
Efficient assembly of Nanopore reads via highly accurate and intact error
correction

Ying Chen1, #, Fan Nie2, #, Shang-Qian Xie3, 4, #, Ying-Feng Zheng1, #, Qi Dai5, #, Thomas Bray6, Yao-Xin
Wang6, Jian-feng Xing3, 4, Zhi-Jian Huang7,8,9, De-Peng Wang10, Li-Juan He1, Feng Luo11, *, Jian-Xin Wang2, *,
Yi-Zhi Liu1, 12, *, and Chuan-Le Xiao1,*

1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University #7 Jinsui
Road, Tianhe District, Guangzhou, P.R. China
2 School of Information Science and Engineering, Central South University, Changsha, 410083, China
3Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental
Plants, Ministry of Education, Hainan University, Haikou 570228, China
4Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, College of Forestry, Hainan
University, Haikou 570228, China
5College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic
of China
6Oxford Nanopore Technologies, Gosling Building, Edmund Halley Road, Oxford Science Park, OX4 4DQ,
UK
7School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
8State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of
China
9Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University,
Guangzhou, Guangdong, People's Republic of China
10Nextomics Biosciences Co., Ltd
11School of Computing, Clemson University, Clemson, SC 29634-0974
12Research Units Of Ocular Development And Regeneration, Chinese Academy Of Medical Sciences

*To whom correspondence should be addressed:
Feng Luo. Tel: +01 864 633 6901. Email: luofeng@clemson.edu;
Jian-Xing Wang. Tel: +86 20 87335131. Email: jxwang@mail.csu.edu.cn;
Yi-Zhi Liu. Tel: +86 20 66686996. Email: liuyizh@mail.sysu.edu.cn;
Chuan-Le Xiao: Tel: +86 20 66686996. Email: xiaochuanle@126.com;

#These authors contributed equally to the manuscript as first authors.

mailto:luofeng@clemson.edu
mailto:jxwang@mail.csu.edu.cn
mailto:liuyizh@mail.sysu.edu.cn
mailto:xiaochuanle@126.com

Supplementary Note 1：Comparison with assemble-then-correct assemblers
We compared our NECAT assembler with widely used assemble-then-correct

assemblers: miniasm1, Smartdenovo, wtdbg22, Flye3, Raven4, and Shasta5

(Supplementary Note 7) using Nanopore data of E. coli, S. cerevisiae, A. thaliana, D.

melanogaster, C. reinhardtii, O. sativa, and S. pennellii. The miniasm and Shasta didn’t

have correction step and reported assemblies with a much larger number of mismatches

and indels, which were not suitable for the evaluation using QUAST6. To make a fair

comparison, we ran Racon7 to improve the accuracy of their assemblies. In addition,

the assemblies of Shasta contained many short contigs, we filtered out the contigs ≤

500𝑏𝑏𝑏𝑏 before the evaluation and polishing. We also compared the assemblies of

NECAT and Flye on dataset human NA12878 (rel6). In general, assemble-then-correct

assemblers run fast but obtain relatively poor assembly results.

As shown in Supplementary Table 5, for relatively less complex genomes, such as

E. coli, S. cerevisiae, all assemblies reported similar NG50 and NGA50, and the running

times of NECAT are even less than those of most assemble-then-correct assemblers.

For A. thaliana, five assemblers, except Smartdenovo and Shasta, reported similar

assemblies. For D. melanogaster, NECAT reported the best NG50 and NGA50. For

more complex genomes, such as C. reinhardtii, and O. sativa, NECAT reported close

to the best NG50 while Flye reported the best in C. reinhardtii and Miniasm reported

the best in O. sativa. The NECAT reported the best NGA50 for O. sativa and Flye also

reported the best NGA50 for C. reinhardtii. For even more complex genome, S.

pennellii, NECAT reported the best NG50 and NGA50, which were much higher than

those reported by other assemblers. For human NA12878 (rel6), Flye reported higher

NG50 and NGA50 than those reported by NECAT, while NECAT reported only one-

fourth misassemblies errors. And all assemblers reported similar performance on the

number of misassemblies, QV, and gene completeness on the assemblies of E. coli, S.

cerevisiae, A. thaliana, D. melanogaster, C. reinhardtii, O. sativa, and S. pennellii.

Supplementary Note 2：Validating assemblies from Nanopore reads

We further validated our assemblies by comparing them to reference genomes. The

assemblies of the E. coli, S. cerevisiae, D. melanogaster, C. reinhardtii were polished

by nanopolish8 and pilon9. The assemblies of A. thaliana were polished by Arrow10.

The assemblies of O. sativa and Human genomes were polished by Racon11. The

assemblies of S. pennellii genome were polished by pilon (Supplementary Note 10).

First, we mapped the assemblies of E. coli, S. cerevisiae, A. thaliana, C. reinhardtii, D.

melanogaster, O. sativa, and Human N12878 from Nanopore reads to corresponding

reference genomes using MUMmer (v4.0)12, then evaluated the mapping results using

GAGE scripts13. Except for the presence of minor structural variations, most assemblies

were structurally consistent with reference genomes (Supplementary Figures 6-12).

Most assemblies were good collinearity with reference genomes, except the assemblies

of A. thaliana and D. melanogaster generated by wtdbg2, C. reinhardtii generated by

Canu+smartdenove and smartdenove, and A. thaliana generated by Raven. Second, for

S. pennellii14, we mapped the assembly of NECAT to the assemblies of the other

pipelines from public paper using MUMmer (v4.0)12, our assembly was structurally

consistent with the assemblies except for the presence of minor structural variations

(Supplementary Figure 13) since NG50 of NECAT-generated assembly was much

longer than the original reference genome that was generated by Canu+Smartdenvo14.

The tiling figure also showed that continuity of human N12878 assembly generated by

NECAT was better than that generated by Canu (Supplementary Figure 14).

Supplementary Table 6 provided GAGE13 accuracy metrics for the assemblies of E.

coli, S. cerevisiae, A. thaliana, C. reinhardtii, and D. melanogaster. The numbers of

single-nucleotide polymorphisms (SNPs) and large indels (>10bps) in the genomes

assembled by Canu, Canu+Smartdenovo, Smartdenovo, miniasm+Racon, wtdbg2, Flye,

Raven, Shasta+Racon, and NECAT were similar. Assemblies reported by NECAT

maintained at least 99.30% coverage of their reference genomes.

We then mapped 17,294 annotated genes from D. melanogaster15, 16 onto its three

assemblies (Supplementary Note 11). A total of 16,402, 16,438, 16,368, 16,356,

16458, 16,396, 16495, 15796 and 16,412 genes were mapped onto a single contig of

assemblies generated using Canu, Canu+smartdenovo, Smartdenovo, miniasm+Racon,

wtdbg2, Flye, Raven, Shasta+Racon and NECAT in a single alignment; 15,926, 15,956,

15,979, 15987, 16,084, 16,075, 16121, 15518 and 16,053 of these genes showed over

99% identity. This indicated that the quality of the NECAT assembly was comparable

to those of the other pipelines.

Solving repeat regions is the most important task in genome assembly. We first

evaluated three assemblies of D. melanogaster by comparing the completeness of

transposable element (TE) families17 (Supplementary Note 11). Of the 5,433 annotated

TEs from FlyBase, NECAT assembly contained 5,304 TEs, in which 4,001 were aligned

perfectly to the reference genome. Flye and wtdbg2 assemblies contained only 3840

and 3831 TEs aligned perfectly to the reference genome, which were less than other

assemblies. We then examined two TE families: roo and juan. Using NECAT assembly,

we aligned 134 of the 138 copies in the roo family, of which 118 were aligned perfectly.

The 11 elements of juan family were also aligned perfectly. These results were similar

to those obtained using other pipelines except miniasm+Racon, Raven, and

Shasta+Racon. Miniasm+Racon assembly contained 9 perfectly aligned elements of

juan family, which was the least of all assemblies. Raven and Shasta+Racon assemblies

contained only 72 and 69 perfectly aligned elements of roo family, which were less than

other assemblies (Supplementary Table 7).

