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Supplementary Note 1：Comparison with assemble-then-correct assemblers 
We compared our NECAT assembler with widely used assemble-then-correct 

assemblers: miniasm1, Smartdenovo, wtdbg22, Flye3, Raven4, and Shasta5 

(Supplementary Note 7) using Nanopore data of E. coli, S. cerevisiae, A. thaliana, D. 

melanogaster, C. reinhardtii, O. sativa, and S. pennellii. The miniasm and Shasta didn’t 

have correction step and reported assemblies with a much larger number of mismatches 

and indels, which were not suitable for the evaluation using QUAST6. To make a fair 

comparison, we ran Racon7 to improve the accuracy of their assemblies. In addition, 

the assemblies of Shasta contained many short contigs, we filtered out the contigs ≤

500𝑏𝑏𝑏𝑏  before the evaluation and polishing. We also compared the assemblies of 

NECAT and Flye on dataset human NA12878 (rel6). In general, assemble-then-correct 

assemblers run fast but obtain relatively poor assembly results.  

As shown in Supplementary Table 5, for relatively less complex genomes, such as 

E. coli, S. cerevisiae, all assemblies reported similar NG50 and NGA50, and the running 

times of NECAT are even less than those of most assemble-then-correct assemblers. 

For A. thaliana, five assemblers, except Smartdenovo and Shasta, reported similar 

assemblies. For D. melanogaster, NECAT reported the best NG50 and NGA50. For 

more complex genomes, such as C. reinhardtii, and O. sativa, NECAT reported close 

to the best NG50 while Flye reported the best in C. reinhardtii and Miniasm reported 

the best in O. sativa. The NECAT reported the best NGA50 for O. sativa and Flye also 

reported the best NGA50 for C. reinhardtii. For even more complex genome, S. 

pennellii, NECAT reported the best NG50 and NGA50, which were much higher than 



those reported by other assemblers. For human NA12878 (rel6), Flye reported higher 

NG50 and NGA50 than those reported by NECAT, while NECAT reported only one-

fourth misassemblies errors. And all assemblers reported similar performance on the 

number of misassemblies, QV, and gene completeness on the assemblies of E. coli, S. 

cerevisiae, A. thaliana, D. melanogaster, C. reinhardtii, O. sativa, and S. pennellii. 

  



Supplementary Note 2：Validating assemblies from Nanopore reads 

We further validated our assemblies by comparing them to reference genomes. The 

assemblies of the E. coli, S. cerevisiae, D. melanogaster, C. reinhardtii were polished 

by nanopolish8 and pilon9. The assemblies of A. thaliana were polished by Arrow10. 

The assemblies of O. sativa and Human genomes were polished by Racon11. The 

assemblies of S. pennellii genome were polished by pilon (Supplementary Note 10). 

First, we mapped the assemblies of E. coli, S. cerevisiae, A. thaliana, C. reinhardtii, D. 

melanogaster, O. sativa, and Human N12878 from Nanopore reads to corresponding 

reference genomes using MUMmer (v4.0)12, then evaluated the mapping results using 

GAGE scripts13. Except for the presence of minor structural variations, most assemblies 

were structurally consistent with reference genomes (Supplementary Figures 6-12). 

Most assemblies were good collinearity with reference genomes, except the assemblies 

of A. thaliana and D. melanogaster generated by wtdbg2, C. reinhardtii generated by 

Canu+smartdenove and smartdenove, and A. thaliana generated by Raven. Second, for 

S. pennellii14,  we mapped the assembly of NECAT to the assemblies of the other 

pipelines from public paper using MUMmer (v4.0)12, our assembly was structurally 

consistent with the assemblies except for the presence of minor structural variations 

(Supplementary Figure 13) since NG50 of NECAT-generated assembly was much 

longer than the original reference genome that was generated by Canu+Smartdenvo14. 

The tiling figure also showed that continuity of human N12878 assembly generated by 

NECAT was better than that generated by Canu (Supplementary Figure 14).  

Supplementary Table 6 provided GAGE13 accuracy metrics for the assemblies of E. 



coli, S. cerevisiae, A. thaliana, C. reinhardtii, and D. melanogaster. The numbers of 

single-nucleotide polymorphisms (SNPs) and large indels (>10bps) in the genomes 

assembled by Canu, Canu+Smartdenovo, Smartdenovo, miniasm+Racon, wtdbg2, Flye, 

Raven, Shasta+Racon, and NECAT were similar. Assemblies reported by NECAT 

maintained at least 99.30% coverage of their reference genomes.   

We then mapped 17,294 annotated genes from D. melanogaster15, 16 onto its three 

assemblies (Supplementary Note 11). A total of 16,402, 16,438, 16,368, 16,356,  

16458, 16,396, 16495, 15796 and 16,412 genes were mapped onto a single contig of 

assemblies generated using Canu, Canu+smartdenovo, Smartdenovo, miniasm+Racon, 

wtdbg2, Flye, Raven, Shasta+Racon and NECAT in a single alignment; 15,926, 15,956, 

15,979, 15987, 16,084, 16,075, 16121, 15518 and 16,053 of these genes showed over 

99% identity. This indicated that the quality of the NECAT assembly was comparable 

to those of the other pipelines. 

Solving repeat regions is the most important task in genome assembly. We first 

evaluated three assemblies of D. melanogaster by comparing the completeness of 

transposable element (TE) families17 (Supplementary Note 11). Of the 5,433 annotated 

TEs from FlyBase, NECAT assembly contained 5,304 TEs, in which 4,001 were aligned 

perfectly to the reference genome. Flye and wtdbg2 assemblies contained only 3840 

and 3831 TEs aligned perfectly to the reference genome, which were less than other 

assemblies. We then examined two TE families: roo and juan. Using NECAT assembly, 

we aligned 134 of the 138 copies in the roo family, of which 118 were aligned perfectly. 

The 11 elements of juan family were also aligned perfectly. These results were similar 



to those obtained using other pipelines except miniasm+Racon, Raven, and 

Shasta+Racon. Miniasm+Racon assembly contained 9 perfectly aligned elements of 

juan family, which was the least of all assemblies. Raven and Shasta+Racon assemblies 

contained only 72 and 69 perfectly aligned elements of roo family, which were less than 

other assemblies (Supplementary Table 7).  

We also examined telomeric repeats of 16 chromosomes in the NECAT assembly 

of S. cerevisiae (Supplementary Note 12). We mapped 14 out 16 telomeric repeats to 

both ends of each chromosome. One telomeric repeat was mapped onto two 

chromosomes, and the other telomeric repeat was mapped to one end of a chromosome. 

Our results were similar to those obtained using assemblies generated by other pipelines 

except wtdbg2. wtdbg2 assembly contained 8 telomeric repeats mapped onto two 

chromosomes and 5 telomeric repeats mapped to one end of a chromosome 

(Supplementary Table 8). Both TE of D. melanogaster and telomeric repeat of S. 

cerevisiae analyses demonstrated that NECAT could accurately reconstruct repeat 

sequences. 

  



Supplementary Note 3：Comparison with hybrid pipelines 

We also built and evaluated hybrid pipelines to show the correctness and 

effectiveness of the correction step and the assembly step of NECAT (Supplementary 

Note 7).  We combined either the correction step of NECAT with the assembly steps 

of Canu, Smartdenovo, and Flye, or the correction step of Canu with Smartdenove, Flye 

and the assembly step of NECAT. Then, we used those hybrid assembly pipelines to 

assemble datasets of E. coli, S. cerevisiae, A. thaliana, D. melanogaster and C. 

reinhardtii. The performances of the hybrid pipelines are shown in Supplementary 

Table 9. 

All pipelines reported similar NG50 and NGA50 for E. coli and S. cerevisiae, 

except NECAT+Flye reported as smaller NGA50 due to one more mis-assembly error. 

For A. thaliana, NECAT+Flye reported the best NG50 and NGA50, while Canu+S, 

NECAT+Canu, and NECAT reported close to the best NG50 and NGA50. For D. 

melanogaster, NECAT reported the best NG50, while Canu+S, Canu+NECAT, and 

NECAT+S reported close to best results. The NECAT+S reported the best NGA50 for 

D. melanogaster. For C. reinhardtii, NECAT+Flye reported the best NG50 while 

NECAT reported the close to the best one. The Canu+Flye reported the best NGA50 for 

C. reinhardtii. Our comparison showed that NECAT reported consistent performance 

on the assemblies of all five genomes, while the performances of other hybrid pipelines 

were not stable.  

Moreover, we used the NECAT+Flye to ensemble human NA12878 (rel6). We 

obtained an assembly with 19% higher NG50 and slightly higher NGA50 comparing to 



those of the assembly from Flye. The number of misassembly in the assembly of 

NECAT+Flye was also significantly less than those in the assembly of Flye. These 

results implied that the “correct-then-assembly” approach may be more appropriate for 

assembling large complex genomes.  

  



Supplementary Note 4: Cell culture and sequencing materials 

Datasets for eight species (E. coli, S. cerevisiae, A. thaliana, D. melanogaster, C. 

reinhardtii, O. sativa, S. pennellii and H. sapiens) were used to train and test our 

algorithm. Among these, four datasets (S. cerevisiae, C. reinhardtii, O. sativa Japonica 

Group, and retinoblastoma cell line WERI) were cultured and sequenced using MinION 

/ PromethION platform from Oxford Nanopore in our laboratory; detailed culture 

conditions are described in the following text. 

S. cerevisiae w303 culture: S. cerevisiae strains w303 were cultured in Yeast Extract 

Peptone Dextrose (YPD) broth used as a complete medium for yeast growth. YPD 

medium, which contained 1 L of deionized water to 20 g bacto peptone, 10 g yeast 

extract, and 20 g dextrose, was sterilized by autoclaving for 20 min at 15 psi (1.05 

kg/cm2), and was stored at room temperature. Yeast cells were cultured at 30°C in a 

shaking incubator at 300 rpm for 24 to 36 hours. 

C. reinhardtii culture: High-quality genomic DNA was extracted from C. reinhardtii 

cultured under mixotrophic (constant light) or heterotrophic (constant dark) conditions 

in Tris-Acetate-Phosphate (TAP) medium during the pre-stationary phase. Samples of 

wild-type strain CC-1690 were placed in an intelligent temperature and illumination 

incubator under 4~6°C and 20~30 µE/(m2·s) light intensity. The naturally synchronized 

cells were induced using a 12 h/12 h light/dark cycle. 

Culture of O. sativa Japonica Group：The seeds of O. sativa Japonica Group 

(Janponica Nipponbare) were sterilized, immersed in deionized water and germinated 

in the dark for 3 days. After germination, seedlings were transplanted into plastic pots 

filled with commercial substrate (PINDSTRUP, Denmark), and kept in a growth 

chamber at26/22° C ±1°C day/night temperature and light intensity of 600 μmolm-2s-1. 

Four-weeks old seedlings were harvested for DNA isolation. 

Culture of retinoblastoma cell line WERI: The human retinoblastoma cell line WERI 

was cultured in RPMI 1640 (Gibco Company, USA) supplemented with 20% fetal 

bovine serum (Biological Industries, USA). Cell cultures were incubated at 37°C and 



5% CO2, and media were replaced every 3~4 days. Cultures were maintained using 

centrifugation and resuspension in fresh medium, or media replacement after cell 

aggregates precipitated at the bottom of the flask. Cells were grown in suspension at a 

concentration of 105~106 cells/ml. 

  



Supplementary Note 5: DNA extraction and purification 

S. cerevisiae w303: S. cerevisiae w303 cells were washed twice using phosphate-

buffered saline (PBS) and collected by centrifugation at 4,000 rpm for 5 min. Samples 

were: (i) lysed in buffer with 1 ml lysozyme TLB and 20 µl RNase A (20 mg/ml), and 

then incubated for 1 h at 37°C; (ii) treated with 20 µl Proteinase K for 1.5 h at 50°C; 

(iii) purified with 1 volume phenol, 0.5 volume phenol-chloroform (1:1 by volume), 3 

volume ice-cold absolute ethyl alcohol at 4,500 rpm for 10 min; (iv) washed in 80% 

ice-cold ethanol twice, collected by centrifugation (12,000 rpm, 15 min, 4°C), and 

eluted in 100 µl elution buffer(EB; 10 mMTris hydrochloride [pH 8.0]). 

C. reinhardtii and O. sativa Japonica Group: High-molecular-weight (HMW) DNA 

was isolated from C. reinhardtii cc1690 and O. sativa Japonica Group using the CTAB 

method. Briefly, about 0.2 g samples were re-suspended in 1 ml CTAB buffer 

containing 2% β-mercaptoethanol, incubated at 65°C for 30 min, and then centrifuged 

at 8,000 rpm for 5 min. The suspended nuclei were purified twice with chloroform-

isoamyl alcohol (24:1 by volume) and once with 0.7 volume isopropyl alcohol at -20°C 

for 1 h. DNA precipitates were washed in ice-cold 75% ethanol twice, collected by 

centrifugation (12,000 rpm at 15 min and 4°C), dried under vacuum, and re-suspended 

in 100 ul EB18 (10 mM Tris hydrochloride [pH 8.0]). 

Retinoblastoma cell line WERI: 1 x 107 frozen cells were lysed with 800 µl TEN 

Buffer, 100 µl 20% sodium dodecyl sulphate (SDS), and 100 µl proteinase K. This 

mixture was incubated at 56°C for 2 hours, purified with phenol-chloroform-isoamyl 

alcohol (25:24:1 by volume) and chloroform-isoamyl alcohol (24:1 by volume), and 

precipitated using 0.7 volume isopropyl alcohol at -20°C for 40 min. DNA precipitates 

were collected by centrifugation (12,000 rpm at 15 min and 4°C), washed twice in ice-

cold 80% ethanol, dried under vacuum, re-suspended in 100 ul EB (10 mMTris 

hydrochloride [pH 8.0]), and combined with 2 µl RNase A (100 mg/ml) to cleave the 

RNA. To acquire high-quality DNA for the three datasets mentioned above, an 



additional purification step was performed using 0.8 volume magnetic beads from an 

AMPure XP kit (#A63882, Agencourt) according to the manufacturer’s instructions. 

