------------------------|-----------|-----------|-----------------------|---------------------|
| Campari (2016) <sup>42</sup>                                   | Observational<br>Retrospective | Italy            | Reggio Emilia              | 2011      | 2012      | 2 years               | 45-74               |
| Chiarelli (2013) <sup>41</sup><br>Prummel (2016) <sup>10</sup> | Observational Retrospective    | Canada           | Ontario                    | 2008-2009 | 2008-2009 | 2 years               | 50-74               |
| Dabbous (2017) <sup>40</sup>                                   | Observational Retrospective    | United<br>States | Chicago                    | NI        | NI        | 1 year                | 40-79               |
| Del Turco (2007) <sup>13</sup>                                 | Observational Retrospective    | Italy            | Florence                   | 2004-2005 | 2004-2005 | 2 years               | 50-69               |
| Glynn (2011) <sup>39</sup>                                     | Observational Retrospective    | United<br>States | St Louis<br>Institution    | 2004-2005 | 2006-2009 | 1 year                | 27-92               |
| Hambly (2009) <sup>38</sup>                                    | Observational Retrospective    | Ireland          | All                        | 2005-2007 | 2005-2007 | 2 years               | 50-64               |
| Heddson (2007) <sup>37</sup>                                   | Observational Retrospective    | Sweden           | Helsingborg<br>Hospital    | 2000-2002 | 2002-2005 | 2 years               | 46-74               |
| Henderson (2015) <sup>35,36</sup>                              | Observational<br>Retrospective | United<br>States | 6 US Programs              | 2003-2011 | 2003-2011 | 1 year                | 40-89               |
| Hofvind (2014) <sup>14</sup>                                   | Observational<br>Retrospective | Norway           | All (except<br>Oslo study) | 1996-2010 | 2000-2010 | 2 years               | 50-69               |
| Kerlikoske (2011) <sup>34</sup>                                | Observational<br>Retrospective | United<br>States | 4 US Programs              | 2000-2006 | 2000-2006 | 1 year                | 40-79               |
| Lewin (2006) <sup>32,33</sup>                                  | Paired<br>Prospective          | United<br>States | CO, MA                     | 1999      | 1999      | 1 year                | 40-                 |
| Lipasti (2010) <sup>31</sup>                                   | Observational<br>Retrospective | Finland          | Southern<br>Finland        | 1999-2000 | 2007-2008 | 2 years               | 50-59               |
| Perry (2011) <sup>30</sup>                                     | Observational<br>Retrospective | UK               | London<br>company          | 2000-2006 | 2000-2007 | 2 years               | 40-7                |
| Pisano (2005) <sup>7,29</sup>                                  | Paired<br>Prospective          | United<br>States | 33 sites US<br>and Canada  | 2001-2003 | 2001-2003 | 455 days              | 47-6                |
| Sala (2015) <sup>11</sup>                                      | Observational<br>Retrospective | Spain            | Barcelona                  | 1995-2007 | 2004-2010 | 2 years               | 50-69               |
| Sankatsing (2018) <sup>28</sup>                                | Observational<br>Retrospective | Netherlands      | All                        | 2004-2010 | 2007-2011 | 2 years               | 50-7                |
| Seradour (2014) <sup>27</sup>                                  | Observational<br>Retrospective | France           | Bouches du<br>Rhône        | 2008-2010 | 2008-2010 | 2 years               | 50-7                |
| Skaane (2005) <sup>26</sup><br>(Oslo I)                        | Paired<br>Prospective          | Norway           | Oslo                       | 2000      | 2000      | 2 years               | 50-6                |
| Skaane (2007) <sup>9</sup><br>(Oslo II)                        | Randomized<br>Trial            | Norway           | Oslo                       | 2000-2001 | 2000-2001 | 1 year                | 45-6                |
| Theberge (2016) <sup>25</sup>                                  | Observational Retrospective    | Canada           | Quebec                     | 2007-2012 | 2010-2012 | 2 years               | 50-6                |
| Timmermans (2017) <sup>24</sup>                                | Observational Retrospective    | Belgium          | Flanders                   | 2009-2010 | 2009-2010 | 2 years               | 50-69               |
| Van Luit (2013) <sup>23</sup>                                  | Observational<br>Retrospective | Netherlands      | All                        | 2004-2010 | 2007-2010 | 2 years               | 50-7                |
| Van Ongeval (2010) <sup>22</sup>                               | Observational<br>Retrospective | Belgium          | 3 regional units           | 2001-2007 | 2005-2008 | 2 years               | 50-69               |
| Vernacchia (2009) <sup>21</sup>                                | Observational<br>Retrospective | United<br>States | California<br>Clinic       | 2004-2005 | 2005-2008 | 1 year                | N                   |
| Vinnicombe (2009) <sup>20</sup>                                | Observational Retrospective    | UK               | East/Central<br>London     | 2001-2007 | 2005-2007 | 3 years               | 50-7                |