We also examined telomeric repeats of 16 chromosomes in the NECAT assembly

of S. cerevisiae (Supplementary Note 12). We mapped 14 out 16 telomeric repeats to

both ends of each chromosome. One telomeric repeat was mapped onto two

chromosomes, and the other telomeric repeat was mapped to one end of a chromosome.

Our results were similar to those obtained using assemblies generated by other pipelines

except wtdbg2. wtdbg2 assembly contained 8 telomeric repeats mapped onto two

chromosomes and 5 telomeric repeats mapped to one end of a chromosome

(Supplementary Table 8). Both TE of D. melanogaster and telomeric repeat of S.

cerevisiae analyses demonstrated that NECAT could accurately reconstruct repeat

sequences.

Supplementary Note 3：Comparison with hybrid pipelines

We also built and evaluated hybrid pipelines to show the correctness and

effectiveness of the correction step and the assembly step of NECAT (Supplementary

Note 7). We combined either the correction step of NECAT with the assembly steps

of Canu, Smartdenovo, and Flye, or the correction step of Canu with Smartdenove, Flye

and the assembly step of NECAT. Then, we used those hybrid assembly pipelines to

assemble datasets of E. coli, S. cerevisiae, A. thaliana, D. melanogaster and C.

reinhardtii. The performances of the hybrid pipelines are shown in Supplementary

Table 9.

All pipelines reported similar NG50 and NGA50 for E. coli and S. cerevisiae,

except NECAT+Flye reported as smaller NGA50 due to one more mis-assembly error.

For A. thaliana, NECAT+Flye reported the best NG50 and NGA50, while Canu+S,

NECAT+Canu, and NECAT reported close to the best NG50 and NGA50. For D.

melanogaster, NECAT reported the best NG50, while Canu+S, Canu+NECAT, and

NECAT+S reported close to best results. The NECAT+S reported the best NGA50 for

D. melanogaster. For C. reinhardtii, NECAT+Flye reported the best NG50 while

NECAT reported the close to the best one. The Canu+Flye reported the best NGA50 for

C. reinhardtii. Our comparison showed that NECAT reported consistent performance

on the assemblies of all five genomes, while the performances of other hybrid pipelines

were not stable.

Moreover, we used the NECAT+Flye to ensemble human NA12878 (rel6). We

obtained an assembly with 19% higher NG50 and slightly higher NGA50 comparing to

those of the assembly from Flye. The number of misassembly in the assembly of

NECAT+Flye was also significantly less than those in the assembly of Flye. These

results implied that the “correct-then-assembly” approach may be more appropriate for

assembling large complex genomes.

Supplementary Note 4: Cell culture and sequencing materials

Datasets for eight species (E. coli, S. cerevisiae, A. thaliana, D. melanogaster, C.

reinhardtii, O. sativa, S. pennellii and H. sapiens) were used to train and test our

algorithm. Among these, four datasets (S. cerevisiae, C. reinhardtii, O. sativa Japonica

Group, and retinoblastoma cell line WERI) were cultured and sequenced using MinION

/ PromethION platform from Oxford Nanopore in our laboratory; detailed culture

conditions are described in the following text.

S. cerevisiae w303 culture: S. cerevisiae strains w303 were cultured in Yeast Extract

Peptone Dextrose (YPD) broth used as a complete medium for yeast growth. YPD

medium, which contained 1 L of deionized water to 20 g bacto peptone, 10 g yeast

extract, and 20 g dextrose, was sterilized by autoclaving for 20 min at 15 psi (1.05

kg/cm2), and was stored at room temperature. Yeast cells were cultured at 30°C in a

shaking incubator at 300 rpm for 24 to 36 hours.

C. reinhardtii culture: High-quality genomic DNA was extracted from C. reinhardtii

cultured under mixotrophic (constant light) or heterotrophic (constant dark) conditions

in Tris-Acetate-Phosphate (TAP) medium during the pre-stationary phase. Samples of

wild-type strain CC-1690 were placed in an intelligent temperature and illumination

incubator under 4~6°C and 20~30 µE/(m2·s) light intensity. The naturally synchronized

cells were induced using a 12 h/12 h light/dark cycle.

Culture of O. sativa Japonica Group：The seeds of O. sativa Japonica Group

(Janponica Nipponbare) were sterilized, immersed in deionized water and germinated

in the dark for 3 days. After germination, seedlings were transplanted into plastic pots

filled with commercial substrate (PINDSTRUP, Denmark), and kept in a growth

chamber at26/22° C ±1°C day/night temperature and light intensity of 600 μmolm-2s-1.

Four-weeks old seedlings were harvested for DNA isolation.

Culture of retinoblastoma cell line WERI: The human retinoblastoma cell line WERI

was cultured in RPMI 1640 (Gibco Company, USA) supplemented with 20% fetal

bovine serum (Biological Industries, USA). Cell cultures were incubated at 37°C and

5% CO2, and media were replaced every 3~4 days. Cultures were maintained using

centrifugation and resuspension in fresh medium, or media replacement after cell

aggregates precipitated at the bottom of the flask. Cells were grown in suspension at a

concentration of 105~106 cells/ml.

Supplementary Note 5: DNA extraction and purification

S. cerevisiae w303: S. cerevisiae w303 cells were washed twice using phosphate-

buffered saline (PBS) and collected by centrifugation at 4,000 rpm for 5 min. Samples

were: (i) lysed in buffer with 1 ml lysozyme TLB and 20 µl RNase A (20 mg/ml), and

then incubated for 1 h at 37°C; (ii) treated with 20 µl Proteinase K for 1.5 h at 50°C;

(iii) purified with 1 volume phenol, 0.5 volume phenol-chloroform (1:1 by volume), 3

volume ice-cold absolute ethyl alcohol at 4,500 rpm for 10 min; (iv) washed in 80%

ice-cold ethanol twice, collected by centrifugation (12,000 rpm, 15 min, 4°C), and

eluted in 100 µl elution buffer(EB; 10 mMTris hydrochloride [pH 8.0]).

C. reinhardtii and O. sativa Japonica Group: High-molecular-weight (HMW) DNA

was isolated from C. reinhardtii cc1690 and O. sativa Japonica Group using the CTAB

method. Briefly, about 0.2 g samples were re-suspended in 1 ml CTAB buffer

containing 2% β-mercaptoethanol, incubated at 65°C for 30 min, and then centrifuged

at 8,000 rpm for 5 min. The suspended nuclei were purified twice with chloroform-

isoamyl alcohol (24:1 by volume) and once with 0.7 volume isopropyl alcohol at -20°C

for 1 h. DNA precipitates were washed in ice-cold 75% ethanol twice, collected by

centrifugation (12,000 rpm at 15 min and 4°C), dried under vacuum, and re-suspended

in 100 ul EB18 (10 mM Tris hydrochloride [pH 8.0]).

Retinoblastoma cell line WERI: 1 x 107 frozen cells were lysed with 800 µl TEN

Buffer, 100 µl 20% sodium dodecyl sulphate (SDS), and 100 µl proteinase K. This

mixture was incubated at 56°C for 2 hours, purified with phenol-chloroform-isoamyl

alcohol (25:24:1 by volume) and chloroform-isoamyl alcohol (24:1 by volume), and

precipitated using 0.7 volume isopropyl alcohol at -20°C for 40 min. DNA precipitates

were collected by centrifugation (12,000 rpm at 15 min and 4°C), washed twice in ice-

cold 80% ethanol, dried under vacuum, re-suspended in 100 ul EB (10 mMTris

hydrochloride [pH 8.0]), and combined with 2 µl RNase A (100 mg/ml) to cleave the

RNA. To acquire high-quality DNA for the three datasets mentioned above, an

additional purification step was performed using 0.8 volume magnetic beads from an

AMPure XP kit (#A63882, Agencourt) according to the manufacturer’s instructions.

Supplementary Note 6: Nanopore whole genome sequencing and base-calling

S. cerevisiae w303: Sequencing libraries were constructed using a Ligation Sequencing

Kit 1D (SQK-LSK108, Oxford Nanopore, UK) according to the manufacturer’s

instructions. Then, 5 µg high-molecular-weight genomic DNA was fragmented using

g-TUBE (#520079, Covaris) centrifugation (conducted twice at 1,400 g for 2 min).

