
Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The authors tackle an important problem comparing cell lines to tumor samples leveraging global 

transcriptional profiles. They developed an unsupervised alignment method (Celligner) and applied it 

to integrate several large-scale cell line and tumor RNA-Seq datasets. The method aligns the majority 

of cell lines with tumor samples of the same cancer type and reveals large differences in tumor/cell 

line similarity across disease types. Furthermore, Celligner identifies a distinct group of several 

hundred cell lines from diverse lineages that present a more mesenchymal and undifferentiated 

transcriptional state and which exhibit distinct chemical and genetic dependencies. The manuscript is 

well written an is easy to follow. The authors aggregate several very large datasets and the analysis is 

robust and innovative however several points need to be addressed prior to publication: 

• The version of the manuscript that was submitted seems to have track changes on 

• Figure 1a, it would be useful to assign the shape to the dots of the samples per study 

• The authors note the importance of tumor purity – one additional step in the analysis could be to 

account for tumor purity in their analysis 

• Figure b – what is the motivation behind using top 70 PCs, has a sensitivity analysis been done? 

• A comprehensive comparison to the rankings based on simple correlation from Yu et al and Cellector 

would be helpful to evaluate the approach. 

• Have the authors considered other validation approaches? 

• Integrating mutation data to see if similar cell lines are closer to tumor types of interest based on 

various omics measurements would be worthwhile. 

• Are there any clinical or other annotation features of the set of “novel group of transcriptionally and 

functionally distinct cell lines”? Maybe they are older? 

 

Minor: 

Page 2 typo: tumora should be “tumors” 

 

 

 

Reviewer #2: 

Remarks to the Author: 

Overall, this is a well-written and timely paper about the important bioinformatic problem of matching 

and assessing the relevance of cell lines to the tumor tissues from which they were derived. The 

authors adapt data harmonization methods commonly used in single-cell RNA-seq for matching cell 

types across disparate data sets to great effect at the level of gene expression, and even demonstrate 

tumor subtype-level matching and point out systematic issues with, for example, cell lines derived 

from CNS tumors. I am enthusiastic about this paper, but have the following suggestions: 

 

1) It would be interesting to include a real "negative control" cell line or cell type in this analysis. The 

authors show important trends like the overall poor alignment of CNS- and thyroid-derived cell lines 

with tumor tissue expression profiles, but it would be worth knowing how a completely non-neoplastic 

cell aligns to the tumor tissues. One could even take something like a relatively homogeneous cardiac-

derived cell (a tissue where tumors don't really form). 

 

2) While the methodology is well-described here, the study lacks a systematic performance 

comparison to competing methods, which I think should be an essential part of any paper primarily 

reporting a new technique. The authors mention the work of Yu et al, Nature Communications, 2019 

which used Combat and a specific correlation-based strategy to compare cell lines and tumor tissues. 

While the authors show a UMAP projection of COMBAT results in Supp. Fig. 1, there is a little more to 

the particular methodology of Yu et al, and there's no real quantitative comparison - just a 

visualization. In addition, there are other prominent studies that developed very different approaches 

to this problem. For example, Alvarez et al, Nature Genetics, 2019 also tackles this problem of 



matching cell lines and other patient-derived models to tumor tissue at the level of gene expression. 

They use protein activities inferred from RNA-seq data via regulatory network reconstruction. While 

these are just suggested points of comparison, I feel that some type of quantitative assessment of 

how this new approach performs relative to others would improve the paper. 



Detailed responses to reviewers 
 
Reviewer #1: 
 
The authors tackle an important problem comparing cell lines to tumor samples leveraging 
global transcriptional profiles. They developed an unsupervised alignment method (Celligner) 
and applied it to integrate several large-scale cell line and tumor RNA-Seq datasets. The 
method aligns the majority of cell lines with tumor samples of the same cancer type and reveals 
large differences in tumor/cell line similarity across disease types. Furthermore, Celligner 
identifies a distinct group of several hundred cell lines from diverse lineages that present a more 
mesenchymal and undifferentiated transcriptional state and which exhibit distinct chemical and 
genetic dependencies. The manuscript is well written an is easy to follow. The authors 
aggregate several very large datasets and the analysis is robust and innovative however 
several points need to be addressed prior to publication: 
 
We thank the reviewer for the positive comments. 
 
