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Supplementary Methods
We follow the plead from [1] where the authors advocated the use of standard setups with a prescribed

set of and simulation parameters for benchmarking methods within identical conditions. We have taken
the input files from the public repository at https://github.com/michellab/Sire-SAMPL5. This simulation
setup was used by a number of research groups [2, 3, 4] to investigate ligand binding with different
methodologies.

We perform the simulations with GROMACS 2019.4 [5] in combination with the PLUMED plugin 2.5.4
[6] and the Pytorch library 1.4 [7]. We use the GAFF force field [8] with RESP charges [9] and the TIP3P
water model [10]. Our timestep is 2 fs and the temperature is set at 300 K via a velocity rescale thermostat
[11] with time constant 0.1 ps. The simulation box is cubic with a side of about 40 Å and it contains 2100
water molecules in solution together with the host OAMe and the chosen guest molecule. Sodium ions
are included to counterbalance excess charges. At every simulation step, the coordinates are aligned so
that the z axis of the box coincides with the binding axis and the simulation box is centred on the virtual
atom V1.

In the following sections, we analyse the most relevant aspects of the strategy proposed in the paper.

The descriptor set
Our descriptor set d specialises in measuring the water presence around chosen points and includes

two species. The first species is centred on a set of ligand atoms L and the second one on virtual atoms V
along the binding axis. The L descriptors specialise in measuring the local water solvation in the vicinity
of the ligand, while the V descriptors control the host’s solvation.

We choose 4 points L for every guest molecule and 8 points V, starting from the centre of the lower
phenyl rings of the host and upward, with a spacing of 2.5 Å, as indicated in Fig. 1 in the main text. The
water coordination number (CN) of every point i is calculated with
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where rij measures the distance between point i and the water oxygen atom j within a sphere of radius
rNL = 10 Å and r0 = 2.5 Å.

The parameters n and m are crucial for tuning the descriptor’s effectiveness in enhanced sampling
applications. Every descriptor has to be sufficiently short range to focus on the important water molecules
in the vicinity of i, but also sufficiently long range to make its derivative smooth with respect to the more
distant water molecules. For di ∈ L we choose n = 6 and m = 10 that provide a good compromise between
short range focus and long range outreach. For di ∈ V, there is no electrostatic repulsion that prevents the
water molecules from reaching rij ≈ 0, so we choose n = 2 and m = 6 that produces a switching function
with an analogous long range behaviour, but a softer core at short distances. The CNs are then normalised
so that their values di lie between −1 and 1. For di ∈ L, we normalise the descriptor by di = d0

i /2.5− 1,
while for di ∈ V we normalise it by di = d0

i /2.8− 1.

Neural network architecture and training
The Deep-LDA strategy that we use in this paper is completely akin to the one presented in [12], so

we refer the interested reader to that paper for more details. A tutorial of Deep-LDA is present at the
following link https://github.com/luigibonati/data-driven-CVs. Our neural network (NN) architecture
is sketched in Fig. 2 in the main text and it consists of a sequence of layers with 12, 10, 8, 6, 4 nodes, with
the rectified linear unit as activation function. Therefore Nd = 12 and Nh = 4.

The first layer takes as input short trajectories of the normalised descriptors d calculated in state B and
U. Given the presence of the funnel restraint in the subsequent enhanced sampling simulations, in the
state U simulations used for training we trap the ligand in a cylindrical volume above the host. For state
B, we take as a starting configuration the binding pose provided by the standard setup with randomised
velocities. Typically, for each state we collect 5 trajectories of 4 ns where the descriptors are printed every
0.25 ps. Out of the resulting 80000 configurations, we randomly select 25600, put them in small batches of
512 elements and feed them to the NN for training.

A regularisation is applied to the within class scatter matrix Sw defined in the main text so that it
becomes S′w = Sw + λI with λ = 0.05. Maximising Fisher’s ratio in Eq. 1 is equivalent to solving the
generalised eigenvalue problem

Sbwi = viS
′
wwi ∀i = 1, 2, (2)

where Sw and Sb are Nh × Nh-dimensional matrices calculated on the last hidden layer h. In this 2-class
problem, the largest eigenvalue v = v1 measures the separation between states B and U along direction
w = w1.

The loss function that we use for training the NN is

L = −v − α
1

1 + (s2 − 1)2 + γ ∑
i
|θi|2 (3)

where the first term is the LDA eigenvalue, the second term prevents the NN output s from becoming too
narrow over the training data, and the third one is an L2 regularization over the weights θi of the network,
with γ = 10−5. We set α = 2/λ.

We optimise the model with ADAM [13] using a learning rate of 2.5 · 10−5. We stop the training when
the model reaches convergence, that we define through the condition v > 1.28/λ. The converged LDA
eigenvector w generates s = wTh. Throughout the paper, we transform the NN output by sw = s + s3.
This transformation improves the behaviour of the Deep-LDA CV sw in enhanced sampling, as it increases
its width in the important input states B and U.

The Funnel restraint
In the enhanced sampling simulations, we use a funnel restraint [14] equivalent to the one previously

employed by [4, 15] on the same system. The funnel limits the space available to the ligand in state U by
confining it to a cylindrical volume above the binding site, as sketched in Fig. 1 in the main text. As the
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ligand approaches the binding site, the funnel restraint becomes wider so that its presence does not affect
the binding process itself.

We define sz as the projection on the binding axis z of the center of the carbon atoms of each ligand
and r its radial component. When sz > 10 Å, the funnel surface is a cylinder with radius Rcyl = 2 Å with
its axis along the z direction. When sz < 10 Å, the funnel opens into an umbrella-like shape with a 45

degree angle whose surface is defined by r = 12− sz.
The force that pushes the ligand for displacements x away from the funnel’s surface is harmonic −kFx

with kF = 20 kJ mol−1 Å
−2

. A further harmonic restraint is applied on sz to prevent the ligand from
getting too far from the host reaching the upper boundary of the simulation box. The corresponding force
is −kU(sz − 18) for sz > 18Å and kF = 40 kJ mol−1 Å

−2
.

During training, we set boundaries to state U so that the training configurations match the ones that oc-
cur in the subsequent enhanced sampling simulations. We activate the funnel described above and two ad-
ditional restraints −kU(sz − 18) for sz > 18 Å and −kU(sz − 14) for sz < 18 Å, with kU = 20 kJ mol−1 Å

−2
.

Because of the funnel presence, the free energy difference between the bound and the true unbound
state that we extract from enhanced sampling simulations needs a correction. It can be calculated from

∆G = − 1
β

log
(

C0πR2
cyl

∫
B

dz exp (−β(W(z)−WU))

)
(4)

where β = 1/kBT, C0 = 1/1660Å
−3

is the standard concentration, z is the coordinate along the funnel’s
axis, W(z) is the free energy along the funnel axis and WU its reference value in state U. More precisely,
we define WU as the average free energy value in the interval 1.5 Å < z < 1.8 Å. The integral is performed
over the state B region that we define as 0.3 Å < z < 0.8 Å.

Enhanced sampling simulations
We perform enhanced sampling with OPES [16], a recently developed evolution of Metadynamics

that helps achieving a fast and robust convergence. For every guest molecule, we independently train 3

different Deep-LDA CVs: sa
w, sb

w and sc
w. With each one of them, we perform an OPES simulation where

both the sz and the Deep-LDA CV sw are biased. We use a deposition rate of 1 ps and a barrier estimate
of 50 kJ mol−1 for ligands G1, G2, of 60 kJ mol−1 for G3 and of 40 kJ mol−1 for G4, G5 and G6. Each
simulation includes 4 replicas running in parallel, sharing and building together the same bias potential
through PLUMED’s Multiple Walkers feature. Each replica runs for 140 ns, for a total simulation time of
560 ns.