Libraries were prepared according to the manufacturer’s instructions. Briefly, NEBNext

Ultra II End-Repair/dA-tailing module (#E7546, NEB) was used to end-repair and dA-

tail the DNA fragments. Then, each dA-tailed sample was tethered to 1D adapter using

NEBBlunt/TA Ligase Master Mix (#M0367, NEB). The prepared DNA library was

loaded into R9.4 flow cells and sequenced on MinION sequencers (Oxford Nanopore).

The raw data, collected in this experiment, were obtained as fast5 files after conversion

of electrical signals into base calls via Albacore 1.1.0 (Oxford Nanopore Technologies).

C. reinhardtii, O. sativa and retinoblastoma cell line WERI: Large insert-size

libraries of C. reinhardtii, O. sativa and retinoblastoma WERI cells were created

according to the manufacturer’s protocols (Oxford Nanopore, UK). Briefly, 5 µg

genomic DNA was sheared into ~20-30 kb fragments using g-TUBE (#520079, Covaris)

centrifugation (twice at 1,400 g for 2 min) and size-selected (>8-10 kb) by Blue Pippin

(Sage Science, MA) using a marker started at 5-12 min (0.75% DF Marker S1 High-

Pass 6-10kb vs3) to ensure the removal of small DNA fragments. Genomic DNA

libraries were prepared using a Ligation sequencing 1D kit (SQK-LSK109, Oxford

Nanopore, UK). End-repair and dA-tailing of DNA fragments were performed using an

Ultra II End Prep module (#E7546, NEB) according protocol recommendations. Each

dA-tailed sample was tethered to 1D adapter using a Quick Ligation Module (#E6056,

NEB). The prepared DNA library was loaded into a FLO-PRO002 flow cell and

sequenced on PromethION sequencers (Oxford Nanopore, UK). The raw data collected

in this experiment was obtained as fast5 files after conversion of electrical signals into

base calls via guppy 2.0.8 (Oxford Nanopore, UK).

Supplementary Note 7：Statistics for Nanopore datasets

To evaluate the performance of NECAT, we collected eight datasets for E. coli, S.

cerevisiae, A. thaliana19, D. melanogaster20, C. reinhardtii, O. sativa, S. pennellii, and

H. sapiens21 (NA12878). Details can be found in Supplementary Table 1. Among these

eight datasets, data on E. coli, A. thaliana, D. melanogaster, S. pennellii, and H. sapiens

(NA12878) were available from public websites, and the other two datasets were

generated using our in-house sequencing. Their corresponding short-reads datasets of

Next Generation Sequencing (NGS) were collected from the related projects at NCBI.

All SRA files were converted to fastq files using an SRA Toolkit22

(https://www.ncbi.nlm.nih.gov/sra/docs/toolkitsoft/) from NCBI. Raw long-read files

in fastq or fasta format were used as input files for these assembly pipelines. Nanopore

fast5 format files and NGS fastq format files were used as input files for Nanopolish8

and Pilon9, respectively.

The results of basic statistical analysis for raw long reads (LRs) are shown in

Supplementary Table 2. Seqkit (v0.8.0)23 was used to directly calculate “Base Counts,”

“LR Count,” “N50 Length,” and “Mean Length.” We then used scripts to calculate

“N75 Length” and “N25 Length” based on results obtained using Seqkit. N75, N50,

and N25 represented sequence lengths sorted in descending order when the

accumulated length of the sequence reached 75, 50, and 25% of the total number of

bases (“Base Counts”), respectively. Finally, we divided “Base Counts” by general

genome size (E. coli: 4,600,000 base pairs [bp], D. melanogaster: 137,000,000 bp, A.

thaliana: 125,000,000 bp, S. cerevisiae: 12,000,000 bp, C. reinhardtii: 120,000,000 bp,

O. sativa:370,000,000, S. pennellii: 886,000,000 and H. sapiens: 3,000,000,000 bp) of

the corresponding species to calculate coverage. Among these eight datasets, A.

thaliana and H. sapiens datasets showed very low coverage (27X and 38X), while the

other datasets showed more than 50X coverage.

N25 and N75 lengths were calculated using the following shell scripts:

ecoli=pathto/E.coli.fasta

yeast=pathto/w303.fastq

https://www.ncbi.nlm.nih.gov/sra/docs/toolkitsoft/

dro=pathto/dro.fastq

arab=pathto/arab.fastq

cre=pathto/cre.fastq

human=pathto/human.fastq

for i in ${ecoli ${yeast} ${dro} $22 ${cre} ${human};

do

seqkit fx2tab -j 10 -l -n -i -H ${i} | cut -f 4 | sed'1d' | sort -rn>

${i}.lenth.txt

seqkit stats -j 10 -a ${i} >>statistic.txt

all=$(awk'BEGIN{n=O}{n=n+$1}END{print n}' ${i}.lenth.txt)

echo"N75">>statistic.txt

awk'BEGIN{n=O}{if (n>="'$all'"*0.75){print $1;}n=n+$1;}' ${i}.lenth.txt |

head -n 1 >>statistic.txt

echo"N25">> statistic.txt

awk'BEGIN{n=O}{if (n>="'$all'"*0.25){print $1;}n=n+$1;}' ${i}.lenth.txt |

head -n 1 >> statistic.txt

done

Supplementary Note 8：Error analysis of Nanopore raw reads

Raw noisy LRs were corrected by mainstream consensus algorithms using the

following steps: (1) building a multiple sequence alignment (MSA) from pairwise

alignments and (2) choosing the correct base from MSA columns. FalconSense24,

Recon11, Nanocorrect8, and Dacoordare25 are widely-used correction algorithms for

Nanopore raw long reads. FalconSense uses the tagging and sorting approach to

construct a consensus sequence based on consistent base-level and partial-order

alignment. FalconSense and Recon were adopted for Nanopore sequence correction by

fine-tuning parameters. Nanocorrect used a correction method similar to DAGCon26,

which encoded the MSA as a partial-order alignment with a directed acyclic graph

(DAG). Dacoord resolves the corrected bases of repeated regions using a local de-

Bruijn assembly-map algorithm. However, the accuracy and integrity of Nanopore

corrected sequences produced by the above methods remained limited.

To determine whether the existing correction algorithms were feasible for correction of

Nanopore raw reads, we needed to obtain the features of sequencing errors in Nanopore

LR data. First, we analyzed error distribution of Nanopore datasets for E. coli, S.

cerevisiae, A. thaliana, D. melanogaster, C. reinhardtii, O. sativa, S. pennellii, and H.

sapiens (NA12878). We used reference genomes as standard sequences. Raw long reads

of these Nanopore datasets were aligned using minimap227 against their corresponding

reference genomes (Supplementary Table 1). Then, we statistically analyzed error

distribution of each dataset according to the mismatched results.

Our results indicate that sequencing error rate of Nanopore reads was as high as 10-30%

and broadly distributed（Figure 1A and Supplementary Table 3). We also found that the

error rates of different positions differed broadly in each read, and the reads were

generally present as high-error-rate subsequences (HERS), whose sequencing error

rates were > 50% in these subsequences (Figure 1B). These sequencing error

characteristics differed greatly from those in PacBio datasets (Figure 1). These results

highlight the necessity of developing a specific consensus algorithm for Nanopore raw

data.