• The version of the manuscript that was submitted seems to have track changes on 
 
We apologize for that error and have updated the manuscript so that all past changes have 
been accepted and track changes just reflect new additions. 
 
• Figure 1a, it would be useful to assign the shape to the dots of the samples per study 
 
We have changed the shape of the cell line samples to improve the clarity of the plot and further 
distinguish them from the tumor samples (revised Figure 1a).  
 
• The authors note the importance of tumor purity – one additional step in the analysis could be 
to account for tumor purity in their analysis 
 
We thank the reviewer for bringing up this point. Indeed, we decided to use unsupervised 
methods to correct for the effects of normal cell contamination of tumor samples, which do not 
rely on pre-existing estimates of tumor purity. This allowed us to circumvent challenges with 
incomplete availability of purity estimates across tumor datasets, as well as other limitations of 
existing methods. For example, expression-based methods like ESTIMATE (Yoshihara et al, 
Nature Communications 2013) rely on pre-defined contaminating cell signatures, while 
ABSOLUTE (Carter et al, Nature Biotechnology 2012) uses allele-specific copy numbers and 
requires user-input to determine ploidy.  
 Nevertheless, we found that signatures identified and removed using contrastive PCA 
(cPCA) were highly correlated with existing estimates of tumor purity (Figure 1d). Thus, 
‘regressing out’ the expression signature associated with tumor purity estimates would yield 
similar results, though it does not account for the multiple tumor-specific expression signatures 
identified by cPCA.  



We also note that in the revised manuscript we have added direct comparisons of our 
results with those from a related analysis in Yu et al. (Nature Communications, 2019), which 
used existing estimates of tumor purity to account for the effects of normal cell contamination. 
This analysis (in revised Supplementary fig 6, section ‘Celligner enables improved tumor-cell 
line similarity estimates’, paragraph 2) shows a high level of concordance between our results 
and theirs (see additional information about the comparison between our method and the Yu et 
al. method below), further suggesting that both approaches for accounting for variable tumor 
purity yield broadly similar results. 
 Nevertheless, we believe an important direction for future work could be to develop 
flexible methods that can account for available prior estimates of tumor purity, as well as 
additional ‘prior knowledge’ such as normal cell expression signatures, while still leveraging the 
power of unsupervised methods such as cPCA and MNN to best account for the effects of 
normal cell contamination (revised discussion, paragraph 6).  
 
 
• Figure b – what is the motivation behind using top 70 PCs, has a sensitivity analysis been 
done? 
 
We thank the reviewer for highlighting the need for further explanation of this point. We initially 
selected the number of PCs (70) based on an assessment of their statistical significance using a 
jackstraw analysis (Chung & Storey, Bioinformatics 2015). However, the resulting estimates of 
cell line/tumor expression similarity are largely insensitive to the precise choice, and indeed 
remain quite similar when measuring distances in the full gene space (using data for all 19,188 
genes). While performing additional benchmarking analysis for these revisions we determined 
that the agreement between annotated cell line types and classifications based on a nearest 
tumor neighbor classifier was actually slightly higher using the full gene space compared to a 
PCA subspace (see plot below). Given this, and to circumvent the need for introducing an 
additional free parameter (number of PCs), we have updated our analysis in the revised 
manuscript to use the full gene space for analysis of tumor/cell line similarity. Note that we still 
use a PCA subspace to calculate the UMAP embedding and clustering. 

Additionally, we have updated our analysis to use Pearson correlation distance (instead 
of Euclidean distance), as we found this produced similar results overall (see plot below) while 
providing more directly interpretable estimates of tumor/cell line similarity. These updated 
methods are reflected in the revised figures Figure 3a, Figure 3b, and Supplementary Figure 4, 
as well as the nearest neighbor classifications included in Supplementary Table 1.  
 