All the simulation inputs can be found on the PLUMED-NEST repository plumID:20.025. We include
below here an example of a PLUMED input for the G4 case.

# --- (1) ATOMS DEFINITIONS and ALIGNMENT ---

HOST: GROUP ATOMS=29-224 #host atoms
LIGC: GROUP ATOMS=1-11 #carbon atoms in the ligand
l1: GROUP ATOMS=2 #ligand selected atoms
l2: GROUP ATOMS=3
l3: GROUP ATOMS=11
l4: GROUP ATOMS=14
WO: GROUP ATOMS=234-6533:3 #water oxygen atoms

WHOLEMOLECULES ENTITY0=HOST
FIT_TO_TEMPLATE STRIDE=1 REFERENCE=conf_template.pdb TYPE=OPTIMAL #coordinates alignment
lig: CENTER ATOMS=LIGC

cyl: DISTANCE ATOMS=v1,lig COMPONENTS
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radius: MATHEVAL ARG=cyl.x,cyl.y FUNC=sqrt(x*x+y*y) PERIODIC=NO

v1: FIXEDATOM AT=2.0136,2.0136,2.0 #virtual atoms
v2: FIXEDATOM AT=2.0136,2.0136,2.25
v3: FIXEDATOM AT=2.0136,2.0136,2.5
v4: FIXEDATOM AT=2.0136,2.0136,2.75
v5: FIXEDATOM AT=2.0136,2.0136,3.0
v6: FIXEDATOM AT=2.0136,2.0136,3.25
v7: FIXEDATOM AT=2.0136,2.0136,3.5
v8: FIXEDATOM AT=2.0136,2.0136,3.75

# --- (2) DESCRIPTORS ---

L1: COORDINATION GROUPA=l1 GROUPB=WO SWITCH={RATIONAL D_0=0.0 R_0=0.25 NN=6 MM=10}
NLIST NL_CUTOFF=1.0 NL_STRIDE=5
L2: COORDINATION GROUPA=l2 GROUPB=WO SWITCH={RATIONAL D_0=0.0 R_0=0.25 NN=6 MM=10}
NLIST NL_CUTOFF=1.0 NL_STRIDE=5
L3: COORDINATION GROUPA=l3 GROUPB=WO SWITCH={RATIONAL D_0=0.0 R_0=0.25 NN=6 MM=10}
NLIST NL_CUTOFF=1.0 NL_STRIDE=5
L4: COORDINATION GROUPA=l4 GROUPB=WO SWITCH={RATIONAL D_0=0.0 R_0=0.25 NN=6 MM=10}
NLIST NL_CUTOFF=1.0 NL_STRIDE=5
V1: COORDINATION GROUPA=v1 GROUPB=WO SWITCH={RATIONAL D_0=0.0 R_0=0.25 NN=2 MM=6}
NLIST NL_CUTOFF=1.0 NL_STRIDE=5
V2: COORDINATION GROUPA=v2 GROUPB=WO SWITCH={RATIONAL D_0=0.0 R_0=0.25 NN=2 MM=6}
NLIST NL_CUTOFF=1.0 NL_STRIDE=5
V3: COORDINATION GROUPA=v3 GROUPB=WO SWITCH={RATIONAL D_0=0.0 R_0=0.25 NN=2 MM=6}
NLIST NL_CUTOFF=1.0 NL_STRIDE=5
V4: COORDINATION GROUPA=v4 GROUPB=WO SWITCH={RATIONAL D_0=0.0 R_0=0.25 NN=2 MM=6}
NLIST NL_CUTOFF=1.0 NL_STRIDE=5
V5: COORDINATION GROUPA=v5 GROUPB=WO SWITCH={RATIONAL D_0=0.0 R_0=0.25 NN=2 MM=6}
NLIST NL_CUTOFF=1.0 NL_STRIDE=5
V6: COORDINATION GROUPA=v6 GROUPB=WO SWITCH={RATIONAL D_0=0.0 R_0=0.25 NN=2 MM=6}
NLIST NL_CUTOFF=1.0 NL_STRIDE=5
V7: COORDINATION GROUPA=v7 GROUPB=WO SWITCH={RATIONAL D_0=0.0 R_0=0.25 NN=2 MM=6}
NLIST NL_CUTOFF=1.0 NL_STRIDE=5
V8: COORDINATION GROUPA=v8 GROUPB=WO SWITCH={RATIONAL D_0=0.0 R_0=0.25 NN=2 MM=6}
NLIST NL_CUTOFF=1.0 NL_STRIDE=5

d1: MATHEVAL ARG=L1 FUNC=(x/2.5)-1.0 PERIODIC=NO #normalized descriptors
d2: MATHEVAL ARG=L2 FUNC=(x/2.5)-1.0 PERIODIC=NO
d3: MATHEVAL ARG=L3 FUNC=(x/2.5)-1.0 PERIODIC=NO
d4: MATHEVAL ARG=L4 FUNC=(x/2.5)-1.0 PERIODIC=NO
d5: MATHEVAL ARG=V1 FUNC=(x/2.8)-1.0 PERIODIC=NO
d6: MATHEVAL ARG=V2 FUNC=(x/2.8)-1.0 PERIODIC=NO
d7: MATHEVAL ARG=V3 FUNC=(x/2.8)-1.0 PERIODIC=NO
d8: MATHEVAL ARG=V4 FUNC=(x/2.8)-1.0 PERIODIC=NO
d9: MATHEVAL ARG=V5 FUNC=(x/2.8)-1.0 PERIODIC=NO
d10: MATHEVAL ARG=V6 FUNC=(x/2.8)-1.0 PERIODIC=NO
d11: MATHEVAL ARG=V7 FUNC=(x/2.8)-1.0 PERIODIC=NO
d12: MATHEVAL ARG=V8 FUNC=(x/2.8)-1.0 PERIODIC=NO
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# --- (3) DEEP-LDA CV and other quantities ---

s: PYTORCH_MODEL MODEL=modelG4_a.pt ARG=d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12 #NN output
sw: MATHEVAL ARG=s.node-0 FUNC=x+x^3 PERIODIC=NO #Deep-LDA CV

funnel: MATHEVAL ARG=radius,cyl.z VAR=r,z FUNC=(r+1.0*(-1.2+z))*step(-z+1.)+(r-0.2)*step(z-1.)
PERIODIC=NO
UPPER_WALLS AT=0 ARG=funnel KAPPA=2000.0 LABEL=funnelwall #funnel restraint
UPPER_WALLS AT=1.8 ARG=cyl.z KAPPA=4000.0 EXP=2 LABEL=sz_wall #upper limit of s_z

ang: ANGLE ATOMS=v3,v5,6,11 #angle of a ligand’s axis with z
cosang: MATHEVAL ARG=ang FUNC=cos(x) PERIODIC=NO

# --- (4) OPES ---

OPES_METAD ...
LABEL=opes
ARG=cyl.z,sw
FILE=Kernels.data
STATE_WFILE=compressed_Kernels.data
PACE=500
BARRIER=40
WALKERS_MPI

... OPES_METAD

PRINT ARG=* STRIDE=250 FILE=COLVAR FMT=%8.4f

ENDPLUMED

Calculating average properties
For calculating average properties, such as binding free energies and estimating their statistical error,

we apply the following strategy. Given a guest and a Deep-LDA CV, for each simulation we invert
the trajectories of each of the 4 replicas and merge them into one longer trajectory. This way, the last
configurations of each replica at the last timestesp 140 ns become the first 4 configurations in the new
trajectory and so on. This step helps when calculating free energies, as it simplifies the discarding of the
initial non-equilibrated part of the simulations.