<sup>\*</sup>NI no information

| Author                                                         | Confounding | Selection | Intervention<br>Classification | Deviations<br>Intervention | Missing<br>Data | Measurement<br>Outcome | Reported<br>Results | Overall  |
|----------------------------------------------------------------|-------------|-----------|--------------------------------|----------------------------|-----------------|------------------------|---------------------|----------|
| Campari (2016) <sup>42</sup>                                   | Serious     | Low       | Low                            | Low                        | Low             | Low                    | Low                 | Serious  |
| Chiarelli (2013) <sup>41</sup><br>Prummel (2016) <sup>10</sup> | Moderate    | Low       | Low                            | Low                        | Low Low         |                        | Low                 | Moderate |
| Dabbous (2017) <sup>40</sup>                                   | Critical    | Low       | Low                            | Low                        | Moderate        | Low                    | Low                 | Critical |
| Del Turco (2007) <sup>13</sup>                                 | Serious     | Low       | Low                            | Low                        | Low             | Low                    | Low                 | Serious  |
| Glynn (2011) <sup>39</sup>                                     | Critical    | Low       | Low                            | Low                        | Low             | Low                    | Low                 | Critical |
| Hambly (2009) <sup>38</sup>                                    | Moderate    | Low       | Low                            | Low                        | Low             | Low                    | Low                 | Moderate |
| Heddson (2007) <sup>37</sup>                                   | Critical    | Low       | Low                            | Moderate                   | Low             | Low                    | Low                 | Critical |
| Henderson<br>(2015) <sup>35,36</sup>                           | Moderate    | Low       | Low                            | Low                        | Low             | Low                    | Low                 | Moderate |
| Hofvind (2014) <sup>14</sup>                                   | Serious     | Low       | Low                            | Low                        | Low             | Low                    | Low                 | Serious  |
| Kerlikoske (2011) <sup>34</sup>                                | Moderate    | Low       | Low                            | Low                        | Low             | Low                    | Low                 | Moderate |
| Lewin (2006) <sup>32,33</sup>                                  | Low         | Low       | Low                            | Low                        | Low             | Low                    | Low                 | Low      |
| Lipasti (2010) <sup>31</sup>                                   | Critical    | Low       | Low                            | Low                        | Low             | Low                    | Low                 | Critical |
| Perry (2011) <sup>30</sup>                                     | Moderate    | Low       | Low                            | Low                        | Low             | Low                    | Low                 | Moderate |
| Pisano (2005) <sup>7,29</sup>                                  | Low         | Low       | Low                            | Low                        | Low             | Low                    | Low                 | Low      |
| Sala (2015) <sup>11</sup>                                      | Serious     | Low       | Low                            | Low                        | Low             | Low                    | Low                 | Serious  |
| Sankatsing (2018) <sup>28</sup>                                | Serious     | Low       | Low                            | Moderate                   | Low             | Low                    | Low                 | Serious  |
| Seradour (2014) <sup>27</sup>                                  | Moderate    | Low       | Low                            | Low                        | Low             | Low                    | Low                 | Moderate |
| Skaane (2005) <sup>26</sup><br>(Oslo I)                        | Low         | Low       | Low                            | Low                        | Low             | Low                    | Low                 | Low      |
| Skaane (2007) <sup>9</sup><br>(Oslo II)                        | Moderate    | Low       | Low                            | Low                        | Low             | Low                    | Low                 | Moderate |
| Theberge (2016) <sup>25</sup>                                  | Moderate    | Low       | Moderate                       | Low                        | Low             | Low                    | Low                 | Moderate |
| Timmermans (2017) <sup>24</sup>                                | Serious     | Low       | Low                            | Low                        | Low             | Low                    | Low                 | Serious  |
| Van Luit (2013) <sup>23</sup>                                  | Serious     | Low       | Low                            | Low                        | Low             | Low                    | Low                 | Serious  |
| Van Ongeval<br>(2010) <sup>22</sup>                            | Serious     | Low       | Low                            | Low                        | Low             | Low                    | Low                 | Serious  |
| Vernacchia<br>(2009) <sup>21</sup>                             | Serious     | Low       | Low                            | Low                        | Low             | Low                    | Low                 | Serious  |
| Vinnicombe (2009) <sup>20</sup>                                | Moderate    | Low       | Low                            | Low                        | Low             | Low                    | Low                 | Moderate |