We used the following scripts for aligning Nanopore datasets to their corresponding

reference genomes:

minimap2 -t 20 -ax map-ont ${ref_fasta} ${reads_fasta} > ${species}_aln.sam

The error bases of all mapped reads were extracted and counted using the following

scripts:

awk'{print $3"\t"$4"\t"$10"\t"$12}' ${species}_aln.sam

|awk'{split($4,a,":");print $1"\t"$2"\t"length($3)"\t"a[3]}' | awk'$3>100

{print $0}' | awk'/^NC/ {print $0}'> ${species}_stat_clean.txt

The distributions of sequencing errors for the six datasets were plotted using the

following R scripts (Figure 1A):

ecolia=read.table(file="ecoli_stat_clean.txt")

yeast=read.table(file="yeast_stat_clean.txt")

arab=read.table(file="arab_stat_clean.txt")

dro=read.table(file="dro_stat_clean.txt")

yizao=read.table(file="yizao_stat_clean.txt")

human3=read.table(file="human_stat_clean.txt")

rice=read.table(file=" rice_stat_clean.txt")

tomato=read.table(file=" tom_stat_clean.txt")

for(i in 1:8)

{

if(i==1) {ecoli=ecolia} ; if(i==2) {ecoli=yeast} ; if(i==3) {ecoli=arab};

if(i==4) {ecoli=dro}; if(i==5) {ecoli=yizao}; if(i==6) {ecoli=human}; if(i==7)

{ecoli=rice}; if(i==8) {ecoli=tomato}

ecoli_n=numeric()

ecoli_s=cbind(ecoli,ecoli[,4]/ecoli[,3])

ecoli_t=dim(ecoli_s)[1]

for(j in 1:50){

 if(j==1){

 ecoli_n[1]=length(ecoli_s[ecoli_s[,5]<=0.01,5])/ecoli_t

 }

 else{

 pos2<-j/100

 pos1<-(j-1)/100

 ecoli_n[j]=length(ecoli_s[ecoli_s[,5]<=pos2 & ecoli_s[,5]>pos1,5])/ecoli_t

 }

}

if(i==1) {ecolin=ecoli_n}; if(i==2) {yeastn=ecoli_n};if(i==3) {arabn=ecoli_n}

if(i==4) {dron=ecoli_n}; if(i==5) {yizaon=ecoli_n}; if(i==6) {human3n=ecoli_n};

if(i==7) {ricen=ecoli_n}; if(i==8) {tomaton=ecoli_n}

}

pdf("read-error-distribution-fcraction.pdf")

plot(ecolin~c(1:50),ylab="Fraction of error rate (%)",xlab="Error rate

(%)",ylim=c(0,0.20),col="darkgreen",type="l",axes=F,lwd=3,lty=1)

lines(yeastn~c(1:50),col="darkblue",lwd=3,lty=1)

lines(arabn~c(1:50),col="coral4",lwd=3,lty=1)

lines(dron~c(1:50),col="darkorange3",lwd=3,lty=1)

lines(yizaon~c(1:50),col="firebrick2",lwd=3,lty=1)

lines(human3n~c(1:50),col="yellow4",lwd=3,lty=1)

lines(ricen~c(1:50),col="chartreuse",lwd=3,lty=1)

lines(tomn~c(1:50),col="darkviolet",lwd=3,lty=1)

legend(25,0.18,legend=c("E.coli","Yeast","A.thaliana","D.melanogaster","C.re

inhardtii","Human"),col=c("darkgreen","darkblue" ,"coral4" ,"darkorange3","f

irebrick2","yellow4" ,"chartreuse","darkviolet"),lty=1,cex=1.5,box.lty=0,lwd

=2)

axis(2,at=c(0,0.05,0.10,0.15,0.20),labels=c("0","5","10","15","20"),las=1,lw

d=1,tick=T)

axis(1,at=c(0,10,20,30,40,50),labels=c("0","10","20","30","40","50"),las=1,l

wd=1,tick=T)

dev.off()

To further understand if there was a bias for sequencing errors among different genome

positions, we calculated sequencing-error distribution for all mapped reads on different

genome locations (Supplementary Figure 1). The scripts were:

awk'{print $1"\t"$2"\t"$2+$3"\t"$4/$3}' ${species}_stat_clean.txt |sort -

k1,1 -k2,2n > ${species}.sorted.bed

refgenome=~/xsq/project/ONT_correct/distribution/data/${species}.fa

line=$(wc -l $refgenome |awk'{print $1}')

awk -v lin=$line '{if(NR!=lin&&/^>/) {print $1"\t"NR;tmp=$1}

if(NR==lin) {print tmp"\t"NR}}' $refgenome\

|awk'NR==1 {tmp1=$1;tmp2=$2 }

NR!=1 {print tmp1"\t"tmp2"\t"$2"\t"($2-tmp2-1)*80; tmp1=$1; tmp2=$2}'

|awk'{len=$4/10000; for(i=1;i<=len;i++) {print $1"\t"(i-

1)*10000+1"\t"10000*i}}' |awk'{split($1,a,">"); print

a[2]"\t"$2"\t"$3 }'>${species}_10000.bed

export PATH=$PATH:/software/bedtools2/bin

bedtools intersect -loj -a ${species}_10000.bed -b

${species}.sorted.bed>position_{species}.txt

To further understand the different error distribution in each read, we extracted each

raw read, and calculated the mismatch and indel base number in a region having a

length >500 bp (Figure 1B). The scripts were:

awk '{tmp=0; for (i=1;i<length($6);i++) {st=substr($6,i,1); if(st~/[0-9]/)

{ss=ss""st}

if(st=="M") {mn=mn+ss;mi=mi+ss;tn=tn+ss;ss=""}

if(st=="D") {tn=tn+ss;ss=""}

if(st=="I") {tn=tn+ss;mi=mi+ss;ss=""}

if(st~/[A-Za-z]/) {ss=""}

if(mi>500&&st=="M") {for(j=mi;j>500;j=j-500){re=re"_"(mn+500-j)/tn;tn=j-

500;mn=j-500;mi=j-500}}

if(mi>500&&st=="I") {for(j=mi;j>500;j=j-500){re=re"_"mn/tn;tn=j-500;mi=j-

500;mn=0 }}

if(mi==500){re=re"_"mn/tn;tn=0;mi=0;mn=0}

}; print re}' ERR2173373.21178.sam | sed s/_/'\n'/g | awk 'NR>1{print (NR-

2)*500"-"(NR-1)*500"\t"1-$1}' > stat_500.res

Then, error subsequences of 500 bp in each read were plotted and beautified by Excel

and Adobe Illustrator.

The high error rate subsequences (HERS) of eight datasets were extracted as similarly

as each read. The scripts were:

awk -v var=10 'length($10)>var*1000 {tmp=0; for (i=1;i<length($6);i++)

{st=substr($6,i,1); if(st~/[0-9]/) {ss=ss""st}

 if(st=="M") {mn=mn+ss;tn=tn+ss;ss=""}

 if(st=="D") {tn=tn+ss;ss=""}

 if(st=="I") {tn=tn+ss;ss=""}

 if(st~/[[:alpha:]]/) {ss=""}

 if(tn>500) {if(mn/tn<0.50) {tmp=1;break}; mn=0;tn=0 }

 }if(tmp==1) {tsum=tsum+1;;mn=0;tn=0};

 print NR,length($10),tmp}

 ' mutilsam/tom_raw_aln$i.sam > stat_500.res.txt

After extracting high error rate subsequences, HERS distributions for the six datasets

were plotted using the following R scripts (Figure 1C):

ecoli=read.table(file="ecoli/stat_500.res.txt")

yeast=read.table(file="yeast/stat_500.res.txt")

arab=read.table(file="arab/stat_500.res.txt")

dro=read.table(file="dro/stat_500.res.txt")

yizao=read.table(file="yizao/stat_500.res.txt")

human=read.table(file="human/stat_500.res.txt")

rice=read.table(file=”rice/stat_500.res.txt”)

tomato=read.table(file=tomato/stat_500.res.txt”)

result=matrix(,8,41)

for(j in 1:8)

{if(j==1) {a=ecoli} ; if(j==2){a=yeast}; if(j==3){a=arab}; if(j==4){a=dro};

if(j==5){a=yizao}; if(j==6){a=human}; if(j==7){a=rice}; if(j==8){a=tomato};

for(i in 1:41)