 



Supplementary Note 6: Nanopore whole genome sequencing and base-calling 

S. cerevisiae w303: Sequencing libraries were constructed using a Ligation Sequencing 

Kit 1D (SQK-LSK108, Oxford Nanopore, UK) according to the manufacturer’s 

instructions. Then, 5 µg high-molecular-weight genomic DNA was fragmented using 

g-TUBE (#520079, Covaris) centrifugation (conducted twice at 1,400 g for 2 min). 

Libraries were prepared according to the manufacturer’s instructions. Briefly, NEBNext 

Ultra II End-Repair/dA-tailing module (#E7546, NEB) was used to end-repair and dA-

tail the DNA fragments. Then, each dA-tailed sample was tethered to 1D adapter using 

NEBBlunt/TA Ligase Master Mix (#M0367, NEB). The prepared DNA library was 

loaded into R9.4 flow cells and sequenced on MinION sequencers (Oxford Nanopore). 

The raw data, collected in this experiment, were obtained as fast5 files after conversion 

of electrical signals into base calls via Albacore 1.1.0 (Oxford Nanopore Technologies). 

C. reinhardtii, O. sativa and retinoblastoma cell line WERI: Large insert-size 

libraries of C. reinhardtii, O. sativa and retinoblastoma WERI cells were created 

according to the manufacturer’s protocols (Oxford Nanopore, UK). Briefly, 5 µg 

genomic DNA was sheared into ~20-30 kb fragments using g-TUBE (#520079, Covaris) 

centrifugation (twice at 1,400 g for 2 min) and size-selected (>8-10 kb) by Blue Pippin 

(Sage Science, MA) using a marker started at 5-12 min (0.75% DF Marker S1 High-

Pass 6-10kb vs3) to ensure the removal of small DNA fragments. Genomic DNA 

libraries were prepared using a Ligation sequencing 1D kit (SQK-LSK109, Oxford 

Nanopore, UK). End-repair and dA-tailing of DNA fragments were performed using an 

Ultra II End Prep module (#E7546, NEB) according protocol recommendations. Each 

dA-tailed sample was tethered to 1D adapter using a Quick Ligation Module (#E6056, 

NEB). The prepared DNA library was loaded into a FLO-PRO002 flow cell and 

sequenced on PromethION sequencers (Oxford Nanopore, UK). The raw data collected 

in this experiment was obtained as fast5 files after conversion of electrical signals into 

base calls via guppy 2.0.8 (Oxford Nanopore, UK). 



Supplementary Note 7：Statistics for Nanopore datasets 

To evaluate the performance of NECAT, we collected eight datasets for E. coli, S. 

cerevisiae, A. thaliana19, D. melanogaster20, C. reinhardtii, O. sativa, S. pennellii, and 

H. sapiens21 (NA12878). Details can be found in Supplementary Table 1. Among these 

eight datasets, data on E. coli, A. thaliana, D. melanogaster, S. pennellii, and H. sapiens 

(NA12878) were available from public websites, and the other two datasets were 

generated using our in-house sequencing. Their corresponding short-reads datasets of 

Next Generation Sequencing (NGS) were collected from the related projects at NCBI. 

All SRA files were converted to fastq files using an SRA Toolkit22 

(https://www.ncbi.nlm.nih.gov/sra/docs/toolkitsoft/)  from NCBI. Raw long-read files 

in fastq or fasta format were used as input files for these assembly pipelines. Nanopore 

fast5 format files and NGS fastq format files were used as input files for Nanopolish8 

and Pilon9, respectively. 

The results of basic statistical analysis for raw long reads (LRs) are shown in 

Supplementary Table 2. Seqkit (v0.8.0)23 was used to directly calculate “Base Counts,” 

“LR Count,” “N50 Length,” and “Mean Length.” We then used scripts to calculate 

“N75 Length” and “N25 Length” based on results obtained using Seqkit. N75, N50, 

and N25 represented sequence lengths sorted in descending order when the 

accumulated length of the sequence reached 75, 50, and 25% of the total number of 

bases (“Base Counts”), respectively. Finally, we divided “Base Counts” by general 

genome size (E. coli: 4,600,000 base pairs [bp], D. melanogaster: 137,000,000 bp, A. 

thaliana: 125,000,000 bp, S. cerevisiae: 12,000,000 bp, C. reinhardtii: 120,000,000 bp, 

O. sativa:370,000,000, S. pennellii: 886,000,000 and H. sapiens: 3,000,000,000 bp) of 

the corresponding species to calculate coverage. Among these eight datasets, A. 

thaliana and H. sapiens datasets showed very low coverage (27X and 38X), while the 

other datasets showed more than 50X coverage. 

N25 and N75 lengths were calculated using the following shell scripts:  

ecoli=pathto/E.coli.fasta 

yeast=pathto/w303.fastq 

https://www.ncbi.nlm.nih.gov/sra/docs/toolkitsoft/


dro=pathto/dro.fastq 

arab=pathto/arab.fastq 

cre=pathto/cre.fastq 

human=pathto/human.fastq 

for i in ${ecoli ${yeast} ${dro} $22 ${cre} ${human}; 

do 

seqkit fx2tab -j 10 -l -n -i -H ${i} | cut -f 4 | sed'1d' | sort -rn> 

${i}.lenth.txt 

seqkit stats -j 10 -a ${i} >>statistic.txt 

all=$(awk'BEGIN{n=O}{n=n+$1}END{print n}' ${i}.lenth.txt) 

echo"N75">>statistic.txt 

awk'BEGIN{n=O}{if (n>="'$all'"*0.75){print $1;}n=n+$1;}' ${i}.lenth.txt | 

head -n 1 >>statistic.txt 

echo"N25">> statistic.txt 

awk'BEGIN{n=O}{if (n>="'$all'"*0.25){print $1;}n=n+$1;}' ${i}.lenth.txt | 

head -n 1 >> statistic.txt 

done 

  



Supplementary Note 8：Error analysis of Nanopore raw reads 

Raw noisy LRs were corrected by mainstream consensus algorithms using the 

following steps: (1) building a multiple sequence alignment (MSA) from pairwise 

alignments and (2) choosing the correct base from MSA columns. FalconSense24, 

Recon11, Nanocorrect8, and Dacoordare25 are widely-used correction algorithms for 

Nanopore raw long reads. FalconSense uses the tagging and sorting approach to 

construct a consensus sequence based on consistent base-level and partial-order 

alignment. FalconSense and Recon were adopted for Nanopore sequence correction by 

fine-tuning parameters. Nanocorrect used a correction method similar to DAGCon26, 

which encoded the MSA as a partial-order alignment with a directed acyclic graph 

(DAG). Dacoord resolves the corrected bases of repeated regions using a local de-

Bruijn assembly-map algorithm. However, the accuracy and integrity of Nanopore 

corrected sequences produced by the above methods remained limited. 

To determine whether the existing correction algorithms were feasible for correction of 

Nanopore raw reads, we needed to obtain the features of sequencing errors in Nanopore 

LR data. First, we analyzed error distribution of Nanopore datasets for E. coli, S. 

cerevisiae, A. thaliana, D. melanogaster, C. reinhardtii, O. sativa, S. pennellii, and H. 

sapiens (NA12878). We used reference genomes as standard sequences. Raw long reads 

of these Nanopore datasets were aligned using minimap227 against their corresponding 

reference genomes (Supplementary Table 1). Then, we statistically analyzed error 

distribution of each dataset according to the mismatched results.  

Our results indicate that sequencing error rate of Nanopore reads was as high as 10-30% 

and broadly distributed（Figure 1A and Supplementary Table 3). We also found that the 

error rates of different positions differed broadly in each read, and the reads were 

generally present as high-error-rate subsequences (HERS), whose sequencing error 

rates were > 50% in these subsequences (Figure 1B). These sequencing error 

characteristics differed greatly from those in PacBio datasets (Figure 1). These results 

highlight the necessity of developing a specific consensus algorithm for Nanopore raw 



data. 

We used the following scripts for aligning Nanopore datasets to their corresponding 

reference genomes: 

minimap2 -t 20 -ax map-ont ${ref_fasta} ${reads_fasta} > ${species}_aln.sam 

The error bases of all mapped reads were extracted and counted using the following 

scripts: 

awk'{print $3"\t"$4"\t"$10"\t"$12}' ${species}_aln.sam 

|awk'{split($4,a,":");print $1"\t"$2"\t"length($3)"\t"a[3]}' | awk'$3>100 

{print $0}' | awk'/^NC/ {print $0}'> ${species}_stat_clean.txt 

The distributions of sequencing errors for the six datasets were plotted using the 

following R scripts (Figure 1A): 

ecolia=read.table(file="ecoli_stat_clean.txt") 

yeast=read.table(file="yeast_stat_clean.txt") 

arab=read.table(file="arab_stat_clean.txt") 

dro=read.table(file="dro_stat_clean.txt") 

yizao=read.table(file="yizao_stat_clean.txt") 

human3=read.table(file="human_stat_clean.txt") 

rice=read.table(file=" rice_stat_clean.txt") 

tomato=read.table(file=" tom_stat_clean.txt") 

for(i in 1:8) 

{ 

if(i==1) {ecoli=ecolia} ; if(i==2) {ecoli=yeast} ; if(i==3) {ecoli=arab}; 

if(i==4) {ecoli=dro}; if(i==5) {ecoli=yizao}; if(i==6) {ecoli=human}; if(i==7) 

{ecoli=rice}; if(i==8) {ecoli=tomato} 

ecoli_n=numeric() 

ecoli_s=cbind(ecoli,ecoli[,4]/ecoli[,3]) 

ecoli_t=dim(ecoli_s)[1] 

for(j in 1:50){ 

  if(j==1){ 

    ecoli_n[1]=length(ecoli_s[ecoli_s[,5]<=0.01,5])/ecoli_t 

  } 

  else{ 

    pos2<-j/100 

    pos1<-(j-1)/100 

    ecoli_n[j]=length(ecoli_s[ecoli_s[,5]<=pos2 & ecoli_s[,5]>pos1,5])/ecoli_t 

  } 

} 

if(i==1) {ecolin=ecoli_n}; if(i==2) {yeastn=ecoli_n};if(i==3) {arabn=ecoli_n} 

if(i==4) {dron=ecoli_n}; if(i==5) {yizaon=ecoli_n}; if(i==6) {human3n=ecoli_n}; 



if(i==7) {ricen=ecoli_n}; if(i==8) {tomaton=ecoli_n} 

} 

pdf("read-error-distribution-fcraction.pdf") 

plot(ecolin~c(1:50),ylab="Fraction of error rate (%)",xlab="Error rate 

(%)",ylim=c(0,0.20),col="darkgreen",type="l",axes=F,lwd=3,lty=1) 

lines(yeastn~c(1:50),col="darkblue",lwd=3,lty=1) 

lines(arabn~c(1:50),col="coral4",lwd=3,lty=1) 

lines(dron~c(1:50),col="darkorange3",lwd=3,lty=1) 

lines(yizaon~c(1:50),col="firebrick2",lwd=3,lty=1) 

lines(human3n~c(1:50),col="yellow4",lwd=3,lty=1) 

lines(ricen~c(1:50),col="chartreuse",lwd=3,lty=1) 

lines(tomn~c(1:50),col="darkviolet",lwd=3,lty=1) 

legend(25,0.18,legend=c("E.coli","Yeast","A.thaliana","D.melanogaster","C.re

inhardtii","Human"),col=c("darkgreen","darkblue" ,"coral4" ,"darkorange3","f

irebrick2","yellow4" ,"chartreuse","darkviolet"),lty=1,cex=1.5,box.lty=0,lwd

=2)  

axis(2,at=c(0,0.05,0.10,0.15,0.20),labels=c("0","5","10","15","20"),las=1,lw

d=1,tick=T) 

axis(1,at=c(0,10,20,30,40,50),labels=c("0","10","20","30","40","50"),las=1,l

wd=1,tick=T) 

dev.off() 

 

To further understand if there was a bias for sequencing errors among different genome 

positions, we calculated sequencing-error distribution for all mapped reads on different 

genome locations (Supplementary Figure 1). The scripts were: 

awk'{print $1"\t"$2"\t"$2+$3"\t"$4/$3}' ${species}_stat_clean.txt |sort -

k1,1 -k2,2n > ${species}.sorted.bed 

refgenome=~/xsq/project/ONT_correct/distribution/data/${species}.fa 

line=$(wc -l $refgenome |awk'{print $1}') 

awk -v lin=$line '{if(NR!=lin&&/^>/) {print $1"\t"NR;tmp=$1} 

if(NR==lin) {print tmp"\t"NR}}' $refgenome\ 

|awk'NR==1 {tmp1=$1;tmp2=$2 } 

NR!=1 {print tmp1"\t"tmp2"\t"$2"\t"($2-tmp2-1)*80; tmp1=$1; tmp2=$2}' 

|awk'{len=$4/10000; for(i=1;i<=len;i++) {print $1"\t"(i-

1)*10000+1"\t"10000*i}}' |awk'{split($1,a,">"); print 

a[2]"\t"$2"\t"$3 }'>${species}_10000.bed 

export PATH=$PATH:/software/bedtools2/bin 

bedtools intersect -loj -a ${species}_10000.bed -b 

${species}.sorted.bed>position_{species}.txt 

 



To further understand the different error distribution in each read, we extracted each 

raw read, and calculated the mismatch and indel base number in a region having a 

length >500 bp (Figure 1B). The scripts were: 

awk '{tmp=0; for (i=1;i<length($6);i++) {st=substr($6,i,1); if(st~/[0-9]/) 

{ss=ss""st} 

if(st=="M") {mn=mn+ss;mi=mi+ss;tn=tn+ss;ss=""} 

if(st=="D") {tn=tn+ss;ss=""} 

if(st=="I") {tn=tn+ss;mi=mi+ss;ss=""} 

if(st~/[A-Za-z]/ ) {ss=""} 

if(mi>500&&st=="M") {for(j=mi;j>500;j=j-500){re=re"_"(mn+500-j)/tn;tn=j-

500;mn=j-500;mi=j-500}} 

if(mi>500&&st=="I") {for(j=mi;j>500;j=j-500){re=re"_"mn/tn;tn=j-500;mi=j-

500;mn=0 }} 

if(mi==500){re=re"_"mn/tn;tn=0;mi=0;mn=0} 

}; print re}'  ERR2173373.21178.sam | sed s/_/'\n'/g | awk 'NR>1{print (NR-

2)*500"-"(NR-1)*500"\t"1-$1}' > stat_500.res 

Then, error subsequences of 500 bp in each read were plotted and beautified by Excel 

and Adobe Illustrator. 