 
Agreement between Celligner cell line tumor type classifications and annotated cancer 
type. We used various PCA subspaces and gene spaces to calculate the distances between 
cell line and tumors used to classify each cell line. We found that using Pearson correlation 
distance within the space of all functional genes (n = 19,188 genes) produced the highest 
agreement between the Celligner classifications and the annotated type. 
 
• A comprehensive comparison to the rankings based on simple correlation from Yu et al and 
Cellector would be helpful to evaluate the approach. 
 
We thank the reviewer for pointing out the value of adding more extensive benchmarking 
comparisons between the results of Celligner and those of previously published methods. In the 
revised manuscript, we have incorporated extensive comparisons of the tumor/cell line similarity 
estimates using Celligner with those from a related analysis in Yu et al. (Nature 
Communications 2019), as well as from CancerCellNet (Peng et al., bioRxiv 2020), a 
computational method that uses random forest classification to measure the similarity of cancer 
models’ expression profiles with patient tumor data.  

Specifically, we compared estimates of how similar each cell line’s expression profile is 
to tumor samples of the same annotated type when using the Celligner-aligned data vs. the Yu 
et al. method, as well as the random forest classification probabilities from CancerCellNet (see 
revised Supplementary Figure 6 and Supplementary Figure 7 and the section ‘Celligner enables 
improved tumor-cell line similarity estimates’). Overall, we found good agreement between the 
Celligner results and the other methods for many of the cancer types.  

We also compared the nearest neighbor classifications of cell lines’ tumor type based on 
Celligner with tumor type classifications from Yu et al. and CancerCellNet (see revised methods 
sections ‘Yu et al. comparison’ and ‘CancerCellNet comparison’). We found that Celligner-based 
cell line classifications agreed with the annotated cancer type substantially more frequently than 
those from Yu et al. (Celligner: 50% agreement, Yu et al.: 38%; n = 666 cell lines). We also 



observed a similar level of improvement with Celligner when compared to CancerCellNet’s 
classifications on a matched cohort (Celligner: 49% agreement; CancerCellNet: 37%; n = 657 
cell lines).  

Overall these results show that estimates of cell line/tumor transcriptional similarity using 
Celligner are broadly similar to previously published results for most tumor types, but Celligner 
shows substantially better agreement when benchmarking tumor-type classification against 
annotated types.  

We were not able to directly compare the results of Celligner to CELLector itself 
(Najgebauer et al., Cell Systems 2020), as CELLector defines key genomic features and 
subtypes based on a specific tumor population of interest, and then identifies cell lines that are 
well represented by those population-specific features. However, in the revised manuscript we 
have added comparisons of Celligner’s expression-based assessment of cell line-tumor 
similarity with a corresponding analysis based on the genomic features used by CELLector: a 
dataset of 1,250 clinically relevant mutation, copy number, and methylation features defined by 
Iorio et al. (Cell 2016) as ‘cancer functional events (CFEs)’. We compared the rankings of cell 
lines by cancer type with these features and using Celligner-aligned expression data (see 
revised Supplementary Figure 8, section ‘Celligner enables improved tumor-cell line similarity 
estimates’ paragraph 3, and methods section ‘Cancer Function Event comparison’), and found 
that, although both datasets classified cell lines as their annotated type with similar accuracy 
(Celligner: 60% agreement, CFEs: 61% agreement; n = 459 cell lines), the rankings within 
disease types were dissimilar.  

 
• Have the authors considered other validation approaches? 
 
Although we ultimately lack a ‘ground truth’ for evaluating the similarity between specific tumors 
and cell lines, we have incorporated several independent approaches to validate the results of 
our method, including the additional benchmarking comparisons with previous work added in 
the revision (as described above).  