Then, for numerical stability, we filter out the outlier configurations where the funnel restraint has a
bias energy larger than 10 kJ mol−1. We split the resulting trajectory into 5 blocks of 100 ns each, where
block 1 corresponds to the last part of the simulations and block 5 to the initial one. The very beginning of
the simulations is not taken into account in a natural way. In each block b, we independently evaluate the
FES and the binding free energy ∆Gb through Eq. 4. Every block has a different statistical weight given
by wb = ∑j eβV(j) where index j runs over the configurations in the block and V is the bias from OPES.

The mean ∆G is then simply the weighted average over the blocks

∆G =
∑5

b=1 wb ∆Gb

∑5
b=1 wb

(5)

and its error the weighted standard deviation

σ(∆G) =

√
1

Neff − 1
∑5

b=1 wb (∆Gb − ∆G)2

∑5
b=1 wb

. (6)
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The effective sample size

Neff =

(
∑5

b=1 wb

)2

∑5
b=1 w2

b

(7)

measures the level of correlations between the blocks. In the ideal case of low correlation, Neff → 5, i.e.
the number of blocks. Our calculations present a reasonably low level of correlations between blocks as
the lowest value that we observed is Neff ≈ 4.5.

In the results breakdown below, for each guest molecule and Deep-LDA CV we show in tables ∆Gb, wb
and the average ∆G with its error. In the main text, we also present in Tab. 1 the average binding energy
for every ligand where we applied the weighted averaging procedure to all the blocks of all the CVs.

Supplementary Figures
Host OAMe
Water behaviour in the ligand-free state

We first present a study of the interaction of the host with the water in absence of a guest molecule. The
simulations are static bias molecular dynamics simulations of about 80 ns. The static bias was generated
from a preceding OPES simulation where CV V2 was biased with a barrier of 30 kJ mol−1 for about 80 ns.

In order to calculate the number of water molecules inside the host P(n) in Fig 6 (b) in the main
text, we create an alpha-shape using the backbone carbon atoms coordinate of the host molecule (see
Supplementary Fig. 1). The volume enclosed in the alpha-shape makes it a convenient to define whether
a point (here, every water oxygen atom) lies inside or outside of the host binding pocket.

Supplementary Figure 1: Alpha-shape definition. The grey spheres indicate the carbon atoms of the host
molecule that we use to construct an alpha-shape.
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Supplementary Figure 2: Water distribution analysis in the presence of the OAMe host without a guest.
To better understand how water interacts with the host, we simulate the host OAMe in the absence of a
ligand. We run an OPES simulation where we enhance the motion of the water in and out of the pocket by
depositing bias on descriptor V2 and recover unbiased information through standard reweighting. In (a),
histogram in cylindrical coordinates z, r representing the presence of the water oxygen atoms around the
host without any guest molecule being present. Darker colours correspond to a higher water density. We
observe that there is a high probability of finding a water molecule at the centre of the cavity in proximity
of the 8 equatorial oxygen atoms. An analysis of the charge distribution shows that this position is a
minimum of the electrostatic potential (see Supplementary Fig. 4). Starting from this position a short wire
of hydrogen-bonded water molecules can form inside the cavity. As indicated by the density bands, this
wire can possibly link up with water outside the pocket. In (b) we report the probability distribution
of the number of water molecules inside the pocket in the absence of a guest molecule. We show the
snapshots of typical configurations for each case. We find that the number of water molecules inside the
cavity exhibits a broad distribution of states. A typical wet configuration is the one in which three water
molecules form a linear cluster inside the cavity, in agreement with results in an analogous system [17].
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2-Wire 1 3-Ring 0

HB number

Supplementary Figure 3: Probability distribution of the number of hydrogen bonds between water
molecules in the case where 3 water molecules are inside the pocket. In the inset, we show one rep-
resentative snapshot of the most probable case where cavity presents three water molecules in a wire
configuration.
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Supplementary Figure 4: Electrostatic potential along the binding axis. We also show the corresponding
snapshot of a typical configuration with 3 water molecule aligned in the pocket.
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Ligand Binding
We analyse the simulations between host OAMe and each ligand. The results are presented in Supple-

mentary Fig. 5-30 and Tab. 1-8.
At first, we show a trajectory comparison. We perform identical simulations with respect to the Deep-

LDA ones, with the only difference that instead of biasing a Deep-LDA CV we bias another commonly
used physical variable, cos(θ), where θ is the angle between the z axis and a ligand axis. We show the
dynamics of the 4 replicas in this case and compare with the corresponding Deep-LDA simulations. Visual
inspection of the trajectories indicates that in most cases the use of the Deep-LDA CV brings about a faster
transition rate that leads to an improved phase space exploration.

The trajectories are coloured with the instantaneous value of the Deep-LDA CV and we notice a clear
difference between the two. The simulations with CV cos(θ) stay for long stretches of time in a constant
colour area, which corresponds to the system staying in the same state, not performing any transition. On
the other hand, the Deep-LDA simulations tend to have a dynamics that rapidly covers the whole range
of colours which indicates a thorough phase space exploration.

Then, we present Figures analogous to Fig. 5 in the main text, where we plot a 2-dimensional FES over
sz and sw and analyse the water position in different states. At last, we present a 2-dimensional FES over
sz and the coordination number around virtual atom V2 and highlight the different states.

To assess the quality of our results, we perform the error analysis proposed in [1] and repeat the
procedure that the authors made available in the public repository
https://github.com/GilsonLabUCSD/SAMPL5-bootstrapping-error-analysis performing 105 bootstrap cy-
cles. The resulting error statistics is shown in Supplementary Tab. 2. We compare the results of our method
Deep-LDA with methods using the same model: Metadynamics [4], the attach-pull-release method (APR)
[2] and an alchemical method (SOMD-3) [3]. When available, we used the latest results that the authors
provided in the papers, after the SAMPL5 official submission.

OAMe-G1

Supplementary Figure 5: Standard OAMe-G1 trajectories. We show the dynamics of sz in an OPES
simulation where sz and cos θ are biased. The plot is coloured with the instantaneous value of sw.
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Supplementary Figure 6: Deep-LDA OAMe-G1 trajectories. We show the dynamics of sz in an OPES
simulation where sz and sw are biased. The plot is coloured with the instantaneous value of sw.

Supplementary Figure 7: OAMe-G1 FES with respect to sz and sw. We also select some relevant states
and perform unbiased simulations to measure the presence of water. We show histograms of the water
oxygen atoms density in cylindrical coordinates z, r in these states with an illustrative sketch of the guest
and the host. Darker colours correspond to a higher water density.
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Supplementary Figure 8: OAMe-G1 FES with respect to sz and V2. V2 here measures the water presence
in the cavity and is a non-normalized coordination number.
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OAMe-G2

Supplementary Figure 9: Standard OAMe-G2 trajectories. We show the dynamics of sz in an OPES
simulation where sz and cos θ are biased. The plot is coloured with the instantaneous value of sw.