The high error rate subsequences (HERS) of eight datasets were extracted as similarly 

as each read. The scripts were: 

awk -v var=10 'length($10)>var*1000 {tmp=0; for (i=1;i<length($6);i++) 

{st=substr($6,i,1); if(st~/[0-9]/) {ss=ss""st} 

     if(st=="M") {mn=mn+ss;tn=tn+ss;ss=""} 

      if(st=="D") {tn=tn+ss;ss=""} 

     if(st=="I") {tn=tn+ss;ss=""} 

     if(st~/[[:alpha:]]/ ) {ss=""} 

     if(tn>500) {if(mn/tn<0.50) {tmp=1;break}; mn=0;tn=0 } 

    }if(tmp==1) {tsum=tsum+1;;mn=0;tn=0}; 

     print NR,length($10),tmp} 

    '  mutilsam/tom_raw_aln$i.sam > stat_500.res.txt 

After extracting high error rate subsequences, HERS distributions for the six datasets 

were plotted using the following R scripts (Figure 1C): 

ecoli=read.table(file="ecoli/stat_500.res.txt") 

yeast=read.table(file="yeast/stat_500.res.txt") 

arab=read.table(file="arab/stat_500.res.txt") 

dro=read.table(file="dro/stat_500.res.txt") 

yizao=read.table(file="yizao/stat_500.res.txt") 

human=read.table(file="human/stat_500.res.txt") 



rice=read.table(file=”rice/stat_500.res.txt”) 

tomato=read.table(file=tomato/stat_500.res.txt”) 

result=matrix(,8,41) 

for(j in 1:8) 

{if(j==1) {a=ecoli} ; if(j==2){a=yeast}; if(j==3){a=arab}; if(j==4){a=dro}; 

if(j==5){a=yizao}; if(j==6){a=human}; if(j==7){a=rice}; if(j==8){a=tomato}; 

for(i in 1:41) 

{  usum=a[a[,2]>=(i+9)*1000&a[,3]==1,3] 

   tsum=a[a[,2]>=(i+9)*1000,3] 

   if (length(usum)>=500){ result[j,i]=length(usum)/length(tsum)}} 

} 

tmp1=result[1,][!is.na(result[1,1:41])];tmp2=result[2,][!is.na(result[2,1:41

])];tmp3=result[3,][!is.na(result[3,1:41])];tmp4=result[4,][!is.na(result[4,

1:41])];tmp5=result[5,][!is.na(result[5,1:41])];tmp6=result[6,][!is.na(resul

t[6,1:41])];tmp7=result[7,][!is.na(result[7,1:41])];tmp8=result[8,][!is.na(r

esult[8,1:41])] 

pdf("HER length.pdf") 

plot(result[1,1:length(tmp1)]~c(1:length(tmp1)),type="l",axes=F,lwd=3,lty=1,

col="darkgreen", ylim=c(0,0.5), xlim=c(1,41), xlab="Read length(kb)", ylab= 

"Fraction of reads with HER") 

axis(2,at=c(0,0.1,0.20,0.3,0.4,0.5),labels=c("0","10","20","30","40","50"), 

las=1,lwd=1,tick=T) 

axis(1,at=c(1,11,21,31,41),labels=c("10","20","30","40","50"),las=1,lwd=1,ti

ck=T) 

lines(result[2,1:length(tmp2)]~c(1:length(tmp2)),col="darkblue",lwd=3,lty=1) 

lines(result[3,1:length(tmp3)]~c(1:length(tmp3)),col="coral4",lwd=3,lty=1) 

lines(result[4,1:length(tmp4)]~c(1:length(tmp4)),col="darkorange3",lwd=3,lty

=1) 

lines(result[5,1:length(tmp5)]~c(1:length(tmp5)),col="firebrick2",lwd=3,lty=

1) 

lines(result[6,1:length(tmp6)]~c(1:length(tmp6)),col="yellow4",lwd=3,lty=1) 

lines(result[7,1:length(tmp7)]~c(1:length(tmp7)),col="chartreuse",lwd=3,lty=

1) 

lines(result[8,1:length(tmp8)]~c(1:length(tmp8)),col="darkviolet",lwd=3,lty=

1) 

legend(3,0.5,legend=c("E.coli","Yeast","A.thaliana","D.melanogaster", 

"C.reinhardtii","Human"),col=c("darkgreen","darkblue" ,"coral4" ,"darkorange

3","firebrick2", "yellow4" ,"chartreuse","darkviolet"),lty=1,cex=1.2,box.lty 
=0,lwd=2)  

dev.off() 

  

  



Supplementary Note 9: Performance of error correcting algorithms 

Due to the high sequencing error discrepancy between Nanopore raw reads and PacBio 

raw reads (Figure1 and Supplementary Note 5), the existing correction methods 

developed specifically for PacBio reads are unsuitable for Nanopore data. To date, there 

is no correction method that fully accounts for characteristics of sequencing errors 

occurring in Nanopore data. 

In this study, we developed a novel progressive two-step error correction algorithm 

called NECAT with adaptive candidate-read selection for Nanopore raw reads. In order 

to validate the rationality and reliability of our novel algorithm, we examined the 

performance of NECAT in correcting the eight datasets described above 

(Supplementary Table 1). For comparison, we also evaluated the accuracy of reads 

corrected by Canu28, another widely-used correction tool for Nanopore raw reads. 

Specifically, for each dataset, we calculated error rates of: the raw dataset, corrected 

reads after step one in NECAT, corrected reads after step two in NECAT, and reads 

corrected by Canu28. For this, we mapped the four datasets to the reference using 

minimap227 as described in Supplementary Note 5. Then, results of the alignment were 

used to calculate error distribution. Error rates were grouped by 1, 2, 3, 4, 5, 6, 7, 8, 9, 

10, 10-15, 15-20, 20-25, 25-30, and 30-100%, and results are listed in Supplementary 

Table 4. The following scripts were used: 

for i in 1 2 "canu" "raw" 

do  

cd $i 

awk'{print $3"\t"$4"\t"$10"\t"$12}' ${species}_${i}_aln.sam |awk'{split($4, 

a, ":"); print $1"\t"$2"\t"length($3)"\t"a[3]}' | awk'$3>100 {print $0}' | 

awk'/^chr/ {print $0}'> ${species}_stat_clean_$i.txt 

Rscript correct_stats_ref.r ${species}_stat_clean_$i.txt 

"correct_stat.result" 

cd .. 

done 

In each raw dataset, we then analyzed a HERs region having a length >500 bp. For 

mapped reads in each of the four datasets, we evaluated raw reads, corrected reads after 

first correction of NECAT, corrected reads after second correction of NECAT, and 



corrected read output by Canu. Considering canu only selects the longest 40x for 

correction by default, we extracted the sub-dataset with equal coverage from the raw 

dataset, corrected reads after step one in NECAT and corrected reads after step two in 

NECAT. The scripts were:  

###species can use eight species, we take e.coli for example 

species=ecoli 

size=`ls -ltr ecoli_canu.fasta | awk '{print $5}'` 

for i in 1 2 "raw"seqfasta= ecoli_$i.fasta 

awk 'NR%2==1 {tmp=$1}NR%2==0 {print tmp"_XSQ_"$0"\t"length($0)}'\ 

${seqfasra} | sort -nr -k 2 | awk –v si=$size 'tmp=tmp+$2\ 

 {if(tmp<si){print $0} if(tmp>=si) exit}' | \ 

awk '{split($1,a,"_XSQ_");print a[1]"_XSQ_"$2"\n\r"a[2]}' > 

rice${i}_filter.fasta 

In order to calculate the number of gaps, we generated alignment paf files using 

minimap2. The scripts were: 

reffasta=ecoli_k12_genomic.fna 

for i in 1 2 "raw" 

do 

echo $i 

mkdir -p ~/alignment/minimap2/$species/$i 

cd~/alignment/minimap2/$species/$i 

seqfasta= /data/$i/ecoli$i_filter.fasta 

minimap2 -t 20 -x map-ont ${reffasta} ${seqfasta} >${species}_${i}_aln.paf 

done 

minimap2 -t 20 -x map-ont ${reffasta} ecoli_canu.fasta > ecoli_canu_aln.paf 

For raw reads, we extracted all the reads with gaps >500 bp, and counted the number 

of HERs regions using the following scripts: 

awk'{print $6"_"$1"\t"$3"\t"$4"\t"$2}' ${species}_raw_aln.paf> \ 

${species}_raw_bed.txt 

sort -k1,1 -k2,2n ${species}_raw_bed.txt |uniq>in.sorted.bed 

bedtools merge -iin.sorted.bed -d 500 | awk'{print $1}' |uniq -d 

|awk'{split($1,a,"_"); {print a[3]"\t"1"\t"10000}}'> 

${species}_gap_read_name.txt 

wc -l  ${species}_gap_read_name.txt 

For these raw reads with gaps, we re-calculated the HERs region number in these reads 

after first correction of NECAT, after second correction of NECAT, and after correction 

of Canu. For outputted corrected reads from Canu, we extracted the reads having a 



HERs region >500 bp and counted the number of these regions using the following 

scripts:  

awk'split($1,a,"_") {print a[1]"\t"$3"\t"$4"\t"$6}' ${species}_canu_aln.paf> 

${species}_canu_bed.paf 

sort -k1,1 -k2,2n ${species}_gap_read_name.txt |uniq |bedtools merge -i - -d 

500 |awk'{print $1}' |uniq -d >read_gap.result.final 

wc -l read_gap.result.final 

For corrected reads produced by step one and step two in NECAT, reads having a HERs 

region >500 bp were extracted using the following scripts: 

for i in "ecoli" "yeast" "dro" "ara" "yizao" “human” “rice” “tomato” 

do 

for j in 1 2 

do 

cd ${i}/${j}  

awk'{split($1,a,"_\\(");print a[1]"\t"$3"\t"$4"\t"$6}' ${i}_${j}_aln.paf> 

${i}_${j}_bed.paf 

cd ../.. 

done 

done 

Finally, the gap number was counted by: 

sort -k1,1 -k2,2n ${species}_1_bed.paf |uniq |bedtools merge -i - -d 500 

|awk'{print $1}' |uniq -d |wc -l 

The number of HERS regions with large gaps > 500 bp in each raw and corrected 

dataset can be found in Table 1. 

      



Supplementary Note 10: Comparison of assembly pipelines 

We compared the quality of assembly results and running time for Canu (v1.8)28, Canu 

(v1.8)+Smartdenovo (5cc1356)29, Smartdenovo (5cc1356), miniasm (1552e6f)1, 

wtdbg2 (v2.5)30, Flye (2.6)31, Raven(1.1.5)4, Shasta(0.4.0)5, and NECAT (47c6c23) 

pipelines. Running time was recorded from the log files. All assemblers ran on a 4-core 

24-thread Intel(R) Xeon(R) 2.4 GHz CPU (CPU E7-8894[v4]) machine with 3 TB of 

RAM; the OS was Centos 7.3 64-bit (Linux). The eight datasets (E. coli, S. cerevisiae, 

A. thaliana, D. melanogaster, C. reinhardtii, O. sativa, S. pennellii and H. sapiens) 

composed of Nanopore long reads were assembled by the pipelines. The de-novo 

genome assemblies of eight datasets and results of statistical analyses are shown in 

Table 2 and Supplementary Table 5. 

Canu pipeline was run as: 

echo Start: $(date "+%Y-%m-%d %H:%M:%S") 

canu -p $genomeName -d $genomeName genomeSize=$genomeSize maxMemory=1000 

maxThreads=$threads useGrid=false -nanopore-raw input.fastq  

echo End: $(date "+%Y-%m-%d %H:%M:%S") 

where $genomeName was set to E. coli, S. cerevisiae, A. thaliana, D. melanogaster, C. 

reinhardtii, O. sativa and S. pennellii, respectively, and $genomeSize was set to 4.8M, 

13M, 130M, 130M, 120M, 400 M and 1G, respectively. $theads was set to 32 for E. 

coli, S. cerevisiae, A. thaliana, D. melanogaster and C. reinhardtii and 64 for O. sativa 

andS. pennellii. 

For Canu+smartdenovo pipeline, the output file $genomeName.correctedReads.fasta 

from the Canu pipeline was used as input file to the Canu+smartdenovo pipeline; the 

script was as follows: 

echo Start: $(date "+%Y-%m-%d %H:%M:%S") 

smartdenovo.pl –p $genomeName -t $threads -c 1 

$genomeName.correctedReads.fasta > $genomeName.mak 

make -f $genomeName.mak 

echo End: $(date "+%Y-%m-%d %H:%M:%S") 

For the Flye pipeline, we used the following script: 

echo Start: $(date "+%Y-%m-%d %H:%M:%S") 

flye --nano-raw input.fastq --out-dir $genomeName --genome-size $genomeSize 



--threads $threads  

echo End: $(date "+%Y-%m-%d %H:%M:%S") 

Flye failed to run on raw reads of E. coli and C. reinhardtii, for the input files contained 

malformated reads and duplicate reads. We used the following scripts to filter the raw 

reads before running Flye. For E. coli, the script was: 

fsa_rd_tools longest --base_size 0 --discard_illegal_read --ifname inputfile 

--ofname outputfile 

fsa_rd_tools was a tool in NECAT pipeline.  