Table 2: Risk of Bias Assessment

## Table 2.1: Risk of bias for confounding assessment

- 1 Is there potential for confounding of the effect of intervention in this study?
- 2 Was there a different timeframe for when the participants' received the intervention?
- 3 Was the difference in timeframe for when the participants' received the intervention likely to be related to factors that are prognostic for the outcome?
- 4 Did the authors provide information to control for all the important confounding domains?
- 5 Were confounding domains that were controlled for measured validly and reliably by the variables available in this study?
- 6 Did the authors control for any post-intervention variables that could have been affected by the intervention?
- 7 Did the authors provide information to control for all the important confounding domains and timeframe confounding?
- 8 Were confounding domains that were controlled for measured validly and reliably by the variables available in this study?

| Author                | 1 | 2 | 3  | 4  | 5  | 6 | 7  | 8  | Confounding | Concurrence                                                         | Confounders<br>Measured                                                                          | Unadjusted<br>vs Adjusted<br>(95 % CI)                                                                                                                      |
|-----------------------|---|---|----|----|----|---|----|----|-------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Campari               | Y | Y | PN | N  | PY | N | PN | PY | Serious     | 0%                                                                  | age, round                                                                                       | CD RR=<br>0.88 vs. 0.95<br>(0.79-1.13)<br>Recall RR=<br>1.34 vs. 1.46<br>(1.37-1.56)                                                                        |
| Chiarelli/<br>Prummel | Y | N | NA | PY | PY | N | PY | NA | Moderate    | 100%                                                                | age, round, HRT, density, family history, menarche, reproductive status, menopausal status, unit | CD RR= 1.02 vs. 0.97 (0.88-1.06) Recall RR= 1.04 vs. 1.06 (1.00-1.13) IC RR= 1.05 vs. 1.05 (0.90-1.12)                                                      |
| Dabbous               | Y | Y | Y  | N  | PY | N | N  | NA | Critical    | NI                                                                  | age,<br>menopause<br>status,<br>density,<br>ethnicity                                            | CD RD= -0.31 vs0.5 Digital: more white women than black women                                                                                               |
| Del Turco             | Y | N | NA | N  | PY | N | PN | NA | Serious     | 100%                                                                | age, round,<br>density                                                                           | NI                                                                                                                                                          |
| Glynn                 | Υ | Υ | PY | N  | NA | N | N  | NI | Critical    | 0%                                                                  | NI                                                                                               | NA                                                                                                                                                          |
| Hambly                | Y | N | NA | N  | PY | N | PY | NA | Moderate    | 100%<br>Quasi-<br>random                                            | age, round                                                                                       | NI                                                                                                                                                          |
| Heddson               | Υ | Υ | PY | N  | NA | N | N  | NI | Critical    | 0%                                                                  | age                                                                                              | NI                                                                                                                                                          |
| Henderson             | Y | Y | PN | PY | PY | N | PY | NA | Moderate    | 22%<br>Film<br>decreasing<br>and digital<br>increasing<br>over time | age,<br>ethnicity,<br>HRT,<br>screening<br>interval,<br>year, unit                               | CD RR= 1.01 vs. 1.06 (0.97-1.16) IC RR= 0.94 vs. 0.93 (0.78-1.10) Digital: more Asian women, shorter screening interval Film: more Hispanic women, more HRT |