Supplementary Figure 10: Deep-LDA OAMe-G2 trajectories. We show the dynamics of sz in an OPES
simulation where sz and sw are biased. The plot is coloured with the instantaneous value of sw.
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Supplementary Figure 11: OAMe-G2 FES with respect to sz and sw.
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Supplementary Figure 12: OAMe-G2 FES with respect to sz and V2.
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OAMe-G3

Supplementary Figure 13: Standard OAMe-G3 trajectories. We show the dynamics of sz in an OPES
simulation where sz and cos θ are biased. The plot is coloured with the instantaneous value of sw.

Supplementary Figure 14: Deep-LDA OAMe-G3 trajectories. We show the dynamics of sz in an OPES
simulation where sz and sw are biased. The plot is coloured with the instantaneous value of sw.
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Supplementary Figure 15: OAMe-G3 FES with respect to sz and sw.
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Supplementary Figure 16: OAMe-G3 FES with respect to sz and V2.
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OAMe-G4

Supplementary Figure 17: Standard OAMe-G4 trajectories. We show the dynamics of sz in an OPES
simulation where sz and cos θ are biased. The plot is coloured with the instantaneous value of sw.

Supplementary Figure 18: Deep-LDA OAMe-G4 trajectories. We show the dynamics of sz in an OPES
simulation where sz and sw are biased. The plot is coloured with the instantaneous value of sw.
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Supplementary Figure 19: OAMe-G4 FES with respect to sz and V2.

Supplementary Figure 20: Ligand angular distribution in OAMe-G4 intermediate states. Probability
distribution of cos θ for the G4 molecule in the intermediate states I and I1, where θ is the angle between
the binding axis and the -COO group in the ligand.
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Supplementary Figure 21: Water analysis of the OAMe-G4 intermediate states. In (a) and (d), probability
distributions of the number of water molecules within the pocket for respectively intermediate states I
and I1. In (b) and (e), probability distribution of the Br atom orientation with respect to the pocket for
respectively intermediate states I and I1. In (c), a snapshot of the dry pocket with the "out" configuration
for the Br atom in state I. In (f), a snapshot of the wet pocket with 2 water molecules with the "in"
configuration for the Br atom in state I1.
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Supplementary Figure 22: Descriptors relative weights for OAMe-G4. Same as Fig. 6 in the main text,
for all the metastable states of OAMe-G4.
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OAMe-G5

Supplementary Figure 23: Standard OAMe-G5 trajectories. We show the dynamics of sz in an OPES
simulation where sz and cos θ are biased. The plot is coloured with the instantaneous value of sw.

Supplementary Figure 24: Deep-LDA OAMe-G5 trajectories. We show the dynamics of sz in an OPES
simulation where sz and sw are biased. The plot is coloured with the instantaneous value of sw.
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Supplementary Figure 25: OAMe-G5 FES with respect to sz and sw.
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Supplementary Figure 26: OAMe-G5 FES with respect to sz and V2.
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OAMe-G6

Supplementary Figure 27: Standard OAMe-G6 trajectories. We show the dynamics of sz in an OPES
simulation where sz and cos θ are biased. The plot is coloured with the instantaneous value of sw.

Supplementary Figure 28: Deep-LDA OAMe-G6 trajectories. We show the dynamics of sz in an OPES
simulation where sz and sw are biased. The plot is coloured with the instantaneous value of sw.

23



Supplementary Figure 29: OAMe-G6 FES with respect to sz and sw.
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Supplementary Figure 30: OAMe-G6 FES with respect to sz and V2.

24



Host OAH
To highlight the robustness of the Deep-LDA procedure, we present here a set of binding results be-

tween another host from the SAMPL5 challenge, namely OAH, and the same six guest molecules used
previoulsy. The procedure is completely analogous to the one used for host OAMe. In the OPES sim-
ulations, we used a barrier estimate of 50 kJ mol−1 for all ligands except for G4 where we used 90 kJ
mol−1. The results are in line with the previous system and can be found in Supplementary Fig. 31-57

and Supplementary Tab. 9-16.

Water behaviour in the ligand-free state

Supplementary Figure 31: Water distribution analysis in the presence of the OAH host without a guest.
Same as Supplementary Fig. 2 for host OAH.

Ligand Binding
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Supplementary Figure 32: Free energy surfaces projected along the host-guest distance. Same as Sup-
plementary Fig. 3 for host OAH.
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ΔGDeep-LDA = 1.28 ΔGexp + 0.50 kcal/mol 

R2 = 0.97

Supplementary Figure 33: Comparison of the binding free energies with experiments and other calcu-
lations. Same as Supplementary Fig. 4 for host OAH.
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OAH-G1

Supplementary Figure 34: Standard OAH-G1 trajectories. We show the dynamics of sz in an OPES
simulation where sz and cos θ are biased. The plot is coloured with the instantaneous value of sw.
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Supplementary Figure 35: Deep-LDA OAH-G1 trajectories. We show the dynamics of sz in an OPES
simulation where sz and sw are biased. The plot is coloured with the instantaneous value of sw.

Supplementary Figure 36: OAH-G1 FES with respect to sz and sw.
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Supplementary Figure 37: OAH-G1 FES with respect to sz and V2.
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OAH-G2

Supplementary Figure 38: Standard OAH-G2 trajectories. We show the dynamics of sz in an OPES
simulation where sz and cos θ are biased. The plot is coloured with the instantaneous value of sw.
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Supplementary Figure 39: Deep-LDA OAH-G2 trajectories. We show the dynamics of sz in an OPES
simulation where sz and sw are biased. The plot is coloured with the instantaneous value of sw.

Supplementary Figure 40: OAH-G2 FES with respect to sz and sw.
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Supplementary Figure 41: OAH-G2 FES with respect to sz and V2.
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OAH-G3

Supplementary Figure 42: Standard OAH-G3 trajectories. We show the dynamics of sz in an OPES
simulation where sz and cos θ are biased. The plot is coloured with the instantaneous value of sw.
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Supplementary Figure 43: Deep-LDA OAH-G3 trajectories. We show the dynamics of sz in an OPES
simulation where sz and sw are biased. The plot is coloured with the instantaneous value of sw.

Supplementary Figure 44: OAH-G3 FES with respect to sz and sw.
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Supplementary Figure 45: OAH-G3 FES with respect to sz and V2.
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OAH-G4

Supplementary Figure 46: Standard OAH-G4 trajectories. We show the dynamics of sz in an OPES
simulation where sz and cos θ are biased. The plot is coloured with the instantaneous value of sw.
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Supplementary Figure 47: Deep-LDA OAH-G4 trajectories. We show the dynamics of sz in an OPES
simulation where sz and sw are biased. The plot is coloured with the instantaneous value of sw.

Supplementary Figure 48: OAH-G4 FES with respect to sz and sw.
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Supplementary Figure 49: OAH-G4 FES with respect to sz and V2.
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OAH-G5

Supplementary Figure 50: Standard OAH-G5 trajectories. We show the dynamics of sz in an OPES
simulation where sz and cos θ are biased. The plot is coloured with the instantaneous value of sw.
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Supplementary Figure 51: Deep-LDA OAH-G5 trajectories. We show the dynamics of sz in an OPES
simulation where sz and sw are biased. The plot is coloured with the instantaneous value of sw.

Supplementary Figure 52: OAH-G5 FES with respect to sz and sw.