{ usum=a[a[,2]>=(i+9)*1000&a[,3]==1,3]

 tsum=a[a[,2]>=(i+9)*1000,3]

 if (length(usum)>=500){ result[j,i]=length(usum)/length(tsum)}}

}

tmp1=result[1,][!is.na(result[1,1:41])];tmp2=result[2,][!is.na(result[2,1:41

])];tmp3=result[3,][!is.na(result[3,1:41])];tmp4=result[4,][!is.na(result[4,

1:41])];tmp5=result[5,][!is.na(result[5,1:41])];tmp6=result[6,][!is.na(resul

t[6,1:41])];tmp7=result[7,][!is.na(result[7,1:41])];tmp8=result[8,][!is.na(r

esult[8,1:41])]

pdf("HER length.pdf")

plot(result[1,1:length(tmp1)]~c(1:length(tmp1)),type="l",axes=F,lwd=3,lty=1,

col="darkgreen", ylim=c(0,0.5), xlim=c(1,41), xlab="Read length(kb)", ylab=

"Fraction of reads with HER")

axis(2,at=c(0,0.1,0.20,0.3,0.4,0.5),labels=c("0","10","20","30","40","50"),

las=1,lwd=1,tick=T)

axis(1,at=c(1,11,21,31,41),labels=c("10","20","30","40","50"),las=1,lwd=1,ti

ck=T)

lines(result[2,1:length(tmp2)]~c(1:length(tmp2)),col="darkblue",lwd=3,lty=1)

lines(result[3,1:length(tmp3)]~c(1:length(tmp3)),col="coral4",lwd=3,lty=1)

lines(result[4,1:length(tmp4)]~c(1:length(tmp4)),col="darkorange3",lwd=3,lty

=1)

lines(result[5,1:length(tmp5)]~c(1:length(tmp5)),col="firebrick2",lwd=3,lty=

1)

lines(result[6,1:length(tmp6)]~c(1:length(tmp6)),col="yellow4",lwd=3,lty=1)

lines(result[7,1:length(tmp7)]~c(1:length(tmp7)),col="chartreuse",lwd=3,lty=

1)

lines(result[8,1:length(tmp8)]~c(1:length(tmp8)),col="darkviolet",lwd=3,lty=

1)

legend(3,0.5,legend=c("E.coli","Yeast","A.thaliana","D.melanogaster",

"C.reinhardtii","Human"),col=c("darkgreen","darkblue" ,"coral4" ,"darkorange

3","firebrick2", "yellow4" ,"chartreuse","darkviolet"),lty=1,cex=1.2,box.lty
=0,lwd=2)

dev.off()

Supplementary Note 9: Performance of error correcting algorithms

Due to the high sequencing error discrepancy between Nanopore raw reads and PacBio

raw reads (Figure1 and Supplementary Note 5), the existing correction methods

developed specifically for PacBio reads are unsuitable for Nanopore data. To date, there

is no correction method that fully accounts for characteristics of sequencing errors

occurring in Nanopore data.

In this study, we developed a novel progressive two-step error correction algorithm

called NECAT with adaptive candidate-read selection for Nanopore raw reads. In order

to validate the rationality and reliability of our novel algorithm, we examined the

performance of NECAT in correcting the eight datasets described above

(Supplementary Table 1). For comparison, we also evaluated the accuracy of reads

corrected by Canu28, another widely-used correction tool for Nanopore raw reads.

Specifically, for each dataset, we calculated error rates of: the raw dataset, corrected

reads after step one in NECAT, corrected reads after step two in NECAT, and reads

corrected by Canu28. For this, we mapped the four datasets to the reference using

minimap227 as described in Supplementary Note 5. Then, results of the alignment were

used to calculate error distribution. Error rates were grouped by 1, 2, 3, 4, 5, 6, 7, 8, 9,

10, 10-15, 15-20, 20-25, 25-30, and 30-100%, and results are listed in Supplementary

Table 4. The following scripts were used:

for i in 1 2 "canu" "raw"

do

cd $i

awk'{print $3"\t"$4"\t"$10"\t"$12}' ${species}_${i}_aln.sam |awk'{split($4,

a, ":"); print $1"\t"$2"\t"length($3)"\t"a[3]}' | awk'$3>100 {print $0}' |

awk'/^chr/ {print $0}'> ${species}_stat_clean_$i.txt

Rscript correct_stats_ref.r ${species}_stat_clean_$i.txt

"correct_stat.result"

cd ..

done

In each raw dataset, we then analyzed a HERs region having a length >500 bp. For

mapped reads in each of the four datasets, we evaluated raw reads, corrected reads after

first correction of NECAT, corrected reads after second correction of NECAT, and

corrected read output by Canu. Considering canu only selects the longest 40x for

correction by default, we extracted the sub-dataset with equal coverage from the raw

dataset, corrected reads after step one in NECAT and corrected reads after step two in

NECAT. The scripts were:

###species can use eight species, we take e.coli for example

species=ecoli

size=`ls -ltr ecoli_canu.fasta | awk '{print $5}'`

for i in 1 2 "raw"seqfasta= ecoli_$i.fasta

awk 'NR%2==1 {tmp=$1}NR%2==0 {print tmp"_XSQ_"$0"\t"length($0)}'\

${seqfasra} | sort -nr -k 2 | awk –v si=$size 'tmp=tmp+$2\

 {if(tmp<si){print $0} if(tmp>=si) exit}' | \

awk '{split($1,a,"_XSQ_");print a[1]"_XSQ_"$2"\n\r"a[2]}' >

rice${i}_filter.fasta

In order to calculate the number of gaps, we generated alignment paf files using

minimap2. The scripts were:

reffasta=ecoli_k12_genomic.fna

for i in 1 2 "raw"

do

echo $i

mkdir -p ~/alignment/minimap2/$species/$i

cd~/alignment/minimap2/$species/$i

seqfasta= /data/$i/ecoli$i_filter.fasta

minimap2 -t 20 -x map-ont ${reffasta} ${seqfasta} >${species}_${i}_aln.paf

done

minimap2 -t 20 -x map-ont ${reffasta} ecoli_canu.fasta > ecoli_canu_aln.paf

For raw reads, we extracted all the reads with gaps >500 bp, and counted the number

of HERs regions using the following scripts:

awk'{print $6"_"$1"\t"$3"\t"$4"\t"$2}' ${species}_raw_aln.paf> \

${species}_raw_bed.txt

sort -k1,1 -k2,2n ${species}_raw_bed.txt |uniq>in.sorted.bed

bedtools merge -iin.sorted.bed -d 500 | awk'{print $1}' |uniq -d

|awk'{split($1,a,"_"); {print a[3]"\t"1"\t"10000}}'>

${species}_gap_read_name.txt

wc -l ${species}_gap_read_name.txt

For these raw reads with gaps, we re-calculated the HERs region number in these reads

after first correction of NECAT, after second correction of NECAT, and after correction

of Canu. For outputted corrected reads from Canu, we extracted the reads having a

HERs region >500 bp and counted the number of these regions using the following

scripts:

awk'split($1,a,"_") {print a[1]"\t"$3"\t"$4"\t"$6}' ${species}_canu_aln.paf>

${species}_canu_bed.paf

sort -k1,1 -k2,2n ${species}_gap_read_name.txt |uniq |bedtools merge -i - -d

500 |awk'{print $1}' |uniq -d >read_gap.result.final

wc -l read_gap.result.final

For corrected reads produced by step one and step two in NECAT, reads having a HERs

region >500 bp were extracted using the following scripts:

for i in "ecoli" "yeast" "dro" "ara" "yizao" “human” “rice” “tomato”

do

for j in 1 2

do

cd ${i}/${j}

awk'{split($1,a,"_\\(");print a[1]"\t"$3"\t"$4"\t"$6}' ${i}_${j}_aln.paf>

${i}_${j}_bed.paf

cd ../..

done

done

Finally, the gap number was counted by:

sort -k1,1 -k2,2n ${species}_1_bed.paf |uniq |bedtools merge -i - -d 500

|awk'{print $1}' |uniq -d |wc -l

The number of HERS regions with large gaps > 500 bp in each raw and corrected

dataset can be found in Table 1.

Supplementary Note 10: Comparison of assembly pipelines

We compared the quality of assembly results and running time for Canu (v1.8)28, Canu

(v1.8)+Smartdenovo (5cc1356)29, Smartdenovo (5cc1356), miniasm (1552e6f)1,

wtdbg2 (v2.5)30, Flye (2.6)31, Raven(1.1.5)4, Shasta(0.4.0)5, and NECAT (47c6c23)

pipelines. Running time was recorded from the log files. All assemblers ran on a 4-core

24-thread Intel(R) Xeon(R) 2.4 GHz CPU (CPU E7-8894[v4]) machine with 3 TB of

RAM; the OS was Centos 7.3 64-bit (Linux). The eight datasets (E. coli, S. cerevisiae,

A. thaliana, D. melanogaster, C. reinhardtii, O. sativa, S. pennellii and H. sapiens)

composed of Nanopore long reads were assembled by the pipelines. The de-novo

genome assemblies of eight datasets and results of statistical analyses are shown in

Table 2 and Supplementary Table 5.