| Hofvind     | Υ  | Υ   | PY  | N   | PY   | N   | N   | PY  | Serious  | 66%                | age, round,                   | CD RR=                       |
|-------------|----|-----|-----|-----|------|-----|-----|-----|----------|--------------------|-------------------------------|------------------------------|
|             |    |     |     |     |      |     |     |     |          |                    | year                          | 0.94 vs. 1.05                |
|             |    |     |     |     |      |     |     |     |          |                    |                               | (0.98-1.14)                  |
|             |    |     |     |     |      |     |     |     |          |                    |                               | IC RR=                       |
|             |    |     |     |     |      |     |     |     |          |                    |                               | 1.10 vs. 1.27<br>(1.07-1.50) |
| Kerlikoske  | Υ  | Υ   | PY  | PY  | PY   | N   | PY  | NA  | Moderate | 100%               | age, density,                 | (1.07-1.30)<br>CD RR=        |
| Keriikoske  |    | . ' | ' ' | ' ' |      | 14  | ' ' | INA | Moderate | 100%               | menopause                     | 0.97 vs. 1.0                 |
|             |    |     |     |     |      |     |     |     |          |                    | status,                       | (0.9-1.1)                    |
|             |    |     |     |     |      |     |     |     |          |                    | family                        | ,                            |
|             |    |     |     |     |      |     |     |     |          |                    | history,                      |                              |
|             |    |     |     |     |      |     |     |     |          |                    | ethnicity,                    |                              |
|             |    |     |     |     |      |     |     |     |          |                    | round                         |                              |
| Lewin       | N  |     |     |     |      |     |     |     | Low      | 100%               | Age,                          | NI                           |
|             |    |     |     |     |      |     |     |     |          |                    | Density,                      |                              |
|             |    |     |     |     |      |     |     |     |          |                    | Round,                        |                              |
|             |    |     |     |     |      |     |     |     |          |                    | family                        |                              |
|             |    |     |     |     |      |     |     |     |          |                    | history, HRT,<br>nulliparous, |                              |
|             |    |     |     |     |      |     |     |     |          |                    | childbearing                  |                              |
|             |    |     |     |     |      |     |     |     |          |                    | age                           |                              |
| I to a sale | Υ  | Υ   | Y   | N.  | 21.0 | N.  |     | NII | Cuitinal | 00/                |                               | NI A                         |
| Lipasti     | Y  | Y   | Y   | N   | NA   | N   | N   | NI  | Critical | 0%                 | NI                            | NA                           |
|             |    |     |     |     |      |     |     |     |          | 7 years<br>between |                               |                              |
|             |    |     |     |     |      |     |     |     |          | cohorts            |                               |                              |
| Perry       | Υ  | PN  | PN  | PN  | PY   | N   | PN  | PY  | Moderate | 87.50%             | age                           | NI                           |
| ,           | -  |     |     |     |      | ••• |     |     |          | Quasi              | ~80                           |                              |
|             |    |     |     |     |      |     |     |     |          | random             |                               |                              |
| Pisano      | N  |     |     |     |      |     |     |     | Low      | 100%               | NI                            | NA                           |
|             |    |     |     |     |      |     |     |     |          | Paired             |                               |                              |
| Sala        | Y  | Υ   | PY  | N   | PY   | N   | N   | PY  | Serious  | 25%                | age, round                    | NI                           |
| Sankatsing  | Υ  | Υ   | PN  | N   | PY   | N   | PN  | PY  | Serious  | 50%                | age, round                    | CD RD=                       |
| _           |    |     |     |     |      |     |     |     |          |                    |                               | 0.9 vs. 0.8                  |
|             |    |     |     |     |      |     |     |     |          |                    |                               | (0.7-1.0)                    |
|             |    |     |     |     |      |     |     |     |          |                    |                               | Recall RD=                   |
|             |    |     |     |     |      |     |     |     |          |                    |                               | 5.0 vs 5.0                   |
|             |    |     |     |     |      |     |     |     |          |                    |                               | (4.7-5.3)                    |
|             |    |     |     |     |      |     |     |     |          |                    |                               | IC RD=                       |
|             |    |     |     |     |      |     |     |     |          |                    |                               | 0.0 vs. 0.0<br>(-0.2-0.1)    |
| Seradour    | Υ  | N   | NA  | PY  | PY   | N   | PY  | NA  | Moderate | 100%               | age, density,                 | (-0.2-0.1)<br>NI             |
|             |    |     |     |     |      |     |     |     |          |                    | screening                     |                              |
|             |    |     |     |     |      |     |     |     |          |                    | round, HRT                    |                              |
| Skaane      | N  |     |     |     |      |     |     |     | Low      | 100%               | NI                            | NA                           |
| (Oslo I)    |    |     |     |     |      |     |     |     |          | Paired             |                               |                              |
| Skaane      | PY | Ν   | NA  | PN  | PY   | Ν   | NI  | NA  | Moderate | 100%               | NI                            | NA                           |
| (Oslo II)   |    |     |     |     |      |     |     |     |          | Randomised         |                               |                              |
| Theberge    | Υ  | Υ   | PN  | PY  | PY   | N   | Υ   | PY  | Moderate | 50%                | age, density,                 | CD RR=                       |
|             |    |     |     |     |      |     |     |     |          |                    | BMI, family                   | 1.16 vs. 1.06                |
|             |    |     |     |     |      |     |     |     |          |                    | history,                      | (0.89-1.25)                  |
|             |    |     |     |     |      |     |     |     |          |                    | menopause<br>status,          |                              |
|             |    |     |     |     |      |     |     |     |          |                    | parity, HRT,                  |                              |
| Timmermans  | Υ  | N   | NA  | N   | PY   | N   | PN  | NA  | Serious  | 100%               | age, density                  | NI                           |
| van Luijt   | Υ  | Υ   | PY  | N   |      |     | N   | NA  | Serious  | 14%                |                               |                              |
| Van Ongeval | Υ  | Υ   | PY  | N   | PY   | N   | N   | PY  | Serious  | 33%                | NI                            | NA                           |
| Vernacchia  | Υ  | Υ   | PY  | N   | NA   | N   | PN  | NI  | Serious  | 0%                 | NI                            | NA                           |