40



Supplementary Figure 53: OAH-G5 FES with respect to sz and V2.
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OAH-G6

Supplementary Figure 54: Standard OAH-G6 trajectories. We show the dynamics of sz in an OPES
simulation where sz and cos θ are biased. The plot is coloured with the instantaneous value of sw.
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Supplementary Figure 55: Deep-LDA OAH-G6 trajectories. We show the dynamics of sz in an OPES
simulation where sz and sw are biased. The plot is coloured with the instantaneous value of sw.

Supplementary Figure 56: OAH-G6 FES with respect to sz and sw.
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Supplementary Figure 57: OAH-G6 FES with respect to sz and V2.
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All hosts

ΔGDeep-LDA = 1.28 ΔGexp + 0.64 kcal/mol 

R2 = 0 96

Supplementary Figure 58: Comparison of the Deep-LDA binding free energies with experiments for
both hosts. We plot the value of ∆G obtained from the Deep-LDA simulations for every ligand and host
versus the experimental values and show the corresponding linear fit. The values for host OAMe are
shown in blue and the values for host OAH in red.

Host OAMe, TIP4P/EW water model
We have tested the Deep-LDA method against changing the water model from TIP3P to TIP4P/EW

[18], performing simulations of the host system OAMe and all the six ligands. The results are presented
in Supplementary Fig. 59-78 and Supplementary Tab. 19-26.

To setup the simulations, we first perform 10 ns of an NPT simulation, followed by 100 ps of NVT
equilibration. Then, in complete analogy with what was described in the main text, we proceed with
training three different Deep-LDA CV and run enhanced sampling OPES simulations.

While the binding binding free energies that we obtain are shifted by about 1.5 kcal mol−1 with respect
to the ones from the TIP3P model simulations, the data is well aligned against experiments as can be seen
in Supplementary Fig. 60. Modulo the shift, the quality of the linear fit is largely unchanged when
compared to the TIP3P model results (see Supplementary Tab. 20). This shift in binding free energy can
be attributed to factors such as a different solvation energy, different hydrogen bonds strengths and the
effect of the water model on the host structure.

In analogy with the TIP3P calculations, for each guest molecule, we show the breakdown of the binding
free energy for every NN CV, a set of trajectories and the 2-dimensional FES with respect to sz, sw and sz,
V2 respectively.

45



5 10 15
s

z
 (Å)

0

10

20

30

40

50

F
E

S
 (

kc
al

/m
o

l)

G1

G2

G3
G4

G5

G6

Supplementary Figure 59: Free energy surfaces projected along the host-guest distance. Same as Sup-
plementary Fig. 3 for host OAMe and water model TIP4P/EW.

ΔGDeep-LDA TIP4P = 1.27 ΔGexp - 0.67 kcal/mol 

R2 = 0.97
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Supplementary Figure 60: Comparison of the binding free energies with experiments and other calcu-
lations. Same as Supplementary Fig. 4 for host OAMe and water model TIP4P/EW, with the data points
shown in green and a dashed linear fit. For comparison’s sake, the results corresponding to the TIP3P
water model are shown with the data points in blue and a dotted linear fit.
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OAMe-G1 TIP4P

Supplementary Figure 61: Deep-LDA OAMe-G1 trajectories with the TIP4P water model. We show
the dynamics of sz in an OPES simulation where sz and sw are biased. The plot is coloured with the
instantaneous value of sw.
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Supplementary Figure 62: OAMe-G1 FES with respect to sz and sw with water model TIP4P.

Supplementary Figure 63: OAMe-G1 FES with respect to sz and V2 with water model TIP4P.
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OAMe-G2 TIP4P

Supplementary Figure 64: Deep-LDA OAMe-G2 trajectories with the TIP4P water model. We show
the dynamics of sz in an OPES simulation where sz and sw are biased. The plot is coloured with the
instantaneous value of sw.
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Supplementary Figure 65: OAMe-G2 FES with respect to sz and sw with water model TIP4P.

Supplementary Figure 66: OAMe-G2 FES with respect to sz and V2 with water model TIP4P.
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OAMe-G3 TIP4P

Supplementary Figure 67: Deep-LDA OAMe-G3 trajectories with the TIP4P water model. We show
the dynamics of sz in an OPES simulation where sz and sw are biased. The plot is coloured with the
instantaneous value of sw.
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Supplementary Figure 68: OAMe-G3 FES with respect to sz and sw with water model TIP4P.

Supplementary Figure 69: OAMe-G3 FES with respect to sz and V2 with water model TIP4P.
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OAMe-G4 TIP4P

Supplementary Figure 70: Deep-LDA OAMe-G4 trajectories with the TIP4P water model. We show
the dynamics of sz in an OPES simulation where sz and sw are biased. The plot is coloured with the
instantaneous value of sw.
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Supplementary Figure 71: OAMe-G4 FES with respect to sz and sw with water model TIP4P.

Supplementary Figure 72: OAMe-G4 FES with respect to sz and V2 with water model TIP4P.
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OAMe-G5 TIP4P

Supplementary Figure 73: Deep-LDA OAMe-G5 trajectories with the TIP4P water model. We show
the dynamics of sz in an OPES simulation where sz and sw are biased. The plot is coloured with the
instantaneous value of sw.
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Supplementary Figure 74: OAMe-G5 FES with respect to sz and sw with water model TIP4P.

Supplementary Figure 75: OAMe-G5 FES with respect to sz and V2 with water model TIP4P.
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OAMe-G6 TIP4P

Supplementary Figure 76: Deep-LDA OAMe-G6 trajectories with the TIP4P water model. We show
the dynamics of sz in an OPES simulation where sz and sw are biased. The plot is coloured with the
instantaneous value of sw.
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Supplementary Figure 77: OAMe-G6 FES with respect to sz and sw with water model TIP4P.

Supplementary Figure 78: OAMe-G6 FES with respect to sz and V2 with water model TIP4P.
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Supplementary Tables
Host OAMe
Ligand Binding

Supplementary Table 1: Binding free energies between the ligands and host OAMe. We show the
mean binding free energy ∆G (kcal mol−1) for different simulation methods and compare them to the
corresponding experimental value.

Ligand Exp Deep-LDA Metadynamics APR SOMD-3

G1 -5.24 −6.31± 0.06 −6.36± 0.39 −7.61± 0.21 −6.78± 0.03
G2 -5.04 −6.19± 0.08 −6.76± 0.41 −6.99± 0.30 −7.59± 0.67
G3 -5.94 −6.27± 0.07 −5.44± 0.56 −7.34± 0.22 −7.42± 0.01
G4 -2.38 −2.51± 0.07 −3.64± 1.63 −1.99± 0.23 −3.36± 0.21
G5 -3.90 −3.91± 0.09 −3.45± 0.34 −5.30± 0.22 −6.69± 0.81
G6 -4.52 −4.97± 0.07 −4.28± 0.34 −6.02± 0.21 −5.61± 0.16

Supplementary Table 2: Error statistics for host OAMe. Following the procedure from [1], we provide
the absolute and offset error of different simulation methods using the same model. RMSE is the root
mean-squared error, R2 is Pearson’s coefficient of determination, m the linear regression slope and τ the
Kendall rank correlation coefficient.