For C. reinhardtii, the script was: 

python3 remove_dup_name.py inputfile outputfile 

remove_dup_name.py contained following code: 

import sys 

from collections import defaultdict 

from Bio import SeqIO 

ifname = sys.argv[1]   # xxx.fasta or  xxx.fastq 

ofname = sys.argv[2] 

names = defaultdict(int) 

with open(ofname, "w") as ofile: 

    for i, rec in enumerate(SeqIO.parse(ifname, ifname[-5:])): 

        names[rec.id] += 1 

        if names[rec.id] == 1: 

            SeqIO.write(rec, ofile, ofname[-5:]) 

wtdbg2 pipeline was ran as 

echo Start: $(date "+%Y-%m-%d %H:%M:%S") 

wtdbg2.pl -t $threads -x ont -g $genomeSize -o $genomeName input.fastq 

echo End: $(date "+%Y-%m-%d %H:%M:%S") 

Smartdenovo pipeline was ran as: 

awk 'NR%4==1||NR%4==2' all.fastq | sed 's/^@/>/g' > reads.fa 

echo Start: $(date "+%Y-%m-%d %H:%M:%S") 

smartdenovo.pl -p $genomeName -t 32 -c 1 reads.fa > dro_smart.mak 

make -f dro_smart.mak 

echo End: $(date "+%Y-%m-%d %H:%M:%S") 

miniasm pipeline was ran as: 

echo Start: $(date "+%Y-%m-%d %H:%M:%S") 

minimap2 -x ava-ont -t32 all.fastq all.fastq | gzip -1 > reads.paf.gz 

miniasm -f all.fastq reads.paf.gz > $genomeName.gfa 



awk '/^S/{print ">"$2"\n"$3}' $genomeName.gfa | seqkit seq > $genomeName.fasta 

echo End: $(date "+%Y-%m-%d %H:%M:%S") 

NECAT pipeline first generated configuration file (necat_cfg.txt), as shown below: 

PROJECT=$genomeName 

THREADS=$threads 

ONT_READ_LIST=read_list.txt 

GENOME_SIZE=$genomeSize 

MIN_READ_LENGTH=3000 

PREP_OUTPUT_COVERAGE=40 

OVLP_FAST_OPTIONS="-n 500 -z 20 -b 2000 -e 0.5 -j 0 -u 1 -a 1000" 

OVLP_SENSITIVE_OPTIONS="-n 500 -z 10 -e 0.5 -j 0 -u 1 -a 1000" 

CNS_FAST_OPTIONS="-a 2000 -x 4 -y 12 -l 1000 -e 0.5 -p 0.8 -u 0" 

CNS_SENSITIVE_OPTIONS="-a 2000 -x 4 -y 12 -l 1000 -e 0.5 -p 0.8 -u 0" 

TRIM_OVLP_OPTIONS="-n 100 -z 10 -b 2000 -e 0.5 -j 1 -u 1 -a 400" 

ASM_OVLP_OPTIONS="-n 100 -z 10 -b 2000 -e 0.5 -j 1 -u 0 -a 400" 

NUM_ITER=2 

CLEANUP=1 

USE_GRID=false 

GRID_NODE=0 

SMALL_MEMORY=0 

CNS_OUTPUT_COVERAGE=30 

FSA_OL_FILTER_OPTIONS="" 

FSA_ASSEMBLE_OPTIONS="" 

FSA_CTG_BRIDGE_OPTIONS="" 

POLISH_CONTIGS=true 

Then, it was run as: 

echo Start: $(date "+%Y-%m-%d %H:%M:%S") 

necat.pl bridge necat_cfg.txt 

echo End: $(date "+%Y-%m-%d %H:%M:%S") 

The read_list.txt contained the path of corresponding sequencing data; $genomeName 

was set to E. coli, S. cerevisiae, A. thaliana, C. reinhardtii, D. melanogaster, O. sativa, 

S. pennellii and H. sapiens, respectively, and $genomeSize was set to 4,800,000, 

13,000,000, 130,000,000, 130,000,000, 120,000,000 400,000,000, 1,000,000,000 and 

3,000,000,000, respectively.  

For large genomes, NECAT used more corrected reads to obtain more robust assemblies. 

Therefore, we adjusted the parameters for O. sativa as shown below: 

CNS_OUTPUT_COVERAGE=40  
FSA_OL_FILTER_OPTIONS="—min_coverage 3" 



And we adjusted the parameters for S. pennellii as shown below: 

CNS_OUTPUT_COVERAGE=40 

We also adjusted the parameters for H. sapiens(rel3,4) and WERI as shown below: 

MIN_READ_LENGTH=500 

PREP_OUTPUT_COVERAGE= 
OVLP_FAST_OPTIONS="-n 200 -z 10 -b 2000 -e 0.5 -j 0 -u 1 -a 400" 

OVLP_SENSITIVE_OPTIONS="-n 200 -z 10 -e 0.5 -j 0 -u 1 -a 400" 

CNS_FAST_OPTIONS="-a 400 -x 4 -y 12 -l 500 -e 0.5 -p 0.8 -u 0" 

CNS_SENSITIVE_OPTIONS="-a 400 -x 4 -y 12 -l 500 -e 0.5 -p 0.8 -u 0"  

CNS_OUTPUT_COVERAGE=45 

We also adjusted the parameters for H. sapiens(rel6) as shown below: 

CNS_OUTPUT_COVERAGE=40 

FSA_ASSEMBLE_OPTIONS="—max_spur_length 200000" 

NECAT+Canu pipeline was run as 

echo Start: $(date "+%Y-%m-%d %H:%M:%S") 

canu -p $genomeName -d $genomeName genomeSize=$genomeSize maxMemory=1000 

maxThreads=$threads useGrid=false -nanopore-corrected 

$correctedByNECAT.fasta  

echo End: $(date "+%Y-%m-%d %H:%M:%S") 

where the parameters are the same as they in Canu pipeline. $correctedByNECAT.fasta 

was set to corrected reads generated by NECAT. 

NECAT+Smartdenovo pipeline was similar to the pipeline Canu+Smartdenvo, where 

the input files were changed to the corrected reads generated by NECAT; the script was 

as follows: 

echo Start: $(date "+%Y-%m-%d %H:%M:%S") 

smartdenovo.pl –p $genomeName -t $threads -c 1 $correctedByNECAT.fasta > 

$genomeName.mak 

make -f $genomeName.mak 

echo End: $(date "+%Y-%m-%d %H:%M:%S") 

Canu+Flye and NECAT+Flye pipelines were similar to Flye pipeline, where the --

nano-raw was changed to --nano-corr and using corrected reads generated by Canu or 

NECAT as input files; the script was as follows: 

echo Start: $(date "+%Y-%m-%d %H:%M:%S") 

flye --nano-corr correctedByNECATorCanu.fasta --out-dir $genomeName --

genome-size $genomeSize --threads $threads  



echo End: $(date "+%Y-%m-%d %H:%M:%S") 

Canu+NECAT pipeline was run as: 

echo Start: $(date "+%Y-%m-%d %H:%M:%S") 

necat.pl bridge necat_cfg.txt 

echo End: $(date "+%Y-%m-%d %H:%M:%S") 

where the necat_cfg.txt is similar to the one used by NECAT pipeline. But we 

removed the parameter ONT_READ_LIST and add the parameter CNS_READ_LIST as 

follow: 

CNS_READ_LIST=read_list.txt 

The read_list.txt contained the path of corrected reads by Canu.   



Supplementary Note 11: Validation of the WERI genome 

The new WERI assembly from Nanopore data was polished four times using the same 

scripts as those shown in Supplementary Note 13. We compared the WERI assembly 

against human reference genome hg38. The newly-assembled genome was aligned to 

the reference genome, and the Mummer plot between them was generated using 

MUMmer (v4.0)12 with the following script (Supplementary Figure 2): 

nucmer --mum -l 10 -c 1000 --banded  ${ref.fasta} ~/project/weri/ONT_asm.fasta 

dnadiff -d out.delta 

mummerplot out.delta --fat -f -png 

Because MUMmer was operated using a unique anchor matching option to accelerate 

the alignment, some repetitive sequences remained unaligned. The entire process of 

alignment and figure generation can be reproduced using scripts available on the MHAP 

home page24 (assuming that Perl, Python, and MUMmer12 are placed in the correct path), 

and by running the script below; this generates a figure designated as asm.pdf (Figure 

3). 

sh makeHuman.sh ref.fasta asm.fasta 

Based on out.rdiff file output by dnadiff, structural differences (>10 bp) were extracted 

using the following scripts: 

awk ' {if($3<=$4&&$7*$7>100) print $1 "\t" $3"\t"$4"\t"$2"\t"$7 

if($3>$4&&$7*$7>100) print $1 "\t" $4"\t"$3"\t"$2"\t"$7 }' ./out.rdiff > 

weri_10.bed 

wc –l weri_10.bed 

We then used a custom script to convert the SV regions in the WERI assembly genome 

to the reference hg38: 

awk '{if($3>$4&&$7*$7>100) print $1"\t"$4"\t"$3"\t"$2"\t"$7"\t"($3-

1)"\t"($4+1) 

if ($3<=$4&&$7*$7>100) print $1"\t"$3"\t"$4"\t"$2"\t"$7"\t"($3-

1)"\t"($4+1)}' ./out.qdiff > hg38_gap.tsv 

awk '{if($3>$4&&$7*$7>100) print $1"\t"$4"\t"$3"\t"$2"\t"$7"\t"($3-

1)"\t"($4+1) 

if ($3<=$4&&$7*$7>100) print $1"\t"$3"\t"$4"\t"$2"\t"$7"\t"($3-

1)"\t"($4+1)}'  ./out.rdiff > weri_gap.tsv 

python3 query.py  –c hg38_gap.tsv –w weri_gap.tsv –a out.1coords > 



weri2hg38.tsv 

To validate SV regions detected in WERI, we re-aligned the original sequencing data 

with SV regions±1000 bp. SV regions were extracted with: 

awk '{if($5>=$6) print $4,":",$6-1000,"-",$5+1000  

if($5<$6) print $4,":",$5-1000,"-",$6+1000}' weri2hg38.tsv | sed 's/ //g' > 

qgap 

for i in $(cat qgap);do samtools faidx ./ref.fasta $i >> all_gap.fasta;done 

# re-align the raw nanopore reads to all_gap.fasta 

minimap2 -x map-ont -t $NPROC ./all_gap.fasta ./fq > all_gap.paf 

Then, we calculated the number of SV regions with read coverage: 

awk '($8<=($7-1000))&&($9>=1000){print $6,"\t",$7,"\t",$8,"\t",$9}' 

all_gap.paf > real_map 

awk '{print $1}' real_map | sort | uniq -c | tee real_map_list | wc l 

awk '{split($2,a,"\[:-\]");print a[1],"\t",(a[2]+1000),(a[3]-

1000),$1}' ./real_map_list > real_map_list_raw 

#generate merge.tsv 

cat ./real_map_list_raw | xargs -n 4 -P 10 ./merge.sh 

# generate merge.bed 

awk '{if($2>$3){print $1,$3,$2,$4}else{print $1,$2,$3,$4}}' ./merge.tsv | 

sed 's/ /\t/g'  | grep -v 'chrY' > merge.bed 

We also aligned the raw nanopore long reads and Illumina short reads to human 

reference genome hg38, and used Sniffles32 and Lumpy_sv33 to call SVs in mapping 

results using the scripts shown below: 

Sniffles:  

export PATH=/ /software/Sniffles-1.0.10/bin/sniffles-core-1.0.10:$PATH 

export PATH=/ /software/ngmlr-0.2.7:$PATH 

ngmlr -t $NPROC -r $refsequence -q $fq -o reads.sam -x ont 

samtools view -bS reads.sam | samtools sort -@ $NPROC - -o reads.sorted.bam 

sniffles -t $NPROC -m reads.sorted.bam -v tgs.weri.vcf 

Lumpy_sv:  

bwa mem -R "@RG\tID:id\tSM:sample\tLB:lib" reference.fasta sample.1.fq 

sample.2.fq | samblaster --excludeDups --addMateTags --maxSplitCount 2 --

minNonOverlap 20 | samtools view -S -b -  >  sample.bam 

samtools view -b -F 1294 sample.bam   

| samtools sort  -o sample.discordants.sorted.bam 

samtools view -h sample.bam \ 

  | scripts/extractSplitReads_BwaMem -i stdin \ 

  | samtools view -Sb - \ 



  | samtools sort  -o sample.splitters.sorted.bam 

lumpyexpress \ 

    -B sample.bam \ 

    -S sample.splitters.bam \ 

    -D sample.discordants.bam \ 

    -o output.vcf 

export PATH= /software/VCFtools/bin:$PATH 

cat ngs.weri.vcf | vcf-sort > sorted.ngs.vcf 

cat tgs.weri.vcf | vcf-sort > sorted.tgs.vcf 

bzip sorted.ngs.vcf 

bzip sorted.tgs.vcf 

bcftools stats ./sorted.ngs.vcf.gz > ngs.stat 

bcftools stats ./sorted.tgs.vcf.gz > tgs.stat 

#index 

tabix -p vcf sorted.ngs.vcf.gz 

tabix -p vcf sorted.tgs.vcf.gz  

# generate 0000.vcf  0001.vcf  0002.vcf  0003.vcf 

–l 

# weri SV and ngs 

bedtools intersect -a ./merge.bed -b ./sorted.ngs.bed -wa -loj | awk 

'$5!="."{print}' | wc –l 

# weri SV, ngs and tgs overlap 

bedtools intersect -a ./merge.bed -b ./comm.ngs2tgs.bed -wa | wc –l 

bcftools isec sorted.ngs.vcf.gz sorted.tgs.vcf.gz -p ./ 

# convert vcf to bed 

awk '{split($8,a,"RE=");print $1,$2,($2+1),a[2]}' ./sorted.tgs.vcf | grep -v 

'#' | grep -v 'chrY' | sed 's/ /\t/g'> sorted.tgs.bed 

 

awk '{split($10,a,":");print $1,$2,($2+1),a[2]}' ./sorted.ngs.vcf | grep -v 

'#' | grep -v 'chrY' | sed 's/ /\t/g' > sorted.ngs.bed 

echo "CHROM POS ID REF ALT QUAL FILTER Coverage" > 0002.head 

awk '{split($10,a,":");print $1,$2,$3,$4,$5,$6,$7,a[2]}' ./0002.vcf | grep -v 

'#' | cat 0002.head - > ngs.commom.add_cov.vcf 

grep -v CHROM ./ngs.commom.add_cov.vcf | awk '{print $1,$2,($2+1)}' | sed 's/ 

/\t/g' > comm.ngs2tgs.bed 

# weri SV and tgs 

bedtools intersect -a ./merge.bed -b ./sorted.tgs.bed -wa -loj | awk 

'$5!="."{print}' | wc -l  

  



Supplementary Note 12: Overlap-filtering strategy 

Overlap-filtering is critical in genome assembly. High-error-rate overlaps introduce 

errors and complicate assembly. Conversely, an overly strict filtering strategy can 

reduce contiguity of the results. Error distribution of sequencing data varies greatly. In 

order to adapt to different data, we adopted a heuristic filtering strategy to remove high-

error-rate overlaps. Two metrics, the identity obtained by dividing length of the overlap 

by the number of matching bases, and the overhang that is the distance of an overlap 

from the 5' or 3' end of the read, are used to identify high error rate overlaps. 