Canu pipeline was run as:

echo Start: $(date "+%Y-%m-%d %H:%M:%S")

canu -p $genomeName -d $genomeName genomeSize=$genomeSize maxMemory=1000

maxThreads=$threads useGrid=false -nanopore-raw input.fastq

echo End: $(date "+%Y-%m-%d %H:%M:%S")

where $genomeName was set to E. coli, S. cerevisiae, A. thaliana, D. melanogaster, C.

reinhardtii, O. sativa and S. pennellii, respectively, and $genomeSize was set to 4.8M,

13M, 130M, 130M, 120M, 400 M and 1G, respectively. $theads was set to 32 for E.

coli, S. cerevisiae, A. thaliana, D. melanogaster and C. reinhardtii and 64 for O. sativa

andS. pennellii.

For Canu+smartdenovo pipeline, the output file $genomeName.correctedReads.fasta

from the Canu pipeline was used as input file to the Canu+smartdenovo pipeline; the

script was as follows:

echo Start: $(date "+%Y-%m-%d %H:%M:%S")

smartdenovo.pl –p $genomeName -t $threads -c 1

$genomeName.correctedReads.fasta > $genomeName.mak

make -f $genomeName.mak

echo End: $(date "+%Y-%m-%d %H:%M:%S")

For the Flye pipeline, we used the following script:

echo Start: $(date "+%Y-%m-%d %H:%M:%S")

flye --nano-raw input.fastq --out-dir $genomeName --genome-size $genomeSize

--threads $threads

echo End: $(date "+%Y-%m-%d %H:%M:%S")

Flye failed to run on raw reads of E. coli and C. reinhardtii, for the input files contained

malformated reads and duplicate reads. We used the following scripts to filter the raw

reads before running Flye. For E. coli, the script was:

fsa_rd_tools longest --base_size 0 --discard_illegal_read --ifname inputfile

--ofname outputfile

fsa_rd_tools was a tool in NECAT pipeline.

For C. reinhardtii, the script was:

python3 remove_dup_name.py inputfile outputfile

remove_dup_name.py contained following code:

import sys

from collections import defaultdict

from Bio import SeqIO

ifname = sys.argv[1] # xxx.fasta or xxx.fastq

ofname = sys.argv[2]

names = defaultdict(int)

with open(ofname, "w") as ofile:

 for i, rec in enumerate(SeqIO.parse(ifname, ifname[-5:])):

 names[rec.id] += 1

 if names[rec.id] == 1:

 SeqIO.write(rec, ofile, ofname[-5:])

wtdbg2 pipeline was ran as

echo Start: $(date "+%Y-%m-%d %H:%M:%S")

wtdbg2.pl -t $threads -x ont -g $genomeSize -o $genomeName input.fastq

echo End: $(date "+%Y-%m-%d %H:%M:%S")

Smartdenovo pipeline was ran as:

awk 'NR%4==1||NR%4==2' all.fastq | sed 's/^@/>/g' > reads.fa

echo Start: $(date "+%Y-%m-%d %H:%M:%S")

smartdenovo.pl -p $genomeName -t 32 -c 1 reads.fa > dro_smart.mak

make -f dro_smart.mak

echo End: $(date "+%Y-%m-%d %H:%M:%S")

miniasm pipeline was ran as:

echo Start: $(date "+%Y-%m-%d %H:%M:%S")

minimap2 -x ava-ont -t32 all.fastq all.fastq | gzip -1 > reads.paf.gz

miniasm -f all.fastq reads.paf.gz > $genomeName.gfa

awk '/^S/{print ">"$2"\n"$3}' $genomeName.gfa | seqkit seq > $genomeName.fasta

echo End: $(date "+%Y-%m-%d %H:%M:%S")

NECAT pipeline first generated configuration file (necat_cfg.txt), as shown below:

PROJECT=$genomeName

THREADS=$threads

ONT_READ_LIST=read_list.txt

GENOME_SIZE=$genomeSize

MIN_READ_LENGTH=3000

PREP_OUTPUT_COVERAGE=40

OVLP_FAST_OPTIONS="-n 500 -z 20 -b 2000 -e 0.5 -j 0 -u 1 -a 1000"

OVLP_SENSITIVE_OPTIONS="-n 500 -z 10 -e 0.5 -j 0 -u 1 -a 1000"

CNS_FAST_OPTIONS="-a 2000 -x 4 -y 12 -l 1000 -e 0.5 -p 0.8 -u 0"

CNS_SENSITIVE_OPTIONS="-a 2000 -x 4 -y 12 -l 1000 -e 0.5 -p 0.8 -u 0"

TRIM_OVLP_OPTIONS="-n 100 -z 10 -b 2000 -e 0.5 -j 1 -u 1 -a 400"

ASM_OVLP_OPTIONS="-n 100 -z 10 -b 2000 -e 0.5 -j 1 -u 0 -a 400"

NUM_ITER=2

CLEANUP=1

USE_GRID=false

GRID_NODE=0

SMALL_MEMORY=0

CNS_OUTPUT_COVERAGE=30

FSA_OL_FILTER_OPTIONS=""

FSA_ASSEMBLE_OPTIONS=""

FSA_CTG_BRIDGE_OPTIONS=""

POLISH_CONTIGS=true

Then, it was run as:

echo Start: $(date "+%Y-%m-%d %H:%M:%S")

necat.pl bridge necat_cfg.txt

echo End: $(date "+%Y-%m-%d %H:%M:%S")

The read_list.txt contained the path of corresponding sequencing data; $genomeName

was set to E. coli, S. cerevisiae, A. thaliana, C. reinhardtii, D. melanogaster, O. sativa,

S. pennellii and H. sapiens, respectively, and $genomeSize was set to 4,800,000,

13,000,000, 130,000,000, 130,000,000, 120,000,000 400,000,000, 1,000,000,000 and

3,000,000,000, respectively.

For large genomes, NECAT used more corrected reads to obtain more robust assemblies.

Therefore, we adjusted the parameters for O. sativa as shown below:

CNS_OUTPUT_COVERAGE=40
FSA_OL_FILTER_OPTIONS="—min_coverage 3"

And we adjusted the parameters for S. pennellii as shown below:

CNS_OUTPUT_COVERAGE=40

We also adjusted the parameters for H. sapiens(rel3,4) and WERI as shown below:

MIN_READ_LENGTH=500

PREP_OUTPUT_COVERAGE=
OVLP_FAST_OPTIONS="-n 200 -z 10 -b 2000 -e 0.5 -j 0 -u 1 -a 400"

OVLP_SENSITIVE_OPTIONS="-n 200 -z 10 -e 0.5 -j 0 -u 1 -a 400"

CNS_FAST_OPTIONS="-a 400 -x 4 -y 12 -l 500 -e 0.5 -p 0.8 -u 0"

CNS_SENSITIVE_OPTIONS="-a 400 -x 4 -y 12 -l 500 -e 0.5 -p 0.8 -u 0"

CNS_OUTPUT_COVERAGE=45

We also adjusted the parameters for H. sapiens(rel6) as shown below:

CNS_OUTPUT_COVERAGE=40

FSA_ASSEMBLE_OPTIONS="—max_spur_length 200000"

NECAT+Canu pipeline was run as

echo Start: $(date "+%Y-%m-%d %H:%M:%S")

canu -p $genomeName -d $genomeName genomeSize=$genomeSize maxMemory=1000

maxThreads=$threads useGrid=false -nanopore-corrected

$correctedByNECAT.fasta

echo End: $(date "+%Y-%m-%d %H:%M:%S")

where the parameters are the same as they in Canu pipeline. $correctedByNECAT.fasta

was set to corrected reads generated by NECAT.