metric method RMSE R2 m τ

absolute Deep-LDA 0.68 (0.67± 0.18) 0.93 (0.91± 0.13) 1.21 (1.24± 0.29) 0.87 (0.72± 0.21)
absolute Metadynamics 1.03 (1.21± 0.41) 0.53 (0.51± 0.29) 0.82 (0.97± 0.79) 0.47 (0.41± 0.31)
absolute APR 1.62 (1.62± 0.24) 0.93 (0.89± 0.15) 1.62 (1.54± 0.40) 0.87 (0.72± 0.22)
absolute SOMD-3 1.87 (1.88± 0.39) 0.78 (0.66± 0.30) 1.12 (1.01± 0.53) 0.60 (0.47± 0.30)

offset Deep-LDA 0.44 (0.44± 0.07) 0.93 (0.91± 0.13) 1.21 (1.24± 0.29) 0.87 (0.72± 0.22)
offset Metadynamics 0.90 (1.14± 0.33) 0.53 (0.51± 0.29) 0.82 (0.97± 0.84) 0.47 (0.40± 0.31)
offset APR 0.86 (0.85± 0.28) 0.93 (0.89± 0.15) 1.62 (1.54± 0.40) 0.87 (0.72± 0.22)
offset SOMD-3 0.69 (0.78± 0.26) 0.78 (0.66± 0.30) 1.12 (1.01± 0.52) 0.60 (0.47± 0.30)

OAMe-G1

Supplementary Table 3: OAMe-G1 binding free energy breakdown. Binding free energy ∆G (kcal mol−1)
of ligand G1 and its corresponding statistical weight w (a.u.) in every simulation block of calculations
using Deep-LDA CVs from three different training.

Block CV sa
w CV sb

w CV sc
w

∆G w ∆G w ∆G w

1 -6.54 409 -6.48 331 -6.47 452

2 -6.30 592 -6.64 583 -6.40 529

3 -5.76 421 -6.45 598 -6.16 407

4 -6.19 459 -6.01 263 -6.33 449

5 -6.00 360 -6.19 370 -6.41 434

all −6.17± 0.13 −6.41± 0.11 −6.36± 0.05
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OAMe-G2

Supplementary Table 4: OAMe-G2 binding free energy breakdown. Binding free energy ∆G (kcal mol−1)
of ligand G1 and its corresponding statistical weight w (a.u.) in every simulation block of calculations
using Deep-LDA CVs from three different training.

Block CV sa
w CV sb

w CV sc
w

∆G w ∆G w ∆G w

1 -6.50 585 -5.88 376 -6.58 781

2 -5.89 373 -6.08 446 -5.94 463

3 -6.25 493 -6.06 415 -5.74 307

4 -6.02 406 -6.46 425 -6.50 591

5 -6.01 391 -6.49 491 -5.56 356

all −6.17± 0.12 −6.21± 0.12 −6.19± 0.22

OAMe-G3

Supplementary Table 5: OAMe-G3 binding free energy breakdown. Binding free energy ∆G (kcal mol−1)
of ligand G1 and its corresponding statistical weight w (a.u.) in every simulation block of calculations
using Deep-LDA CVs from three different training.

Block CV sa
w CV sb

w CV sc
w

∆G w ∆G w ∆G w

1 -6.31 526 -6.58 368 -5.43 305

2 -6.14 380 -6.07 283 -6.01 381

3 -6.24 569 -6.30 440 -6.48 456

4 -6.53 407 -6.41 350 -6.19 447

5 -6.46 596 -5.97 242 -6.39 459

all −6.34± 0.07 −6.30± 0.11 −6.15± 0.17

OAMe-G4

Supplementary Table 6: OAMe-G4 binding free energy breakdown. Binding free energy ∆G (kcal mol−1)
of ligand G1 and its corresponding statistical weight w (a.u.) in every simulation block of calculations
using Deep-LDA CVs from three different training.

Block CV sa
w CV sb

w CV sc
w

∆G w ∆G w ∆G w

1 -2.53 356 -2.94 476 -2.41 468

2 -2.40 377 -1.95 231 -2.12 278

3 -2.39 296 -2.58 481 -2.38 299

4 -2.80 305 -2.55 349 -2.17 205

5 -2.45 251 -2.63 396 -3.07 197

all −2.51± 0.08 −2.60± 0.15 −2.40± 0.15

OAMe-G5
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Supplementary Table 7: OAMe-G5 binding free energy breakdown. Binding free energy ∆G (kcal mol−1)
of ligand G1 and its corresponding statistical weight w (a.u.) in every simulation block of calculations
using Deep-LDA CVs from three different training.

Block CV sa
w CV sb

w CV sc
w

∆G w ∆G w ∆G w

1 -3.69 269 -3.54 334 -3.71 326

2 -3.97 396 -3.83 412 -3.96 441

3 -4.10 378 -3.06 265 -4.18 479

4 -4.11 398 -3.43 326 -4.15 525

5 -4.45 374 -4.13 395 -3.68 426

all −4.09± 0.12 −3.65± 0.18 −3.96± 0.11

OAMe-G6

Supplementary Table 8: OAMe-G6 binding free energy breakdown. Binding free energy ∆G (kcal mol−1)
of ligand G1 and its corresponding statistical weight w (a.u.) in every simulation block of calculations
using Deep-LDA CVs from three different training.

Block CV sa
w CV sb

w CV sc
w

∆G w ∆G w ∆G w

1 -4.84 438 -5.05 469 -4.78 213

2 -5.08 525 -5.37 701 -5.06 487

3 -4.92 405 -4.93 412 -5.01 420

4 -4.79 443 -4.53 395 -5.32 586

5 -5.01 531 -4.25 256 -4.70 370

all blocks −4.94± 0.05 −4.94± 0.20 −5.03± 0.12

Host OAH
Ligand Binding

Supplementary Table 9: Binding free energies between the ligands and host OAH. We show the mean
binding free energy ∆G (kcal mol−1) for different simulation methods and compare them to the corre-
sponding experimental value.

Ligand Exp Deep-LDA Metadynamics APR SOMD-3

G1 -5.04 −6.57± 0.06 −6.07± 0.35 −6.50± 0.23 −6.94± 0.30
G2 -4.25 −4.94± 0.06 −5.08± 0.72 −5.42± 0.22 −5.23± 0.15
G3 -5.06 −6.16± 0.05 −5.92± 0.58 −6.82± 0.23 −7.28± 0.14
G4 -9.37 −11.42± 0.10 −11.85± 0.61 −12.34± 0.23 −12.79± 1.18
G5 -4.50 −4.74± 0.06 −4.80± 0.46 −4.77± 0.24 −7.70± 0.37
G6 -5.33 −6.03± 0.04 −5.52± 0.64 −6.46± 0.23 −6.16± 0.10
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Supplementary Table 10: Error statistics for host OAH. Following the procedure from [1], we provide the
absolute and offset error of different simulation methods using the same model.

metric method RMSE R2 m τ

absolute Deep-LDA 1.21 (1.19± 0.25) 0.97 (0.91± 0.13) 1.28 (1.33± 0.83) 0.47 (0.40± 0.30)
absolute Metadynamics 1.21 (1.28± 0.40) 0.98 (0.76± 0.32) 1.38 (1.21± 2.48) 0.47 (0.44± 0.32)
absolute APR 1.67 (1.65± 0.36) 0.97 (0.88± 0.18) 1.41 (1.49± 0.80) 0.60 (0.55± 0.25)
absolute SOMD-3 2.31 (2.32± 0.50) 0.88 (0.73± 0.31) 1.32 (1.00± 1.39) 0.33 (0.28± 0.39)

offset Deep-LDA 0.60 (0.59± 0.13) 0.97 (0.91± 0.13) 1.28 (1.33± 0.79) 0.47 (0.40± 0.30)
offset Metadynamics 0.75 (0.90± 0.29) 0.98 (0.76± 0.32) 1.38 (1.20± 1.24) 0.47 (0.44± 0.32)
offset APR 0.81 (0.81± 0.25) 0.97 (0.88± 0.18) 1.41 (1.49± 0.95) 0.60 (0.55± 0.25)
offset SOMD-3 0.99 (1.08± 0.31) 0.88 (0.73± 0.31) 1.3 (1.0± 2.0) 0.33 (0.28± 0.39)

OAH-G1

Supplementary Table 11: OAH-G1 binding free energy breakdown. Binding free energy ∆G (kcal mol−1)
of ligand G1 and its corresponding statistical weight w (a.u.) in every simulation block of calculations
using Deep-LDA CVs from three different training.