First, we examined overlap identities. For each read, we collect its overlaps and 

compute the mean of identities of the overlaps as its identity. After obtaining all read 

identities, we computed the weighted median (𝑚𝑚𝑔𝑔
𝑖𝑖𝑖𝑖 ) and weighted median absolute 

deviation (𝑀𝑀𝑀𝑀𝑀𝑀𝑔𝑔𝑖𝑖𝑖𝑖) of them, where the weight is the read length. We used the following 

formula to calculate global threshold of overlap identity (𝑡𝑡ℎ𝑔𝑔𝑖𝑖𝑖𝑖):  

𝑡𝑡ℎ𝑔𝑔𝑖𝑖𝑖𝑖 = min (𝑚𝑚,𝑚𝑚𝑔𝑔
𝑖𝑖𝑖𝑖) − 𝑛𝑛 ∗ 𝑘𝑘 ∗ 𝑀𝑀𝑀𝑀𝐷𝐷𝑔𝑔𝑖𝑖𝑖𝑖 . (1) 

Here k is equal to 1.4862, a constant scale factor multiplied by MAD to obtain an 

estimation of the standard deviation σ. According to our experience, m and are n are set 

to 0.98 and 6, respectively. After obtaining global threshold for overlap identity, we 

calculated the local threshold. For each read, we accumulate the lengths of its overlaps. 

If the sum was less than max(𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚, 0.5 ∗ 𝑐𝑐) ∗ 𝑙𝑙, where 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 is a user-set parameter 

(default value is 25), c is the coverage of corrected reads, and l is read length, we set 

the local threshold 𝑡𝑡ℎ𝑙𝑙𝑖𝑖𝑖𝑖  to global threshold 𝑡𝑡ℎ𝑔𝑔𝑖𝑖𝑖𝑖, because the data were too small to 

show statistical significance. Otherwise, we sorted the overlaps in descending order 

according to the product of overlap identity and overlap length. We collected the first 

several overlaps in which the sum of their lengths was no more than max(2 ∗

𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚, 1.5 ∗ 𝑐𝑐) ∗ 𝑙𝑙. Then, we computed weighted median (𝑚𝑚𝑙𝑙
𝑖𝑖𝑖𝑖) and weighted median 

absolute deviation (𝑀𝑀𝑀𝑀𝑀𝑀𝑙𝑙𝑖𝑖𝑖𝑖) of these overlaps, where the weight was overlap length. 

Local identity threshold 𝑡𝑡ℎ𝑙𝑙𝑖𝑖𝑖𝑖 is was set to max�𝑡𝑡ℎ𝑔𝑔𝑖𝑖𝑖𝑖 , �min (𝑚𝑚,𝑚𝑚𝑙𝑙
𝑖𝑖𝑖𝑖) − 𝑛𝑛 ∗ 𝑘𝑘 ∗



𝑀𝑀𝑀𝑀𝐷𝐷𝑙𝑙𝑖𝑖𝑖𝑖��, where m and n were set to 0.99 and 6 by default. Next, we used 𝑡𝑡ℎ𝑙𝑙𝑖𝑖𝑖𝑖 to 

filter out the read overlaps. If overlap identity was less than 𝑡𝑡ℎ𝑙𝑙𝑖𝑖𝑖𝑖 , the overlap was 

removed. 

We used a similar process to assess read overhang in the overlaps. For each read, 

we collected the maximum of its overhangs. Then, we computed the weighted median 

(𝑚𝑚𝑔𝑔
𝑜𝑜ℎ) and weighted median absolute deviation (𝑀𝑀𝑀𝑀𝑀𝑀𝑔𝑔𝑜𝑜ℎ), where weight was read length. 

The formula used to calculate global threshold of an overhang is provided in (2), where 

m and n were set to 30 and 6 by default, respectively. 

𝑡𝑡ℎ𝑔𝑔𝑜𝑜ℎ = max�𝑚𝑚,𝑚𝑚𝑔𝑔
𝑜𝑜ℎ� + 𝑛𝑛 ∗ 𝑘𝑘 ∗ 𝑀𝑀𝑀𝑀𝐷𝐷𝑔𝑔𝑜𝑜ℎ. (2) 

Next, we collected read overhangs at the 5’ or 3’ end separately, and computed the local 

thresholds for them. For each end, if the number of read overhangs is less than 

𝑚𝑚𝑚𝑚𝑚𝑚(𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚, 0.5 ∗ 𝑐𝑐) , then 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚  is a user-set parameter (default value is 25), c is 

coverage of corrected reads, and local threshold 𝑡𝑡ℎ𝑙𝑙𝑜𝑜ℎ is set to global threshold 𝑡𝑡ℎ𝑔𝑔𝑜𝑜ℎ. 

Otherwise we sorted overhangs in ascending order according to results obtained by 

dividing the overlap overhang by overlap length. We collected the first several 

overhangs, the number of whom is no more than max(2 ∗ 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚, 1.5 ∗ 𝑐𝑐) . Then, we 

computed weighted median (𝑚𝑚𝑙𝑙
𝑜𝑜ℎ) and weighted median absolute deviation (𝑀𝑀𝑀𝑀𝑀𝑀𝑙𝑙𝑜𝑜ℎ) 

for these overhangs, where weight was overlap length. Local identity threshold 𝑡𝑡ℎ𝑙𝑙𝑜𝑜ℎ 

was set to min�𝑡𝑡ℎ𝑔𝑔𝑜𝑜ℎ, �max�𝑚𝑚,𝑚𝑚𝑙𝑙
𝑜𝑜ℎ� + 𝑛𝑛 ∗ 𝑘𝑘 ∗ 𝑀𝑀𝑀𝑀𝐷𝐷𝑙𝑙𝑜𝑜ℎ��, where m and n were set to 

10 and 6 by default, respectively. The overlap was removed if the read overhang at 5’ 

or 3’ end was greater than 𝑡𝑡ℎ𝑙𝑙𝑜𝑜ℎ of the corresponding end.  

In addition to assessing overlap identity and read overhang, we used the following 

filtering strategies. 

1. We calculated the coverage for each base in the reads according to overlaps 

between them. For each read, we obtained three metrics, minimum coverage of all bases 

(𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚), maximum coverage of all bases (𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚), and the difference between minimum 



coverage and maximum coverage ( 𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ). The procedure used three thresholds, 

designated as min_coverage, max_coverage, and max_diff_coverage, to assess read 

metrics and automatically select thresholds based on statistical results. If 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 is less 

than min_coverage, 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚  is larger than max_coverage, and 𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  is larger than 

max_diff_coverage, the reads and related overlaps are removed. Our analysis of the 

yeast dataset indicated that min_coverage should be set to the first value not exceeding 

30% of the value for the first trough of the histogram of all 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 s, as shown in 

Supplementary Figure 15. We suggest that max_coverage and max_diff_coverage be 

set to (100-x)-th percentile (x=0.01 by default). These thresholds can also be specified 

by users. After some of the reads are filtered out, coverages of each read may change. 

This filtering strategy is executed twice to increase robustness of the results. 

2. In this step, we assessed the overlaps and counted the number of reads having an 

overlap with the first read and covering the 5’- or 3’-end of the second read. If the 

number was less than min_coverage - 1, this overlap was filtered out. 

3. The contained reads and related overlaps were filtered out. 

4. Finally, for each read, we sorted the overlaps covering its 5’- or 3’-end by aligned 

length, respectively. The best overlaps can be selected using bestn, a parameter 

specified by users. 

  



Supplementary Note 13: Genome polishing and assembly validation 

Different polishing strategies were used for different genome-assembly pipelines 

(NECAT, Canu28, and Canu+smartdenovo29) and different species (E. coli, S. cerevisiae, 

A. thaliana, D. melanogaster, C. reinhardtii, O. sativa and S. pennellii):  

1. Nanopolish (v0.10.2)8 was used to further polish the genome using fast5 files and 

corresponding fasta/fastq files. Finally, the genome was polished three times using NGS 

data with Pilon (v1.22)9 and generated the final genome. 

2. For the A. thaliana, we used the Arrow in smrtlink (v5.1.0)10 to polish the draft 

genome with Sequel Bam files because the raw fast5 files required by Nanopolish were 

not available. 

3. For the O. sativa and Human, we used minimap227 (v2.10-r761) with “-x map-ont” 

and Racon11 (v1.3.1) with default parameters to polish the draft genome four times 

using raw reads. 

4. For S. pennellii34, the assemblies were polished five times using NGS data with Pilon 

(v1.22).  

We used QUAST6 (5.0.2) to evaluate the matrics number of contigs, NG50, NGA50, 

number of misassemblies and QV(log10( 100𝑘𝑘𝑘𝑘𝑘𝑘
# 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝 100 𝑘𝑘𝑘𝑘𝑘𝑘+ # 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝 100 𝑘𝑘𝑘𝑘𝑘𝑘

) ) 

of assemblies. QUAST was run using the “--min-contig 5000 --min-identity 90” options 

for E. coli, using the “--min-contig 5000 --large --min-identity 90” options for S. 

cerevisiae, A. thaliana and O. sativa, using the “--min-contig 5000 --large --min-

identity 90 --fragmented” options for D. melanogaster, S. pennellii, and using the “--

min-contig 50000 --large --min-identity 90 --fragmented” options for Human.  

BUSCO35 (4.0.6) was run to evaluate gene completeness of assemblies for all species. 

We used the following script: 

busco -i $contigs -m geno  -l $lib -e 0.001 --offline -o output 

where $contigs was set to one of assemblies and $lib was set to corresponding OrthoDB 



v10 dataset. We used datasets enterobacterales, saccharomycetes, brassicales, diptera, 

chlorophyta, poales, solanales and primates for E. coli, S. cerevisiae, A. thaliana, D. 

melanogaster, C. reinhardtii, O. sativa, S. pennellii and H. sapiens, respectively. Those 

datasets can be downloaded from https://busco.ezlab.org/busco_v4_data.html. 

Alignments and validation results of statistical analysis are shown in Supplementary 

Figures 6-13. 

We then mapped the assembled genomes onto their reference genomes, and counted 

single-nucleotide polymorphisms (SNPs) and large indels using dnadiff36 and GEGE37. 

The five genome assemblies for E. coli, S. cerevisiae, A. thaliana, D. melanogaster and 

C. reinhardtii and were aligned to their reference genomes and plotted using MUMmer 

(v4.0)12. Results were generated using the following scripts: 

nucmer --mumreference -l 100 -c 1000 -d 10 --banded -D 5 ${ref.fasta} 

${asm.fasta} 

delta-filter -i 95 -o 95 out.delta> out.best.delta 

dnadiff -d out.best.delta 

mummerplotout.best.delta --fat -f –png 

We also compared genome assemblies for E. coli, S. cerevisiae, A. thaliana, C. 

reinhardtii, and D. melanogaster generated using Canu, Canu+Smartdenovo, 

Smartdenovo, miniasm, wtdbg2, Flye, and NECAT pipelines. The following scripts 

were used to evaluate Indel gaps in these genome assemblies: 

awk'{if($2=="GAP"&&sqrt($7*$7)>=10) {print $0 }}' ${out.qdiff} > 

indelM10.txt 

awk'{if($2=="GAP"&&sqrt($7*$7)<10) {print $0 }}' ${out.qdiff} > indelL10.txt 

SNPs and indels between the assembly genome and reference genome are listed in 

Supplementary Table 6.  

https://busco.ezlab.org/busco_v4_data.html


Supplementary Note 14: Analysis of repeat regions in D. melanogaster  

Repeat regions are one of the greatest challenges in genome assembly. To assess 

transposable_element (TE)17 resolution in NECAT assembly, we analyzed the TE repeat 

families and aligned the annotated D. melanogaster genome16 to the seven assembled 

contigs from the genome assemblies pipelines (Canu, canu+smartdenovo, Smartdenovo, 

miniasm, wtdbg2, Flye, and NECAT). Genome FlyBase 5.57_FB2014_0310 was 

downloaded from: 

ftp://ftp.flybase.net/genomes/dmel/dmel_r5.57_FB2014_03/fasta/dmel-all-gene-

r5.57.fasta.gz. 

The annotated gff file was downloaded from: 

ftp://ftp.flybase.net/genomes/dmel/dmel_r5.57_FB2014_03/gff/dmel-all-r5.57.gff.gz. 