Beyond showing overall agreement between annotated tumor types and subtypes, we 
also show that sample populations that we know should be dissimilar between the cell lines and 
tumors are indeed represented distinctly in our Celligner analysis. In our initial manuscript we 
demonstrated this approach using myeloma samples (Figure 4c/d), which exist only in the cell 
line data, and kidney chromophobe samples (Figure 4f), which exist only in the tumor data. In 
the revised manuscript, we have also added an additional example (revised Supplementary 
Figure 5) using fibroblast cell lines, showing that they cluster distinctly from the tumor samples.  
 
 
• Integrating mutation data to see if similar cell lines are closer to tumor types of interest based 
on various omics measurements would be worthwhile. 
 
We thank the reviewer for this suggestion. Some genomic alterations can result in 
corresponding changes in gene expression (Osmanbeyoglu et al, Nature Communications 2017 
& Zhang et al, Nature Genetics 2018) and we did find that some cell lines that had previously 
been identified as dissimilar to the tumor type in terms of mutations, such as OC316, which 



Domcke et al (Nature Communications 2016) identified as being hypermutated, and COLO320, 
which Ronen et al. (Life Science 2019) found lacked major colorectal driver genes, were also 
identified as dissimilar to tumors in our analysis. Not all mutations will be reflected in distinct 
gene expression profiles though, and our systematic comparison between cell line tumor-
similarity estimates using Celligner and a set of mutation, copy number, and methylation 
features showed a large degree of disagreement (see above; revised Supplementary Fig. 8, and 
section ‘Celligner enables improved tumor-cell line similarity estimates’ paragraph 3). 

Incorporating mutations presents its own challenges as cell lines generally lack paired 
normal samples, making it difficult to distinguish between cancer-related mutations and germline 
mutations. Differences in mutation calling pipelines between tumor and cell line data sets can 
create additional challenges. Overall, we believe that incorporating mutation data, as well as 
other ‘omics’ features, in systematic analysis of cell line tumor similarity is an important direction 
of future work building on Celligner and other methods. 
 
• Are there any clinical or other annotation features of the set of “novel group of transcriptionally 
and functionally distinct cell lines”? Maybe they are older? 
 

In the revised manuscript we compared the group of ‘undifferentiated’ cell lines to the 
remaining cell lines using a number of available annotations, including: year of establishment of 
the cell line, age of the patient from which the cell line was derived, sex of the patient from 
which the cell line was derived, and whether the cell lines were derived from primary or 
metastatic samples (Supplementary Figure 10). Although there is a significant difference 
(p=.011) in the age of the patients from which the cell lines were derived for ‘undifferentiated’ 
cell lines (with the undifferentiated cell lines being derived from slightly older patients), the 
difference was quite small (a difference in means of about 5 years). The difference in the 
proportion of cell lines derived from primary patient samples (with more of the undifferentiated 
cell lines being derived from primary samples) is also significant (p=.027), although this may be 
confounded by differences in lineage composition between the two groups. The year of 
establishment and sex of the cell lines are not significantly different between the two groups of 
cell lines. 

We also examined additional subtype annotations, and observed that the 
undifferentiated cluster included melanoma tumors (as well as cell lines) that were identified as 
undifferentiated (Tsoi et al., Cancer Cell 2018) and basal B breast cancer cell lines, which were 
identified to have more stem-like and mesenchymal expression profiles (Neve et al., Cancer 
Cell 2006) (Fig. 4b, ‘Discussion’ paragraph 4).  
 
 
 
Minor: 
Page 2 typo: tumora should be “tumors” 
 
Thanks for catching that error. It has been corrected. 
 
 



 
Reviewer #2: 
 
Overall, this is a well-written and timely paper about the important bioinformatic problem of 
matching and assessing the relevance of cell lines to the tumor tissues from which they were 
derived. The authors adapt data harmonization methods commonly used in single-cell RNA-seq 
for matching cell types across disparate data sets to great effect at the level of gene expression, 
and even demonstrate tumor subtype-level matching and point out systematic issues with, for 
example, cell lines derived from CNS tumors. I am enthusiastic about this paper, but have the 
following suggestions: 
 
We thank the reviewer for these positive remarks.  
 