Block CV sa
w CV sb

w CV sc
w

∆G w ∆G w ∆G w

1 -6.42 35 -6.15 33 -6.89 47

2 -6.15 30 -6.50 39 -6.94 50

3 -6.70 56 -6.45 38 -6.35 39

4 -6.62 42 -6.60 47 -6.90 43

5 -6.52 36 -6.61 36 -6.49 38

all −6.52± 0.09 −6.48± 0.08 −6.74± 0.12

OAH-G2

Supplementary Table 12: OAH-G2 binding free energy breakdown. Binding free energy ∆G (kcal mol−1)
of ligand G1 and its corresponding statistical weight w (a.u.) in every simulation block of calculations
using Deep-LDA CVs from three different training.

Block CV sa
w CV sb

w CV sc
w

∆G w ∆G w ∆G w

1 -4.67 35 -4.83 40 -4.83 27

2 -5.12 45 -4.70 33 -5.41 47

3 -4.97 35 -5.00 42 -4.87 37

4 -4.75 24 -4.87 36 -5.01 42

5 -5.06 36 -4.70 33 -5.13 34

all −4.94± 0.09 −4.83± 0.06 −5.08± 0.11

OAH-G3
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Supplementary Table 13: OAH-G3 binding free energy breakdown. Binding free energy ∆G (kcal mol−1)
of ligand G1 and its corresponding statistical weight w (a.u.) in every simulation block of calculations
using Deep-LDA CVs from three different training.

Block CV sa
w CV sb

w CV sc
w

∆G w ∆G w ∆G w

1 -5.90 43 -5.91 31 -6.12 45

2 -6.12 46 -6.93 53 -6.19 48

3 -5.91 45 -6.24 41 -6.06 42

4 -6.08 44 -5.88 32 -6.26 39

5 -5.98 37 -6.22 43 -6.24 41

all −6.00± 0.05 −6.31± 0.20 −6.17± 0.04

OAH-G4

Supplementary Table 14: OAH-G4 binding free energy breakdown. Binding free energy ∆G (kcal mol−1)
of ligand G1 and its corresponding statistical weight w (a.u.) in every simulation block of calculations
using Deep-LDA CVs from three different training.

Block CV sa
w CV sb

w CV sc
w

∆G w ∆G w ∆G w

1 -11.53 48 -11.11 33 -11.21 33

2 -11.38 35 -10.78 24 -11.80 44

3 -11.56 32 -11.03 25 -11.45 42

4 -12.28 60 -11.21 31 -11.24 26

5 -11.45 36 -11.22 44 -11.44 21

all −11.71± 0.19 −11.10± 0.08 −11.46± 0.12

OAH-G5

Supplementary Table 15: OAH-G5 binding free energy breakdown. Binding free energy ∆G (kcal mol−1)
of ligand G1 and its corresponding statistical weight w (a.u.) in every simulation block of calculations
using Deep-LDA CVs from three different training.

Block CV sa
w CV sb

w CV sc
w

∆G w ∆G w ∆G w

1 -5.09 43 -4.80 41 -4.70 53

2 -4.74 46 -4.35 29 -4.42 32

3 -5.01 45 -4.86 55 -4.71 46

4 -4.56 44 -4.56 38 -4.98 51

5 -4.80 37 -4.59 40 -4.51 49

all −4.85± 0.10 −4.67± 0.09 −4.68± 0.10

OAH-G6
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Supplementary Table 16: OAH-G6 binding free energy breakdown. Binding free energy ∆G (kcal mol−1)
of ligand G1 and its corresponding statistical weight w (a.u.) in every simulation block of calculations
using Deep-LDA CVs from three different training.

Block CV sa
w CV sb

w CV sc
w

∆G w ∆G w ∆G w

1 -6.20 43 -5.96 55 -6.26 45

2 -6.17 46 -5.77 32 -6.22 50

3 -6.13 45 -5.78 28 -6.09 47

4 -5.93 44 -6.10 52 -5.99 40

5 -5.98 37 -5.79 38 -6.02 37

all −6.10± 0.05 −5.87± 0.04 −6.10± 0.04

All hosts

Supplementary Table 17: Binding free energies summary between the ligands and hosts OAMe and
OAH. We show the mean binding free energy ∆G (kcal mol−1) for different simulation methods and
compare them to the corresponding experimental value.

Host Ligand Exp Deep-LDA Metadynamics APR SOMD-3

OAMe G1 -5.24 −6.31± 0.06 −6.36± 0.39 −7.61± 0.21 −6.78± 0.03
OAMe G2 -5.04 −6.19± 0.08 −6.76± 0.41 −6.99± 0.30 −7.59± 0.67
OAMe G3 -5.94 −6.27± 0.07 −5.44± 0.56 −7.34± 0.22 −7.42± 0.01
OAMe G4 -2.38 −2.51± 0.07 −3.64± 1.63 −1.99± 0.23 −3.36± 0.21
OAMe G5 -3.90 −3.91± 0.09 −3.45± 0.34 −5.30± 0.22 −6.69± 0.81
OAMe G6 -4.52 −4.97± 0.07 −4.28± 0.34 −6.02± 0.21 −5.61± 0.16

OAH G1 -5.04 −6.57± 0.06 −6.07± 0.35 −6.50± 0.23 −6.94± 0.30
OAH G2 -4.25 −4.94± 0.06 −5.08± 0.72 −5.42± 0.22 −5.23± 0.15
OAH G3 -5.06 −6.16± 0.05 −5.92± 0.58 −6.82± 0.23 −7.28± 0.14
OAH G4 -9.37 −11.42± 0.10 −11.85± 0.61 −12.34± 0.23 −12.79± 1.18
OAH G5 -4.50 −4.74± 0.06 −4.80± 0.46 −4.77± 0.24 −7.70± 0.37
OAH G6 -5.33 −6.03± 0.04 −5.52± 0.64 −6.46± 0.23 −6.16± 0.10

Supplementary Table 18: Error statistics summary for hosts OAMe and OAH. Following the procedure
from [1], we provide the absolute and offset error of different simulation methods using the same model.