Transposable element (TE) features were extracted and converted to bed file using: 

awk'$2=="FlyBase"&&$3=="transposable_element" {print $0}' <dmel-all-

r5.57.gff> > <TE.gtf> 

awk'{print $1"\t"$4"\t"$5"\t"$3"_"NR}' <TE.gtf> > <TE.bed> 

Then, the pipeline was executed as: 

assembled_feature_pipeline.sh -a <asm.fasta> -r <reference.fasta> -f 

<TE.bed> 

After running the scripts, the final output file, called results/FINAL.REPORT, was 

generated and used to identify TE with ≥ 100% Pct_length and corresponding 

Pct_ident. The repeat familes, roo and juan, were extracted from the FINAL.REPORT 

file. The annotated region from roo and juan families can be extracted from dmel-all-

r5.57.gff. The results are shown in Supplementary Table 7. 

  

ftp://ftp.flybase.net/genomes/dmel/dmel_r5.57_FB2014_03/fasta/dmel-all-gene-r5.57.fasta.gz
ftp://ftp.flybase.net/genomes/dmel/dmel_r5.57_FB2014_03/fasta/dmel-all-gene-r5.57.fasta.gz
ftp://ftp.flybase.net/genomes/dmel/dmel_r5.57_FB2014_03/gff/dmel-all-r5.57.gff.gz


Supplementary Note 15: Analysis of telomere assembly 

LRs provide considerable advantages in reconstructing the repetitive heterochromatic 

regions of eukaryotic chromosomes. Telomeres play important roles in chromosome 

replication of all eukaryotic genomes. Nanopore LR sequencing presents distinct 

advantages in telomere assembly. To validate the effectiveness of using Nanopore data, 

we evaluated long-read sequencing in reconstruction of heterochromatic sequences in 

telomeric regions of S. cerevisiae. 

The S. cerevisiae S288C other features database was downloaded from 

http://downloads.yeastgenome.org/sequence/S288C_reference/other_features/other_fe

atures_genomic.fasta.gz. We mapped selected S. cerevisiae telomeric repeats to S. 

cerevisiae W303 assemblies generated using Canu, Canu+Smartdenovo, Smartdenove, 

miniasm, wtdbg2, Flye and NECAT. 

The features were aligned to the assembly using the following scripts: 

nucmer --maxmatch<asm.fasta><features.fasta> 

show-coords -lrcTHout.delta |sort -nk12 |awk'{if ($7> 85 && $11> 50) print 

$0}' | grep TEL | sort -rnk8 >tels.coords 

The contigs containing telomeric features within 1 kbp of contig ends were then 

identified. The results are shown in Supplementary Table 8. 

  

http://downloads.yeastgenome.org/sequence/S288C_reference/other_features/other_features_genomic.fasta.gz
http://downloads.yeastgenome.org/sequence/S288C_reference/other_features/other_features_genomic.fasta.gz


Supplementary Note 16: Validation of H. sapiens NA12878 

To validate the performances of NECAT and Canu, each polished assembly was aligned 

to reference genome hg38 with MUMmer (v4.0)12, after which tiling figures were 

generated (Supplementary Figure 12). The genome was polished four times using 

Nanopore data with Racon11 (v1.3.1) and minimap227 (v2.10-r761), after which the 

final genome was generated using the following code: 

minimap2 -x map-ont -t $NPROC $DRAFT reads.fastq > ONTmin_IT0.paf 
time racon -m 8 -x -6 -g -8 -w 500 -t $NPROC reads.fastq ONTmin_IT0.paf $DRAFT > 
ONTmin_IT1.fasta 
minimap2 -x map-ont -t $NPROC ONTmin_IT1.fasta reads.fastq > ONTmin_IT1.paf 
time racon -m 8 -x -6 -g -8 -w 500 -t $NPROC reads.fastq ONTmin_IT1.paf ONTmin_IT1.fasta > 
ONTmin_IT2.fasta 
minimap2 -x map-ont -t $NPROC ONTmin_IT2.fasta reads.fastq > ONTmin_IT2.paf 
time racon -m 8 -x -6 -g -8 -w 500 -t $NPROC reads.fastq ONTmin_IT2.paf ONTmin_IT2.fasta > 
ONTmin_IT3.fasta 
minimap2 -x map-ont -t $NPROC ONTmin_IT3.fasta reads.fastq > ONTmin_IT3.paf 
time racon -m 8 -x -6 -g -8 -w 500 -t $NPROC reads.fastq ONTmin_IT3.paf ONTmin_IT3.fasta > 
ONTmin_IT4.fasta 

The custom scripts, used to convert the output into a format accepted by 

ColoredChromesomes.pl (http://sourceforge.net/projects/cchrom/), are shown below: 

python makeMappings.py asm_refhg38.1coords 10000 > asm.tiling 
perl convertToChr.pl human.chr.map asm.tiling human.lanes human.chrPos > asm.cfg 
perl coloredChromosomes.pl --chromosomeSpec asm.cfg -o asm.ps 
ps2pdf asm.ps  

Because MUMmer was set to use a unique anchor matching option to accelerate the 

alignment, some repetitive sequences remained unaligned. To avoid displaying these 

regions as gaps in tiling, the conversion script chained together consecutive alignments 

from the same contig if alignment gap in the reference was less than 10,000 bp. Thus, 

breaks in the resulting tiling occurred whenever a contig switch occurred, or if there 

was a >10,000 bp gap between two alignments of the same contig. The entire process 

of alignment and figure generation can be reproduced using the scripts available on the 

MHAP home page24 (assuming that Perl, Python, and MUMmer12 are placed in the 

correct path), and by running the script shown below; this generates a figure designated 

as asm.pdf (Supplementary Figure 14). 

http://sourceforge.net/projects/cchrom/


 

Supplementary Figure 1 



Sequencing error distribution for aligned Nanopore raw long reads on different reference-genome 

positions in the nanopore datasets. (I: genome position; II: percentage of reads with 30-100% 

sequencing error rate; III: 25-30%; IV: 20-25%; V: 15-20%; VI: 10-15%; VII: 0-10%). 

 

  



 

Supplementary Figure 2 

Mummerplot of new assembled WERI Nanopore contigs and hg38 reference genome. An alignment 

dotplot shows the relationship between the contig assembled using Nanopore (y-axis) and GRCh38 

reference genome (x-axis). Contig and chromosome boundaries are displayed as dotted lines 

(horizontal and vertical, respectively). 

  



 

Supplementary Figure 3 

The number of identified SVs detected with WERI, TGS, and NGS. 

  



 

Supplementary Figure 4 

NECAT architecture. Stage 1: preprocess; Stage 2: step one of correction; Stage 3: step two of 

correction; Stage 4: trimming; Stage 5: assembly. 
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Supplementary Figure 5 

Removing false positives with chaining technique. (A): The candidate k-mer pair (blue) and its four 

remote related k-mer pairs detected by DDF scoring. (B)Chaining is used to remove false positives 

(purple) by examining positions with adjacent k-mer pairs. 
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Supplementary Figure 6 

Mummerplot of assembled contig and E. coli reference genome. An alignment dotplot shows the 

relationship between the assembled contig of E. coli K12 (y-axis) and E. coli K12 reference genome 

(x-axis). The assembled single contig was mapped onto the reference genome and covered the entire 

genome. The assembled contig was arbitrarily shifted because the E. coli chromosome is circular; this 

does not represent assembly error. 

 

 

 

 

  



 

Supplementary Figure 7 

Mummerplot of the assembled contig and S. cerevisiae reference genome. An alignment dotplot shows 

the relationship between the contig assembled using Nanopore (y-axis) and S. cerevisiae reference 

genome (x-axis). Contig and chromosome boundaries are displayed as dotted lines (horizontal and 

vertical, respectively). 



 

Supplementary Figure 8 

Mummerplot of the assembled contig and A. thaliana reference genome. An alignment dotplot shows 

the relationship between the contig assembled using Nanopore (y-axis) and A. thaliana reference 

genome (x-axis). Contig and chromosome boundaries are displayed as dotted lines (horizontal and 

vertical, respectively). 

 



 

Supplementary Figure 9 

Mummerplot of the assembled contig and D. melanogaster reference genome. An alignment dotplot 

shows the relationship between the contig assembled using Nanopore (y-axis) and D. melanogaster 

reference genome (x-axis). Contig and chromosome boundaries are displayed as dotted lines 

(horizontal and vertical, respectively). 

 



 

Supplementary Figure 10 

Mummerplot of the assembled contig and C. reinhardtii reference genome. An alignment dotplot shows 

the relationship between the contig assembled using Nanopore (y-axis) and C. reinhardtii reference 

genome (x-axis). Contig and chromosome boundaries are displayed as dotted lines (horizontal and 

vertical, respectively). 

 



 

Supplementary Figure 11 

Mummerplot of the assembled contig and O. sativa reference genome. An alignment dotplot shows the 

relationship between the contig assembled using Nanopore (y-axis) and O. sativa reference genome 

(x-axis). Contig and chromosome boundaries are displayed as dotted lines (horizontal and vertical, 

respectively). 

 

 



 

Supplementary Figure 12 

Mummerplot of new assembled contigs of NA12878 (rel3,4) Nanopore and hg38 reference genome. An 

alignment dotplot shows the relationship between the contig assembled using Nanopore (y-axis) and 

GRCh38 reference genome (x-axis). Contig and chromosome boundaries are displayed as dotted lines 

(horizontal and vertical, respectively). 

  



 

Supplementary Figure 13 

Mummerplot of the NECAT contig and the other assembled contig from S. pennellii. An alignment 

dotplot shows the relationship between the contig assembled using Nanopore (y-axis) and S. pennellii 

reference genome (x-axis). Contig and chromosome boundaries are displayed as dotted lines 

(horizontal and vertical, respectively). 

 

  



 

Supplementary Figure 14 

Continuity analysis of NECAT and Canu Nanopore H. sapiens NA12878 (rel3,4) assembly. (A) 

NECAT assembly. (B) Canu assembly. Human chromosomes are painted with assembled contigs using 

ColoredChromosomes package. Alternating shades indicate adjacent contigs (each vertical transition 

from gray to black represents a contig boundary or alignment breakpoint). 

 

 

  



 

 

Supplementary Figure 15 

Histogram of minimum coverage for the S. cerevisiae dataset. min_coverage is set to the first 
value not exceeding 30% of the value for the first trough of the histogram of all 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚s, 
where 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 is the minimum coverage of all bases. 
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Supplementary Table 1. Detail information of the nine datasets used in this study. 

Datasets Data resource of LRs SRA ID of NGS Reference 

E. coli 
Ecoli.fasta 

ecoli.fast5.tgz 
SRR072235 K-12 substr. MG1655 

S. cerevisiae 
yeast.fastq 

yeast.fast5.tar.gz  
SRR5244182 S. cerevisiae S288c 

D. melanogaster 
SRX3676783 

Dro1.fast5.tar.gz 
Dro2.fast5.tar.gz 

SRR6702604 D. melanogaster v6 

A. thaliana 
ERR2173373 

Ara.bam 
ERR2173372 A. thaliana v5 

C. reinhardtii 
chl.fastq.gz 

chl.fast5.tar.gz 
SRR1734612 C. reinhardtii v5.5 

O. sativa rice.fastq.gz __ O. sativa v4.0 

S. pennellii tomatodata __ S. pennellii 

H. sapiens 
(NA12878) 

rel_3_4 data 
rel_6_data 

ERR194147 Hg38 

LRs: long reads; NGS: Next generation sequencing 

 

  

https://s3.climb.ac.uk/nanopore/E_coli_K12_1D_R9.2_SpotON_2.pass.fasta
https://s3.climb.ac.uk/nanopore/E_coli_K12_1D_R9.2_SpotON_2.tgz
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR072235
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/005/845/GCF_000005845.2_ASM584v2/GCF_000005845.2_ASM584v2_genomic.fna.gz
http://www.tgsbioinformatics.com/necat/datasets/yeast.fastq.gz
http://www.tgsbioinformatics.com/necat/datasets/yeast.fast5.tar.gz
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR5244182
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/146/045/GCF_000146045.2_R64/GCF_000146045.2_R64_genomic.fna.gz
https://www.ncbi.nlm.nih.gov/sra/SRX3676783
https://sra-download.ncbi.nlm.nih.gov/traces/sra59/SRZ/006702/SRR6702603/20170531_1653_ISO1_FirstRun.tar.gz
https://sra-download.ncbi.nlm.nih.gov/traces/sra60/SRZ/006821/SRR6821890/20170531_1653_ISO1_FirstRun.tar.gz
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR6702604
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/001/215/GCF_000001215.4_Release_6_plus_ISO1_MT/GCF_000001215.4_Release_6_plus_ISO1_MT_genomic.fna.gz
ftp://ftp.sra.ebi.ac.uk/vol1/run/ERR217/ERR2173371/pb.bam
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=ERR2173372
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/001/735/GCF_000001735.4_TAIR10.1/GCF_000001735.4_TAIR10.1_genomic.fna.gz
http://www.tgsbioinformatics.com/necat/datasets/chl.fastq.gz
http://www.tgsbioinformatics.com/necat/datasets/chl.fast5.tar.gz
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR1734612
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/002/595/GCA_000002595.3_Chlamydomonas_reinhardtii_v5.5/GCA_000002595.3_Chlamydomonas_reinhardtii_v5.5_genomic.fna.gz
http://www.tgsbioinformatics.com/necat/datasets/rice.fastq.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/005/425/GCF_000005425.2_Build_4.0/GCF_000005425.2_Build_4.0_genomic.fna.gz
https://www.plabipd.de/portal/solanum-pennellii
http://www.plabipd.de/projects/SpennLost/assemblies/canu-smartdenovo_pass5.fasta
https://github.com/nanopore-wgs-consortium/NA12878/blob/master/nanopore-human-genome/rel_3_4.md
https://github.com/nanopore-wgs-consortium/NA12878/blob/master/Genome.md
https://www.ncbi.nlm.nih.gov/sra/?term=ERR194147
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/001/405/GCF_000001405.39_GRCh38.p13/GCF_000001405.39_GRCh38.p13_genomic.fna.gz


Supplementary Table 2. Statistical information of the nine datasets used in this study. 