| Vinnicombe | Υ | N | NA | PY | PY | N | PY | NA | Moderate | 100% | age, round,   | CD RR=        |
|------------|---|---|----|----|----|---|----|----|----------|------|---------------|---------------|
|            |   |   |    |    |    |   |    |    |          |      | ethnicity,    | 1.06 vs. 0.95 |
|            |   |   |    |    |    |   |    |    |          |      | area of       | (0.65-1.25)   |
|            |   |   |    |    |    |   |    |    |          |      | residence,    | Digital: more |
|            |   |   |    |    |    |   |    |    |          |      | referral      | young,        |
|            |   |   |    |    |    |   |    |    |          |      | type, density | Caucasian     |
|            |   |   |    |    |    |   |    |    |          |      |               | and self-     |
|            |   |   |    |    |    |   |    |    |          |      |               | referral      |

Abbreviations: confidence interval (CI), no information (NI), not applicable (NA), yes (Y), no (N), probably yes (PY), probably no (PN), Hormone replacement therapy (HRT), Cancer Detection (CD), Interval Cancer (IC), Relative Risk (RR), Risk Difference (RD)

Table 3: Inclusion and Exclusion Criteria

| STEP                                 | INCLUSIONS                                                                                                                                                                                                                                                                                                                                                                                                     | EXCLUSIONS                                                                                                                                                                                                                                                                                   |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Screening<br>titles and<br>abstracts | <ul> <li>Studies that look at both film and digital mammography</li> <li>Asymptomatic adult (18+) women</li> <li>Studies in any setting</li> </ul>                                                                                                                                                                                                                                                             | <ul> <li>Studies that do not look at both film and digital mammography</li> <li>Studies on women at high risk of breast cancer</li> <li>Review papers, editorials, commentary/discussion papers.</li> </ul>                                                                                  |
| Full Text<br>Read/Data<br>Extraction | <ul> <li>Compares Screen Film Mammography to Full Field Digital Mammography</li> <li>Conducted on women who are of 'normal' risk of breast cancer</li> <li>Breast Cancer diagnosis histologically confirmed (or reasonable to assume so)</li> <li>Is original study/not reporting on same data that is already included</li> <li>Measure either screen-detection rates and/or interval cancer rates</li> </ul> | <ul> <li>Not Screen Film Mammography to<br/>Full Field Digital Mammography</li> <li>Not average risk women</li> <li>Repeat Data</li> <li>Does not provide detection rate or<br/>numbers to calculate</li> <li>Can't assume cancer diagnoses were<br/>histopathologically verified</li> </ul> |
| Overlapping cohorts and repeat data  | <ul> <li>Chose best study for each outcome from study population</li> <li>Most screenings</li> <li>Longest time period</li> <li>Most recent</li> </ul>                                                                                                                                                                                                                                                         | Threshold of 20% overlap                                                                                                                                                                                                                                                                     |