metric method RMSE R2 m τ

absolute Deep-LDA 0.98 (0.97± 0.18) 0.96 (0.93± 0.08) 1.28 (1.29± 0.13) 0.70 (0.62± 0.17)
absolute Metadynamics 1.12 (1.28± 0.29) 0.86 (0.70± 0.26) 1.24 (1.17± 0.39) 0.48 (0.47± 0.19)
absolute APR 1.65 (1.65± 0.21) 0.95 (0.90± 0.10) 1.43 (1.45± 0.17) 0.73 (0.68± 0.13)
absolute SOMD-3 2.1 (2.13± 0.33) 0.87 (0.74± 0.24) 1.26 (1.17± 0.33) 0.39 (0.39± 0.23)

offset Deep-LDA 0.52 (0.52± 0.08) 0.96 (0.93± 0.08) 1.22 (1.24± 0.12) 0.73 (0.68± 0.15)
offset Metadynamics 0.83 (1.05± 0.23) 0.85 (0.68± 0.26) 1.19 (1.13± 0.38) 0.52 (0.50± 0.19)
offset APR 0.84 (0.85± 0.18) 0.94 (0.90± 0.11) 1.42 (1.44± 0.17) 0.73 (0.68± 0.13)
offset SOMD-3 0.85 (0.96± 0.22) 0.86 (0.73± 0.24) 1.23 (1.13± 0.31) 0.45 (0.41± 0.23)
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Host OAMe, TIP4P/EW water model

Supplementary Table 19: Binding free energies between the ligands and host OAMe with water model
TIP4P. We show the mean binding free energy ∆G (kcal mol−1) for Deep-LDA simulations with water
model TIP4P/EW and compare them to the corresponding experimental value and the Deep-LDA results
with water model TIP3P.

Ligand Exp Deep-LDA TIP3P Deep-LDA TIP4P

G1 -5.24 −6.31± 0.06 −7.10± 0.11
G2 -5.04 −6.19± 0.08 −7.42± 0.09
G3 -5.94 −6.27± 0.07 −8.40± 0.08
G4 -2.38 −2.51± 0.07 −3.81± 0.15
G5 -3.90 −3.91± 0.09 −5.67± 0.08
G6 -4.52 −4.97± 0.07 −5.95± 0.11

Supplementary Table 20: Error statistics for host OAMe and water model TIP4P. Following the procedure
from [1], we provide the absolute and offset error of Deep-LDA simulations with water model TIP4P/EW
compared to simulations using water model TIP3P.

metric method RMSE R2 m τ

absolute Deep-LDA TIP4P 1.93 (1.93± 0.18) 0.97 (0.95± 0.06) 1.27 (1.30± 0.20) 0.87 (0.72± 0.21)
absolute Deep-LDA TIP3P 0.68 (0.67± 0.18) 0.93 (0.91± 0.13) 1.21 (1.24± 0.29) 0.87 (0.72± 0.21)

offset Deep-LDA TIP4P 0.41 (0.42± 0.08) 0.97 (0.95± 0.06) 1.27 (1.30± 0.20) 0.87 (0.72± 0.22)
offset Deep-LDA TIP3P 0.44 (0.44± 0.07) 0.93 (0.91± 0.13) 1.21 (1.24± 0.29) 0.87 (0.72± 0.22)

OAMe-G1 TIP4P

Supplementary Table 21: OAMe-G1 with water model TIP4P binding free energy breakdown. Binding
free energy ∆G (kcal mol−1) of ligand G1 and its corresponding statistical weight w (a.u.) in every
simulation block of calculations using Deep-LDA CVs from three different training.

Block CV sa
w CV sb

w CV sc
w

∆G w ∆G w ∆G w

1 -6.65 25 -6.53 22 -6.82 35

2 -7.01 49 -7.06 28 -6.55 31

3 -7.29 52 -7.33 29 -6.83 28

4 -6.53 32 -7.71 61 -7.54 47

5 -7.03 33 -7.63 31 -6.97 34

all −6.96± 0.14 −7.37± 0.22 −7.00± 0.18

OAMe-G2 TIP4P
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Supplementary Table 22: OAMe-G2 with water model TIP4P binding free energy breakdown. Binding
free energy ∆G (kcal mol−1) of ligand G1 and its corresponding statistical weight w (a.u.) in every
simulation block of calculations using Deep-LDA CVs from three different training.

Block CV sa
w CV sb

w CV sc
w

∆G w ∆G w ∆G w

1 -7.54 44 -7.15 44 -7.81 46

2 -7.74 51 -7.31 61 -7.73 40

3 -6.97 37 -7.11 48 -7.81 40

4 -7.48 55 -7.51 51 -7.82 44

5 -7.18 35 -6.80 46 -7.21 41

all −7.42± 0.13 −7.19± 0.12 −7.68± 0.12

OAMe-G3 TIP4P

Supplementary Table 23: OAMe-G3 with water model TIP4P binding free energy breakdown. Binding
free energy ∆G (kcal mol−1) of ligand G1 and its corresponding statistical weight w (a.u.) in every
simulation block of calculations using Deep-LDA CVs from three different training.

Block CV sa
w CV sb

w CV sc
w

∆G w ∆G w ∆G w

1 -8.24 42 -8.48 40 -8.47 43

2 -8.40 41 -8.76 53 -7.82 27

3 -8.83 59 -8.05 37 -8.84 52

4 -8.20 43 -7.98 36 -8.60 43

5 -8.16 33 -8.30 37 -8.17 37

all −8.41± 0.14 −8.35± 0.15 −8.45± 0.17

OAMe-G4 TIP4P

Supplementary Table 24: OAMe-G4 with water model TIP4P binding free energy breakdown. Binding
free energy ∆G (kcal mol−1) of ligand G1 and its corresponding statistical weight w (a.u.) in every
simulation block of calculations using Deep-LDA CVs from three different training.

Block CV sa
w CV sb

w CV sc
w

∆G w ∆G w ∆G w

1 -3.92 70 -3.24 25 -4.02 44

2 -2.70 18 -4.89 60 -3.34 38

3 -3.83 57 -3.93 52 -4.46 36

4 -3.05 33 -3.59 39 -4.21 39

5 -3.26 42 -3.35 41 -3.82 38

all −3.54± 0.23 −3.95± 0.33 −3.97± 0.19

OAMe-G5 TIP4P
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Supplementary Table 25: OAMe-G5 with water model TIP4P binding free energy breakdown. Binding
free energy ∆G (kcal mol−1) of ligand G1 and its corresponding statistical weight w (a.u.) in every
simulation block of calculations using Deep-LDA CVs from three different training.

Block CV sa
w CV sb

w CV sc
w

∆G w ∆G w ∆G w

1 -5.17 31 -5.40 45 -6.05 60

2 -5.73 52 -5.42 48 -5.81 31

3 -5.83 57 -6.02 49 -6.20 43

4 -5.14 35 -5.49 41 -5.42 41

5 -5.63 38 -5.93 40 -5.44 47

all −5.56± 0.15 −5.65± 0.14 −5.80± 0.16

OAMe-G6 TIP4P

Supplementary Table 26: OAMe-G6 with water model TIP4P binding free energy breakdown. Binding
free energy ∆G (kcal mol−1) of ligand G1 and its corresponding statistical weight w (a.u.) in every
simulation block of calculations using Deep-LDA CVs from three different training.

Block CV sa
w CV sb

w CV sc
w

∆G w ∆G w ∆G w

1 -6.05 45 -6.49 50 -5.70 49

2 -5.56 21 -5.78 48 -5.53 45

3 -6.03 43 -6.91 33 -5.21 21

4 -6.21 34 -5.51 29 -5.72 36

5 -6.00 54 -5.91 58 -6.26 31

all −6.01± 0.09 −6.11± 0.24 −5.70± 0.16
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