NECAT+Smartdenovo pipeline was similar to the pipeline Canu+Smartdenvo, where

the input files were changed to the corrected reads generated by NECAT; the script was

as follows:

echo Start: $(date "+%Y-%m-%d %H:%M:%S")

smartdenovo.pl –p $genomeName -t $threads -c 1 $correctedByNECAT.fasta >

$genomeName.mak

make -f $genomeName.mak

echo End: $(date "+%Y-%m-%d %H:%M:%S")

Canu+Flye and NECAT+Flye pipelines were similar to Flye pipeline, where the --

nano-raw was changed to --nano-corr and using corrected reads generated by Canu or

NECAT as input files; the script was as follows:

echo Start: $(date "+%Y-%m-%d %H:%M:%S")

flye --nano-corr correctedByNECATorCanu.fasta --out-dir $genomeName --

genome-size $genomeSize --threads $threads

echo End: $(date "+%Y-%m-%d %H:%M:%S")

Canu+NECAT pipeline was run as:

echo Start: $(date "+%Y-%m-%d %H:%M:%S")

necat.pl bridge necat_cfg.txt

echo End: $(date "+%Y-%m-%d %H:%M:%S")

where the necat_cfg.txt is similar to the one used by NECAT pipeline. But we

removed the parameter ONT_READ_LIST and add the parameter CNS_READ_LIST as

follow:

CNS_READ_LIST=read_list.txt

The read_list.txt contained the path of corrected reads by Canu.

Supplementary Note 11: Validation of the WERI genome

The new WERI assembly from Nanopore data was polished four times using the same

scripts as those shown in Supplementary Note 13. We compared the WERI assembly

against human reference genome hg38. The newly-assembled genome was aligned to

the reference genome, and the Mummer plot between them was generated using

MUMmer (v4.0)12 with the following script (Supplementary Figure 2):

nucmer --mum -l 10 -c 1000 --banded ${ref.fasta} ~/project/weri/ONT_asm.fasta

dnadiff -d out.delta

mummerplot out.delta --fat -f -png

Because MUMmer was operated using a unique anchor matching option to accelerate

the alignment, some repetitive sequences remained unaligned. The entire process of

alignment and figure generation can be reproduced using scripts available on the MHAP

home page24 (assuming that Perl, Python, and MUMmer12 are placed in the correct path),

and by running the script below; this generates a figure designated as asm.pdf (Figure

3).

sh makeHuman.sh ref.fasta asm.fasta

Based on out.rdiff file output by dnadiff, structural differences (>10 bp) were extracted

using the following scripts:

awk ' {if($3<=$4&&$7*$7>100) print $1 "\t" $3"\t"$4"\t"$2"\t"$7

if($3>$4&&$7*$7>100) print $1 "\t" $4"\t"$3"\t"$2"\t"$7 }' ./out.rdiff >

weri_10.bed

wc –l weri_10.bed

We then used a custom script to convert the SV regions in the WERI assembly genome

to the reference hg38:

awk '{if($3>$4&&$7*$7>100) print $1"\t"$4"\t"$3"\t"$2"\t"$7"\t"($3-

1)"\t"($4+1)

if ($3<=$4&&$7*$7>100) print $1"\t"$3"\t"$4"\t"$2"\t"$7"\t"($3-

1)"\t"($4+1)}' ./out.qdiff > hg38_gap.tsv

awk '{if($3>$4&&$7*$7>100) print $1"\t"$4"\t"$3"\t"$2"\t"$7"\t"($3-

1)"\t"($4+1)

if ($3<=$4&&$7*$7>100) print $1"\t"$3"\t"$4"\t"$2"\t"$7"\t"($3-

1)"\t"($4+1)}' ./out.rdiff > weri_gap.tsv

python3 query.py –c hg38_gap.tsv –w weri_gap.tsv –a out.1coords >

weri2hg38.tsv

To validate SV regions detected in WERI, we re-aligned the original sequencing data

with SV regions±1000 bp. SV regions were extracted with:

awk '{if($5>=$6) print $4,":",$6-1000,"-",$5+1000

if($5<$6) print $4,":",$5-1000,"-",$6+1000}' weri2hg38.tsv | sed 's/ //g' >

qgap

for i in $(cat qgap);do samtools faidx ./ref.fasta $i >> all_gap.fasta;done

re-align the raw nanopore reads to all_gap.fasta

minimap2 -x map-ont -t $NPROC ./all_gap.fasta ./fq > all_gap.paf

Then, we calculated the number of SV regions with read coverage:

awk '($8<=($7-1000))&&($9>=1000){print $6,"\t",$7,"\t",$8,"\t",$9}'

all_gap.paf > real_map

awk '{print $1}' real_map | sort | uniq -c | tee real_map_list | wc l

awk '{split($2,a,"\[:-\]");print a[1],"\t",(a[2]+1000),(a[3]-

1000),$1}' ./real_map_list > real_map_list_raw

#generate merge.tsv

cat ./real_map_list_raw | xargs -n 4 -P 10 ./merge.sh

generate merge.bed

awk '{if($2>$3){print $1,$3,$2,$4}else{print $1,$2,$3,$4}}' ./merge.tsv |

sed 's/ /\t/g' | grep -v 'chrY' > merge.bed

We also aligned the raw nanopore long reads and Illumina short reads to human

reference genome hg38, and used Sniffles32 and Lumpy_sv33 to call SVs in mapping

results using the scripts shown below:

Sniffles:

export PATH=/ /software/Sniffles-1.0.10/bin/sniffles-core-1.0.10:$PATH

export PATH=/ /software/ngmlr-0.2.7:$PATH

ngmlr -t $NPROC -r $refsequence -q $fq -o reads.sam -x ont

samtools view -bS reads.sam | samtools sort -@ $NPROC - -o reads.sorted.bam

sniffles -t $NPROC -m reads.sorted.bam -v tgs.weri.vcf

Lumpy_sv:

bwa mem -R "@RG\tID:id\tSM:sample\tLB:lib" reference.fasta sample.1.fq

sample.2.fq | samblaster --excludeDups --addMateTags --maxSplitCount 2 --

minNonOverlap 20 | samtools view -S -b - > sample.bam

samtools view -b -F 1294 sample.bam

| samtools sort -o sample.discordants.sorted.bam

samtools view -h sample.bam \

 | scripts/extractSplitReads_BwaMem -i stdin \

 | samtools view -Sb - \

 | samtools sort -o sample.splitters.sorted.bam

lumpyexpress \

 -B sample.bam \

 -S sample.splitters.bam \

 -D sample.discordants.bam \

 -o output.vcf

export PATH= /software/VCFtools/bin:$PATH

cat ngs.weri.vcf | vcf-sort > sorted.ngs.vcf

cat tgs.weri.vcf | vcf-sort > sorted.tgs.vcf

bzip sorted.ngs.vcf

bzip sorted.tgs.vcf

bcftools stats ./sorted.ngs.vcf.gz > ngs.stat

bcftools stats ./sorted.tgs.vcf.gz > tgs.stat

#index

tabix -p vcf sorted.ngs.vcf.gz

tabix -p vcf sorted.tgs.vcf.gz

generate 0000.vcf 0001.vcf 0002.vcf 0003.vcf

–l

weri SV and ngs

bedtools intersect -a ./merge.bed -b ./sorted.ngs.bed -wa -loj | awk

'$5!="."{print}' | wc –l

weri SV, ngs and tgs overlap

bedtools intersect -a ./merge.bed -b ./comm.ngs2tgs.bed -wa | wc –l

bcftools isec sorted.ngs.vcf.gz sorted.tgs.vcf.gz -p ./

convert vcf to bed

awk '{split($8,a,"RE=");print $1,$2,($2+1),a[2]}' ./sorted.tgs.vcf | grep -v

'#' | grep -v 'chrY' | sed 's/ /\t/g'> sorted.tgs.bed

awk '{split($10,a,":");print $1,$2,($2+1),a[2]}' ./sorted.ngs.vcf | grep -v

'#' | grep -v 'chrY' | sed 's/ /\t/g' > sorted.ngs.bed

echo "CHROM POS ID REF ALT QUAL FILTER Coverage" > 0002.head

awk '{split($10,a,":");print $1,$2,$3,$4,$5,$6,$7,a[2]}' ./0002.vcf | grep -v

'#' | cat 0002.head - > ngs.commom.add_cov.vcf

grep -v CHROM ./ngs.commom.add_cov.vcf | awk '{print $1,$2,($2+1)}' | sed 's/

/\t/g' > comm.ngs2tgs.bed

weri SV and tgs

bedtools intersect -a ./merge.bed -b ./sorted.tgs.bed -wa -loj | awk

'$5!="."{print}' | wc -l

Supplementary Note 12: Overlap-filtering strategy

Overlap-filtering is critical in genome assembly. High-error-rate overlaps introduce

errors and complicate assembly. Conversely, an overly strict filtering strategy can

reduce contiguity of the results. Error distribution of sequencing data varies greatly. In

order to adapt to different data, we adopted a heuristic filtering strategy to remove high-

error-rate overlaps. Two metrics, the identity obtained by dividing length of the overlap

by the number of matching bases, and the overhang that is the distance of an overlap

from the 5' or 3' end of the read, are used to identify high error rate overlaps.