Figure 2: Forest Plot of screen-detection rates by round

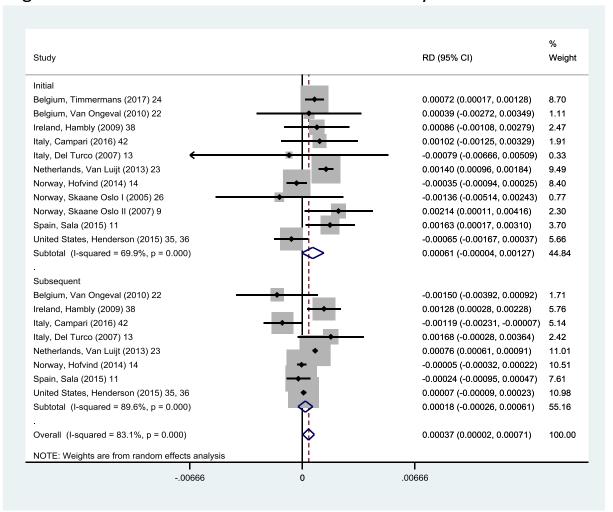



Figure 3: Forest Plot of screen-detection rates by age

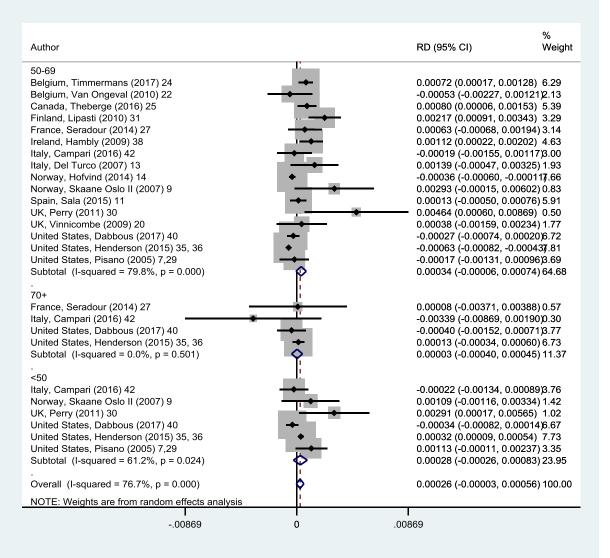
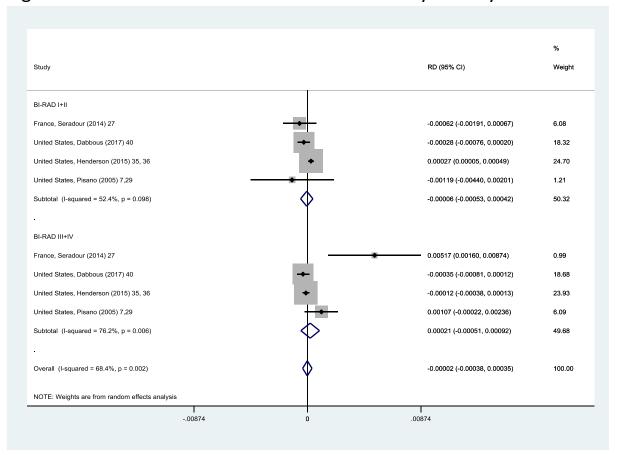




Figure 4: Forest Plot of screen-detection rates by density