Datasets Base size Coverage LR Count N25 N50 N75 Mean 

E. coli 1,481,822,528 322X 164,472 25,243 14,891 8,074 9,010 

S. cerevisiae 7,354,232,165 612X 1,814,834 27,799 13,354 4,108 4,052 

D. 

melanogaster 
9,064,470,438 66X 1,327,569 18,919 11,853 6,495 6,828 

A. thaliana 3,421,779,258 27X 300,071 30,160 20,127 11,544 11,403 

C. reinhardtii 16,124,079,751 134X 1,455,141 45,167 27,507 14,469 11,080 

O. sativa 67,710,180,969 183X 2,696,991 46,050 33,120 21,676 25,106 

S. pennellii 141,704,928,841 160X 11,967,377 21,210 16,611 12,552 11,841 

NA12878 

(rel3,4) 
114,380,310,980 38X 15,599,457 22,232 12,196 7,209 7,332 

NA12878(rel6) 132,931,102,331 44X 15,666,888 26,903 13,630 7,984 8,485 

HERS: high error subsequences with high sequencing error rates > 50% in 500bp subsequence. 

 



Supplementary Table 3. Statistical information of sequencing error rate for nine datasets. 

Datasets 
The mean error rate of 

raw reads 

Percentage of reads with HERS and 

length>10kb 

E.coli 17.80% 3.50% 

S. cerevisiae 12.00% 5.20% 

A. thaliana 20.10% 23.2% 

D. melanogaster 16.20% 6.90% 

C. reinhardtii 15.00% 10.90% 

O. sativa 15.60% 8.10% 

S. pennellii 18.49% 8.05% 

NA12878(rel3,4) 18.50% 7.80% 

NA12878(rel6) 12.08% 5.15% 

HERS: high error subsequences with high sequencing error rates > 50% in 1000bp subsequence. 

 

 

  



Supplementary Table 4. Comparison of the accuracy of the nine datasets used in this study. 

 Species Error 
rate  

Percentage 

Raw Canu CN1 CN2 

 A. thaliana 1% 0.10% 0.08% 0.13% 0.29% 

  2% 0.19% 0.32% 0.82% 3.51% 

  3% 0.33% 0.80% 3.07% 15.08% 

 4% 0.42% 1.64% 8.86% 17.27% 

  5% 0.53% 5.25% 12.79% 9.70% 

  6% 0.69% 10.27% 9.60% 6.62% 

  7% 0.99% 10.13% 7.06% 5.28% 

  8% 1.29% 8.25% 5.83% 4.51% 

  9% 1.36% 6.72% 4.91% 3.98% 

  10% 1.47% 5.73% 4.37% 3.78% 

  10-15% 21.93% 19.98% 17.24% 12.89% 

  15-20% 23.94% 13.53% 11.63% 7.01% 

  20-15% 19.40% 8.44% 5.88% 3.90% 

  25-30% 14.37% 4.27% 3.34% 2.65% 

  30-100% 13.00% 4.60% 4.47% 3.52% 

E. coli 1% 0.00% 0.00% 0.00% 0.21% 

  2% 0.00% 0.02% 0.57% 38.03% 

  3% 0.00% 0.12% 13.41% 54.65% 

 4% 0.00% 6.49% 39.09% 5.51% 

  5% 0.01% 13.82% 27.44% 0.94% 

  6% 0.05% 14.93% 10.95% 0.30% 

  7% 0.12% 17.18% 4.26% 0.12% 

  8% 0.26% 16.45% 1.83% 0.06% 

  9% 0.52% 12.85% 0.90% 0.03% 

  10% 1.10% 8.23% 0.46% 0.03% 

  10-15% 30.91% 9.36% 0.66% 0.05% 

  15-20% 37.18% 0.44% 0.19% 0.02% 

  20-15% 20.07% 0.07% 0.09% 0.01% 

  25-30% 8.53% 0.03% 0.06% 0.01% 

  30-100% 1.23% 0.01% 0.10% 0.01% 

S. cerevisiae 1% 0.01% 8.93% 22.94% 73.24% 



  2% 0.03% 31.27% 32.96% 13.85% 

  3% 0.16% 24.28% 17.77% 4.26% 

 4% 0.49% 14.81% 9.57% 2.37% 

  5% 0.92% 8.01% 4.85% 1.32% 

  6% 1.71% 4.28% 2.64% 0.76% 

  7% 4.74% 2.42% 1.58% 0.50% 

  8% 9.05% 1.53% 1.10% 0.38% 

  9% 11.09% 1.02% 0.84% 0.34% 

  10% 10.47% 0.67% 0.65% 0.20% 

  10-15% 35.62% 1.60% 2.22% 1.02% 

  15-20% 16.69% 0.53% 1.15% 0.63% 

  20-15% 6.44% 0.25% 0.60% 0.40% 

  25-30% 1.41% 0.17% 0.37% 0.25% 

  30-100% 1.16% 0.23% 0.75% 0.49% 

D. melanogaster 1% 0.41% 1.40% 4.62% 39.13% 

  2% 0.44% 20.23% 24.01% 24.44% 

  3% 0.43% 20.70% 20.10% 4.65% 

 4% 0.47% 9.79% 10.30% 2.03% 

  5% 0.55% 5.45% 5.15% 1.78% 

  6% 0.73% 3.98% 3.30% 1.84% 

  7% 1.35% 3.01% 2.68% 1.43% 

  8% 2.83% 2.29% 2.20% 1.03% 

  9% 4.91% 1.84% 1.69% 1.34% 

  10% 6.62% 1.91% 1.34% 2.51% 

  10-15% 32.94% 8.34% 7.01% 9.35% 

  15-20% 21.64% 8.52% 8.18% 5.16% 

  20-15% 13.97% 6.89% 5.24% 2.89% 

  25-30% 7.91% 3.34% 2.46% 1.44% 

  30-100% 4.79% 2.31% 1.71% 0.99% 

C. reinhardtii 1% 0.40% 0.10% 0.96% 36.91% 

 2% 0.24% 9.99% 17.07% 42.08% 

 3% 0.18% 35.85% 33.06% 10.98% 

 4% 0.16% 20.99% 21.11% 3.56% 

 5% 0.18% 9.12% 9.93% 1.65% 



 6% 0.39% 4.87% 4.84% 0.94% 

 7% 0.69% 3.33% 2.76% 0.59% 

 8% 0.75% 2.32% 1.78% 0.42% 

 9% 1.11% 1.73% 1.24% 0.33% 

 10% 3.28% 1.27% 0.91% 0.25% 

 10-15% 61.31% 3.64% 2.41% 0.75% 

 15-20% 17.43% 1.91% 1.14% 0.42% 

 20-15% 6.35% 1.52% 0.77% 0.39% 

 25-30% 3.16% 1.27% 0.66% 0.27% 

 30-100% 4.39% 2.10% 1.35% 0.48% 

O. sativa 1% 0.05% 0.13% 0.25% 4.85% 

 2% 0.06% 1.63% 5.32% 24.66% 

 3% 0.09% 11.43% 14.88% 20.55% 

 4% 0.12% 15.56% 15.99% 14.56% 

 5% 0.17% 15.67% 15.05% 10.00% 

 6% 0.27% 12.70% 12.18% 6.73% 

 7% 0.43% 9.10% 9.15% 4.28% 

 8% 0.65% 6.30% 6.61% 2.49% 

 9% 1.14% 4.19% 4.61% 1.33% 

 10% 2.47% 2.62% 2.96% 0.77% 

 10-15% 42.41% 5.63% 5.16% 3.63% 

 15-20% 42.39% 5.85% 3.47% 3.25% 

 20-15% 5.46% 5.30% 2.82% 1.69% 

 25-30% 2.75% 2.57% 0.88% 0.64% 

 30-100% 1.56% 1.33% 0.66% 0.58% 

S. pennellii 1% 0.18% 0.10% 0.45% 3.23% 

 2% 0.18% 1.92% 3.83% 17.68% 

 3% 0.27% 7.76% 8.96% 20.36% 

 4% 0.43% 12.46% 12.90% 13.31% 

 5% 0.64% 11.80% 12.63% 8.46% 

 6% 0.90% 9.45% 10.08% 5.86% 

 7% 1.25% 7.37% 7.71% 4.17% 

 8% 1.80% 5.55% 5.93% 3.14% 

 9% 2.52% 4.15% 4.53% 2.60% 



 10% 3.40% 3.16% 3.46% 2.46% 

 10-15% 26.81% 15.57% 12.25% 7.85% 

 15-20% 25.30% 11.24% 6.90% 4.17% 

 20-15% 16.76% 5.23% 3.89% 2.76% 

 25-30% 10.10% 2.18% 2.41% 2.05% 

 30-100% 9.48% 2.07% 4.09% 1.89% 

NA12878(rel3,4) 1% 0.19% -- 0.20% 0.32% 

 2% 0.12% -- 0.36% 3.04% 

 3% 0.10% -- 2.76% 23.87% 

 4% 0.11% -- 11.57% 32.48% 

 5% 0.14% -- 19.44% 17.89% 

 6% 0.21% -- 19.09% 8.18% 

 7% 0.33% -- 14.15% 3.74% 

 8% 0.54% -- 9.38% 1.83% 

 9% 0.86% -- 6.00% 1.01% 

 10% 1.42% -- 3.82% 0.65% 

 10-15% 28.36% -- 6.34% 1.54% 

 15-20% 34.60% -- 1.80% 1.40% 

 20-15% 17.76% -- 2.03% 2.25% 

 25-30% 9.13% -- 1.56% 1.20% 

 30-100% 6.11% -- 1.50% 0.60% 

NA12878(rel6) 1% 0.67% -- 14.22% 43.28% 

 2% 0.39% -- 38.31% 27.29% 

 3% 0.78% -- 17.05% 3.04% 

 4% 2.10% -- 5.48% 1.12% 

 5% 4.97% -- 2.18% 0.72% 

 6% 8.81% -- 1.08% 0.53% 

 7% 10.88% -- 0.71% 0.44% 

 8% 10.30% -- 0.58% 0.38% 

 9% 8.59% -- 0.52% 0.30% 

 10% 6.93% -- 0.44% 0.27% 

 10-15% 20.55% -- 1.73% 1.58% 

 15-20% 9.88% -- 2.27% 3.87% 

 20-15% 6.16% -- 6.54% 9.09% 



 25-30% 4.60% -- 4.86% 5.13% 

 30-100% 4.39% -- 4.03% 2.97% 

 

  



Supplementary Table 5.  Comparison with assemble-then-correct assemblers 

Genome Pipeline 
Assembly 

Size (Mb) 
Contig 

NG50 

(Kb) 

NGA50 

(Kb) 

MA / local 

MA 

QV 

(pre- / 

post-

polish) 

BUSCO 

Total 

time 

E. coli 

Ref. 4.6 1 4,642 — —/— —/— — — 
Miniasm+Racon 4.6 1 4,598 3,919 2/4 17.6/22.2 20.7% 5.0 
Smartdenovo 4.6 1 4,632 3,386 2/3 19.1/22.2 20.0% 40.0 
Wtdbg2 4.5 1 4,495 1,658 3/1 17.0/22.4 17.9% 0.8 
Flye 4.6 1 4,622 3,071 2/2 20.2/22.6 20.2% 630.4 
Raven+Racon 4.6 1 4,599 3,402 2/3 18.9/22.6 20.2% 4.6 
Shasta 4.6 1 4,603 2,924 3/6 18.9/22.5 20.5% 2.7 
NECAT 4.6 1 4,595 3,984 2/3 18.5/22.3 19.8% 2.8 

S. cerevisiae 

S228C 12.2 17 924 — —/— —/— — — 
Miniasm+Racon 13.0 33 821 708 39/43 20.9/27.2 97.7% 75.6 
Smartdenovo 12.4 20 937 708 25/37 23.4/28.6 98.4% 97.1 
Wtdbg2 12.1 22 792 701 18/26 22.0/29.5 98.5% 6.3 
Flye 12.3 26 943 706 21/26 21.8/29.0 98.5% 197.8 
Raven 12.5 18 818 714 34/35 24.1/28.7 98.3% 34.9 
Shasta+Racon 12.1 269 927 688 21/24 21.8/29.1 97.4% 17.0 
NECAT 12.3 19 937 708 26/35 23.1/29.0 98.3% 9.3 

A. thaliana 

TAIR10 119.7 7 23,460 — —/— —/— — — 
Miniasm+Racon 118.2 69 11,938 559 665/1262 16.4/19.4 98.6% 9.3 
Smartdenovo 116.4 127 3,676 440 370/1201 16.0/19.4 98.6% 78.4 
Wtdbg2 115.3 349 9,840 481 441/1320 15.0/19.6 98.5% 14.4 
Flye 126.6 154 12,043 627 1085/1962 16.8/18.5 98.7% 59.4 
Raven 116.9 25 11,153 601 790/1659 16.7/19.5 98.8% 9.7 
Shasta+Racon 82.5 1071 157 76 205/722 17.3/20.5 82.5% 4.9 
NECAT 122.9 136 11,157 582 886/1304 16.0/18.9 98.8% 47.9 

D. melanogaster 

dm6 143.7 1870 25,287 — —/— —/— — — 
Miniasm+Racon 143.9 439 1,496 1,238 906/562 20.1/22.6 91.4% 43.8 
Smartdenovo 138.1 238 4,480 2,915 552/402 20.8/23.0 91.7% 182.4 
Wtdbg2 138.9 872 6,633 4,383 652/301 19.3/22.6 90.4% 26.0 
Flye 139.9 593 11,925 5,129 558/749 21.4/22.5 89.9% 127.9 
Raven 139.1 201 5,914 3,720 723/351 20.7/23.0 91.6% 80.9 
Shasta+Racon 127.6 783 456 445 186/106 21.7/24.2 90.3% 9.8 
NECAT 142.8 277 18,072 6,323 1117/1333 20.2/22.3 92.0% 70.4 