1) It would be interesting to include a real "negative control" cell line or cell type in this analysis. 
The authors show important trends like the overall poor alignment of CNS- and thyroid-derived 
cell lines with tumor tissue expression profiles, but it would be worth knowing how a completely 
non-neoplastic cell aligns to the tumor tissues. One could even take something like a relatively 
homogeneous cardiac-derived cell (a tissue where tumors don't really form). 
 
We fully agree with the reviewer about the need for “negative controls” to show how a non-
neoplastic cell aligns to the tumor tissues. For the non-neoplastic samples, we chose to use a 
group of ~40 fibroblast cell lines. While the data for these cell lines was included in our original 
analysis, we did not highlight their potential use as a negative control. In the revised manuscript 
(revised Supplementary Figure 5, section ‘Alignment preserves meaningful subtype 
relationships’, paragraph 5), we show that nearly all fibroblast cell lines cluster separately from 
tumor samples, as expected. 
 
 
2) While the methodology is well-described here, the study lacks a systematic performance 
comparison to competing methods, which I think should be an essential part of any paper 
primarily reporting a new technique. The authors mention the work of Yu et al, Nature 
Communications, 2019 which used Combat and a specific correlation-based strategy to 
compare cell lines and tumor tissues. While the authors show a UMAP projection of COMBAT 
results in Supp. Fig. 1, there is a little more to the particular methodology of Yu et al, and there's 
no real quantitative comparison - just a visualization. In addition, there are other prominent 
studies that developed very different approaches to this problem. For example, Alvarez et al, 
Nature Genetics, 2019 also tackles this problem of matching cell lines and other patient-derived 
models to tumor tissue at the level of gene expression. They use protein activities inferred from 
RNA-seq data via regulatory network reconstruction. While these are 
just suggested points of comparison, I feel that some type of quantitative assessment of how 
this new approach performs relative to others would improve the paper. 
 
We thank the reviewer for pointing out the value of adding more extensive benchmarking 
comparisons between the results of Celligner and those of previously published methods. In the 



revised manuscript, we have incorporated extensive comparisons of the tumor/cell line similarity 
estimates using Celligner with those from Yu et al. (Nature Communications 2019), as well as 
from CancerCellNet (Peng et al., bioRxiv 2020), a computational method that uses random 
forest classification to measure the similarity of cancer models’ expression profiles with patient 
tumor data.  

Specifically, we compared estimates of how similar each cell line’s expression profile is 
to tumor samples of the same annotated type when using the Celligner-aligned data vs. the Yu 
et al. method, as well as the random forest classification probabilities from CancerCellNet (see 
revised Supplementary Figure 6 and Supplementary Figure 7 and the section ‘Celligner enables 
improved tumor-cell line similarity estimates’). Overall, we found good agreement between the 
Celligner results and the other methods for many of the cancer types. We also compared the 
nearest neighbor classifications of cell lines’ tumor type based on Celligner with tumor type 
classifications from Yu et al. and CancerCellNet (see revised methods sections ‘Yu et al. 
comparison’ and ‘CancerCellNet comparison’). We found that Celligner-based cell line 
classifications agreed with the annotated cancer type substantially more frequently than those 
from Yu et al. (Celligner: 50% agreement, Yu et al.: 38%; n = 666 cell lines). We also observed 
a similar level of improvement with Celligner when compared to CancerCellNet’s classifications 
on a matched cohort (Celligner: 49% agreement; CancerCellNet: 37%; n = 657 cell lines).  

Overall these results show that estimates of cell line/tumor transcriptional similarity using 
Celligner are broadly similar to previously published results for most tumor types, but Celligner 
shows substantially better agreement when benchmarking tumor-type classification against 
annotated types.  
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Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The authors have adequately addressed my comments and suggestions. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

In my opinion, the authors have done a thorough job of addressing my previous criticisms. 



REVIEWERS' COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

The authors have adequately addressed my comments and suggestions. 

 

Thank you for your review.  

 

 

Reviewer #2 (Remarks to the Author): 

 

In my opinion, the authors have done a thorough job of addressing my previous criticisms. 

 

Thank you for your review.  