C. reinhardtii 

Ref. v5.5 111.1 53 7,784 — —/— —/— — — 
Miniasm+Racon 128.0 215 2,815 588 994/2568 19.5/21.6 98.5% 137.8 
Smartdenovo 112.9 83 3,370 620 748/1681 19.9/22.6 97.2% 1365.3 
Wtdbg2 115.7 344 4,290 711 808/1254 17.9/22.1 97.2% 35.4 
Flye 112.9 65 6,573 831 764/2029 21.6/23.6 98.4% 185.8 
Raven 113.3 49 4,435 774 861/1834 21.3/23.1 98.5% 64.2 
Shasta+Racon 106.9 905 2,099 602 553/1490 21.3/23.1 95.5% 36.5 
NECAT 113.4 54 6,169 732 831/2273 19.8/22.4 98.0% 101.8 

O. sativa 

Ref.v4.0 382.8 15 30,829 — —/— —/— — — 
Miniasm+Racon 393.0 240 9,750 3,078 625/7104 15.2/16.0 59.0% 933.1 
Smartdenovo 379.4 352 1,889 1,363 467/7987 16.5/16.0 59.6% 3564.9 
Wtdbg2 394.6 2554 2,432 1,272 396/10878 14.6/15.8 55.9% 154.3 
Flye 380.7 249 3,552 2,213 573/1742 16.4/16.3 59.2% 817.6 
Raven 374.8 212 3,670 2,109 563/3738 16.2/16.3 60.1% 344.6 
Shasta+Racon 345.8 3278 340 296 248/4515 15.9/16.7 58.2% 161.1 
NECAT 373.1 120 9,650 3,311 479/4873 16.0/16.3 58.4% 517.2 

S. pennellii 

Ref. 915.6 899 2,522 — —/— —/— — — 
Miniasm 977.8 2704 1,903 1 694/56129 —/18.3 83.8% — 
Smartdenovo 955.3 1901 1,108 574 3544/14483 —/20.2 97.0% — 
Wtdbg2 934.3 4986 1,228 632 3258/9948 15.2/16.9 93.6% 439.0 
Flye 1,026.0 3180 1,971 651 8504/10726 16.0/18.5 96.7% 3590.8 
Raven 1,019.7 3287 609 368 10254/12375 16.2/19.9 94.0% 1119.1 
Shasta+Racon 748.7 9712 115 100 1909/3528 16.8/21.1 96.2% 344.7 
NECAT 991.8 1344 4,802 992 5813/12592 15.2/17.3 95.5% 3233.7 

NA12878 (rel6) 
Ref.38 3,272 639 145,139 — —/— —/— — — 
Flye 2,867 3309 28,407 16,640 4054/7258 22.9/24.2 74.6% 2500.0 
NECAT 2,847 1047 20,913 13,441 948/1467 23.1/24.4 74.5% 9418.8 

‘Assembly size’ is the total number of base pairs in all contigs generated by assemblers. ‘NG50’ indicates that 50% of reference 



genome size was contained in contigs having length ≥N. ‘NGA50’ is NG50 of aligned blocks that contigs are broken into at 

misassembly breakpoints. ‘MA / local MA’ are the numbers of misassemblies and local misassemblies evaluated by QUAST. ‘QV’ 

is defined as 10 × log10( 100𝑘𝑘𝑘𝑘𝑘𝑘
# 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝 100 𝑘𝑘𝑘𝑘𝑘𝑘+ # 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝 100 𝑘𝑘𝑘𝑘𝑘𝑘

), where ‘# mismatches per 100 kbp’ and ‘# indels per 100 kbp’ 

are evaluated by QUAST. ‘BUSCO’ is gene completeness evaluated by BUSCO. All the pipelines were tested on the same computer 

with 2.0 GHz CPU and 3T GB RAM of memory. For the first six datasets, we ran all the pipelines on our computer with 32 threads; 

the total computational time are recorded. For S. pennellii and human dataset, we ran the pipelines on our computer with 64 threads, 

and total computational time were recorded. The assembly results of Miniasm and Smartdenove on the dataset S. pennellii were 

from https://www.plabipd.de/portal/solanum-pennellii. The assembly results and total time of Flye on the dataset NA12878 (rel6) 

was acquired from https://github.com/fenderglass/Flye. 

  

https://www.plabipd.de/portal/solanum-pennellii
https://github.com/fenderglass/Flye


Supplementary Table 6. SNP and INDEL statistics between assembly genome and reference 

genome. 

Species Software SNPs 
Indels 

Cover (%) 
<=10bp >10bp 

E. coli Canu 9374 1 18 99.35 

 Canu+Smartdenovo 9170 0 4 99.39 

 Smartdenovo 8663 0 6 99.31 

 Miniasm+Racon 10116 0 6 99.33 

 wtdbg2 7926 0 4 99.39 

 Flye 8590 0 3 99.42 

 Raven 8898 0 3 99.41 

 Shasta+Racon 9250 1 5 99.38 

 NECAT 10248 0 11 99.37 

S. cerevisiae Canu 9297 7 33 99.88 

 Canu+Smartdenovo 9010 4 30 99.91 

 Smartdenovo 9699 8 41 99.65 

 miniasm+Racon 9508 23 31 99.43 

 wtdbg2 9243 7 31 99.82 

 Flye 9199 8 31 99.92 

 Raven 9175 15 34 99.90 

 Shasta+Racon 9311 31 45 98.50 

 NECAT 9142 4 38 99.92 

D. 
melanogaster 

Canu 24811 22 266 98.96 

Canu+Smartdenovo 31359 9 281 99.16 

 Smartdenovo 40735 5 251 98.92 

 miniasm+Racon 44233 54 285 98.10 

 wtdbg2 27297 24 215 98.87 

 Flye 26494 20 195 99.03 

 Raven 36549 21 224 98.46 

 Shasta+Racon 30080 23 213 98.70 

 NECAT 29113 10 345 99.30 

A. thaliana Canu 457782 456 2880 98.98 

 Canu_smartdenovo 462818 42 3413 99.32 

 Smartdenovo 461263 37 3372 99.02 



 miniasm+Racon 463272 467 2982 97.04 

 wtdbg2 457763 458 2976 99.19 

 Flye 463692 465 2988 99.34 

 Raven 462823 465 3001 98.58 

 Shasta+Racon 328323 335 1960 98.55 

 NECAT 463859 45 3427 99.31 

C. reinhardtii Canu 39984 324 1580 99.40 

 Canu_smartdenovo 39832 13 1630 99.60 

 Smartdenovo 47750 12 1655 99.40 

 miniasm+Racon 48898 301 1386 99.07 

 wtdbg2 48849 283 1372 99.21 

 Flye 39996 302 1388 99.69 

 Raven 40500 305 1401 99.49 

 Shasta+Racon 46545 295 1364 98.81 

 NECAT 45218 11 1812 99.54 

  



Supplementary Table 7. Number of TEs in Flybase. 

Method 
Contain in a contig  roo  Juan 

Total Perfect  Total Perfect  Total Perfect 

Canu 5304 3970  131 95  11 11 

Canu+Smartdenovo 5292 3916  132 115  11 11 

Miniasm+Racon 5234 3994  128 89  9 9 

Smrtdenovo 5312 3998  135 106  11 11 

Flye 5268 3840  131 93  11 11 

Wtdbg2 5156 3831  130 95  11 11 

Raven 5269 3943  130 72  11 11 

Shasta+Racon 5042 4063  113 69  11 11 

NECAT 5,304 4001  134 118  11 11 

Total and Perfect refer to all the identified TE numbers and the number of TEs with more than 99% 
Pct_ident from the final report. 

  



Supplementary Table 8. Chromosome number identified based on the alignment of telomeric 

repeats 

Method All Pair_end telomere Single_end 
telomere 

Identified 
in a single contigs 

Identified 
in two contigs 

Canu 16 13 1 2 

Canu+Smartdenovo 16 14 1 1 

Miniasm+Racon 16 13 1 2 

Smartdenovo 16 14 1 1 

Flye 16 14 1 1 

Wtdbg2 16 3 8 5 

Raven 16 14 1 1 

Shasta+Racon 16 13 1 2 

NECAT 16 14 1 1 

“All” indicates the total identified number of chromosome, “identified in a single contig” 

is the number of chromosomes in which the telomeric repeats are mapped on both the 

left and right ends in a single contig. 

 

 

  



Supplementary Table 9.  Comparison with hybrid pipelines 

Genome Pipeline 
Assembly 

Size (Mb) 
Contig 

NG50 

(Kb) 

NGA50 

(Kb) 

MA / 

local MA 

QV Correct/Contig 

/Total time 

E. coli 

Ref. 4.6 1 4,642 — —/— — —/—/— 
Canu+Smartdenovo 4.6 1 4,630 3,287 3/2 18.6 26.1/8.0/34.1 
Canu-Flye 4.6 1 4,606 3,943 2/2 19.6 26.1/1.8/27.9 
Canu+NECAT 4.6 1 4,595 2,451 2/16 17.2 26.1/1.1/27.2 
NECAT+Canu 4.6 1 4,635 3,362 2/2 18.5 1.6/37.9/39.5 
NECAT+Smartdenovo 4.6 1 4,637 3,291 3/2 18.6 1.6/6.5/8.1 
NECAT+Flye 4.6 1 4,599 1,626 4/2 19.0 1.6/2.1/3.7 
NECAT 4.6 1 4,595 3,984 2/3 18.5 1.6/1.2/2.8 

S. cerevisiae 

S228C 12.2 17 924 — —/— — —/—/— 
Canu+Smartdenovo 12.4 19 815 705 34/29 22.7 493.3/38.4/531.7 
Canu-Flye 12.4 26 939 710 27/31 24.5 493.3/28.7/522.0 
Canu+NECAT 12.4 21 816 705 38/49 21.8 493.3/2.8/496.1 
NECAT+Canu 12.5 20 936 708 28/34 23.0 4.4/257.0/261.4 
NECAT+Smartdenovo 12.3 17 816 676 20/24 23.3 4.4/29.9/34.3 
NECAT+Flye 12.2 16 940 706 22/22 22.2 4.4/11.6/16.0 
NECAT 12.3 19 937 708 26/35 23.1 4.4/4.9/9.3 

A. thaliana 

TAIR10 119.7 7 23,460 — —/— — —/—/— 
Canu+Smartdenovo 115.6 44 11,071 527 576/1170 15.9 193.1/125.9/319.0 
Canu-Flye 117.2 124 7,157 543 628/1107 16.4 193.1/32.4/225.5 
Canu+NECAT 110.3 280 5,762 511 356/1372 15.2 193.1/15.5/208.6 
NECAT+Canu 120.1 66 11,022 575 835/1235 16.3 19.8/841.9/861.7 
NECAT+Smartdenovo 117.6 57 6,314 582 725/1168 16.5 19.8/101.8/121.6 
NECAT+Flye 118.9 62 13,170 619 952/1381 16.6 19.8/31.1/50.9 
NECAT 122.9 136 11,157 536 886/1304 16.0 19.8/28.0/47.9 

D. melanogaster 

dm6  143.7 1870 25,287 — —/— — —/—/— 
Canu+Smartdenovo 135.8 162 14,456 6,473 587/333 20.8 289.6/294.4/584.0 
Canu-Flye 136.1 261 3,519 2,497 544/268 23.1 289.6/80.2/369.8 
Canu+NECAT 139.3 291 16,995 7,154 687/674 18.9 289.6/24.0/313.6 
NECAT+Canu 150.4 496 4,872 4,179 1640/1738 20.2 37.7/3434.4/3472.0 
NECAT+Smartdenovo 134.5 123 12,674 9,663 488/295 21.4 37.7/196.3/234.0 
NECAT+Flye 137.3 246 7,369 5,100 578/720 21.1 37.7/69.1/106.7 
NECAT 142.8 277 18,072 6,323 1117/1333 20.2 37.7/32.7/70.4 

C. reinhardtii 

Ref. v5.5 111.1 53 7,784 — —/— — —/—/— 
Canu+Smartdenovo 109.7 46 4,498 713 655/1629 20.1 950.4/816.0/1766.4 
Canu-Flye 111.7 54 4,149 756 754/1946 21.4 950.4/126.5/1076.9 
Canu+NECAT 110.9 77 4,435 682 650/2125 18.1 950.4/29.1/979.5 
NECAT+Canu 118.9 100 5,317 687 934/2515 20.0 54.8/8299.1/8353.9 
NECAT+Smartdenovo 112.9 72 2,569 622 704/1583 20.4 54.8/690.7/745.5 
NECAT+Flye 112.2 37 6,712 746 770/1947 20.9 54.8/119.8/174.6 
NECAT 113.4 54 6,169 726 831/2273 19.8 54.8/47.0/101.8 

NA12878(rel6) 

Ref38 3,272 639 145,139 — —/— — —/—/— 
NECAT+Flye 2,844 820 33,800 16,778 850/1017 21.2 2518.4/1599.9/4118.3 
Flye 2,867 3309 28,407 16,640 4054/7258 22.9 —/—/2500 
NECAT 2,847 1047 20,913 13,441 948/1467 23.1 2518.4/6900.4/9418.8 

‘Assembly size’ is the total number of base pairs in all contigs generated by assemblers. ‘NG50’ indicates that 50% 

of reference genome size was contained in contigs having length ≥N. ‘NGA50’ is NG50 of aligned blocks that 

contigs are broken into at misassembly breakpoints. ‘MA / local MA’ are the numbers of misassemblies and local 

missassemblies evaluated using QUAST. ‘QV’ is defined as 10 ×

log10( 100𝑘𝑘𝑘𝑘𝑘𝑘
# 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝 100 𝑘𝑘𝑘𝑘𝑘𝑘+ # 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝 100 𝑘𝑘𝑘𝑘𝑘𝑘

), where ‘# mismatches per 100 kbp’ and ‘# indels per 100 kbp’ 

are evaluated by QUAST. All the pipelines were tested on the same computer with 2.0 GHz CPU and 3T GB RAM 

of memory. We ran all the pipelines on our computer with 32 threads for the first five datasets and with 64 threads 

for the human dataset; the correction and contig computational time of the pipelines were recorded. The assembly 



results and total time of Flye on the dataset NA12878 (rel6) was acquired from 

https://github.com/fenderglass/Flye. 

https://github.com/fenderglass/Flye
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