First, we examined overlap identities. For each read, we collect its overlaps and

compute the mean of identities of the overlaps as its identity. After obtaining all read

identities, we computed the weighted median (𝑚𝑚𝑔𝑔
𝑖𝑖𝑖𝑖) and weighted median absolute

deviation (𝑀𝑀𝑀𝑀𝑀𝑀𝑔𝑔𝑖𝑖𝑖𝑖) of them, where the weight is the read length. We used the following

formula to calculate global threshold of overlap identity (𝑡𝑡ℎ𝑔𝑔𝑖𝑖𝑖𝑖):

𝑡𝑡ℎ𝑔𝑔𝑖𝑖𝑖𝑖 = min (𝑚𝑚,𝑚𝑚𝑔𝑔
𝑖𝑖𝑖𝑖) − 𝑛𝑛 ∗ 𝑘𝑘 ∗ 𝑀𝑀𝑀𝑀𝐷𝐷𝑔𝑔𝑖𝑖𝑖𝑖 . (1)

Here k is equal to 1.4862, a constant scale factor multiplied by MAD to obtain an

estimation of the standard deviation σ. According to our experience, m and are n are set

to 0.98 and 6, respectively. After obtaining global threshold for overlap identity, we

calculated the local threshold. For each read, we accumulate the lengths of its overlaps.

If the sum was less than max(𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚, 0.5 ∗ 𝑐𝑐) ∗ 𝑙𝑙, where 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 is a user-set parameter

(default value is 25), c is the coverage of corrected reads, and l is read length, we set

the local threshold 𝑡𝑡ℎ𝑙𝑙𝑖𝑖𝑖𝑖 to global threshold 𝑡𝑡ℎ𝑔𝑔𝑖𝑖𝑖𝑖, because the data were too small to

show statistical significance. Otherwise, we sorted the overlaps in descending order

according to the product of overlap identity and overlap length. We collected the first

several overlaps in which the sum of their lengths was no more than max(2 ∗

𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚, 1.5 ∗ 𝑐𝑐) ∗ 𝑙𝑙. Then, we computed weighted median (𝑚𝑚𝑙𝑙
𝑖𝑖𝑖𝑖) and weighted median

absolute deviation (𝑀𝑀𝑀𝑀𝑀𝑀𝑙𝑙𝑖𝑖𝑖𝑖) of these overlaps, where the weight was overlap length.

Local identity threshold 𝑡𝑡ℎ𝑙𝑙𝑖𝑖𝑖𝑖 is was set to max�𝑡𝑡ℎ𝑔𝑔𝑖𝑖𝑖𝑖 , �min (𝑚𝑚,𝑚𝑚𝑙𝑙
𝑖𝑖𝑖𝑖) − 𝑛𝑛 ∗ 𝑘𝑘 ∗

𝑀𝑀𝑀𝑀𝐷𝐷𝑙𝑙𝑖𝑖𝑖𝑖��, where m and n were set to 0.99 and 6 by default. Next, we used 𝑡𝑡ℎ𝑙𝑙𝑖𝑖𝑖𝑖 to

filter out the read overlaps. If overlap identity was less than 𝑡𝑡ℎ𝑙𝑙𝑖𝑖𝑖𝑖 , the overlap was

removed.

We used a similar process to assess read overhang in the overlaps. For each read,

we collected the maximum of its overhangs. Then, we computed the weighted median

(𝑚𝑚𝑔𝑔
𝑜𝑜ℎ) and weighted median absolute deviation (𝑀𝑀𝑀𝑀𝑀𝑀𝑔𝑔𝑜𝑜ℎ), where weight was read length.

The formula used to calculate global threshold of an overhang is provided in (2), where

m and n were set to 30 and 6 by default, respectively.

𝑡𝑡ℎ𝑔𝑔𝑜𝑜ℎ = max�𝑚𝑚,𝑚𝑚𝑔𝑔
𝑜𝑜ℎ� + 𝑛𝑛 ∗ 𝑘𝑘 ∗ 𝑀𝑀𝑀𝑀𝐷𝐷𝑔𝑔𝑜𝑜ℎ. (2)

Next, we collected read overhangs at the 5’ or 3’ end separately, and computed the local

thresholds for them. For each end, if the number of read overhangs is less than

𝑚𝑚𝑚𝑚𝑚𝑚(𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚, 0.5 ∗ 𝑐𝑐) , then 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 is a user-set parameter (default value is 25), c is

coverage of corrected reads, and local threshold 𝑡𝑡ℎ𝑙𝑙𝑜𝑜ℎ is set to global threshold 𝑡𝑡ℎ𝑔𝑔𝑜𝑜ℎ.

Otherwise we sorted overhangs in ascending order according to results obtained by

dividing the overlap overhang by overlap length. We collected the first several

overhangs, the number of whom is no more than max(2 ∗ 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚, 1.5 ∗ 𝑐𝑐) . Then, we

computed weighted median (𝑚𝑚𝑙𝑙
𝑜𝑜ℎ) and weighted median absolute deviation (𝑀𝑀𝑀𝑀𝑀𝑀𝑙𝑙𝑜𝑜ℎ)

for these overhangs, where weight was overlap length. Local identity threshold 𝑡𝑡ℎ𝑙𝑙𝑜𝑜ℎ

was set to min�𝑡𝑡ℎ𝑔𝑔𝑜𝑜ℎ, �max�𝑚𝑚,𝑚𝑚𝑙𝑙
𝑜𝑜ℎ� + 𝑛𝑛 ∗ 𝑘𝑘 ∗ 𝑀𝑀𝑀𝑀𝐷𝐷𝑙𝑙𝑜𝑜ℎ��, where m and n were set to

10 and 6 by default, respectively. The overlap was removed if the read overhang at 5’

or 3’ end was greater than 𝑡𝑡ℎ𝑙𝑙𝑜𝑜ℎ of the corresponding end.

In addition to assessing overlap identity and read overhang, we used the following

filtering strategies.

1. We calculated the coverage for each base in the reads according to overlaps

between them. For each read, we obtained three metrics, minimum coverage of all bases

(𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚), maximum coverage of all bases (𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚), and the difference between minimum

coverage and maximum coverage (𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑). The procedure used three thresholds,

designated as min_coverage, max_coverage, and max_diff_coverage, to assess read

metrics and automatically select thresholds based on statistical results. If 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 is less

than min_coverage, 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 is larger than max_coverage, and 𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is larger than

max_diff_coverage, the reads and related overlaps are removed. Our analysis of the

yeast dataset indicated that min_coverage should be set to the first value not exceeding

30% of the value for the first trough of the histogram of all 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 s, as shown in

Supplementary Figure 15. We suggest that max_coverage and max_diff_coverage be

set to (100-x)-th percentile (x=0.01 by default). These thresholds can also be specified

by users. After some of the reads are filtered out, coverages of each read may change.

This filtering strategy is executed twice to increase robustness of the results.

2. In this step, we assessed the overlaps and counted the number of reads having an

overlap with the first read and covering the 5’- or 3’-end of the second read. If the

number was less than min_coverage - 1, this overlap was filtered out.

3. The contained reads and related overlaps were filtered out.

4. Finally, for each read, we sorted the overlaps covering its 5’- or 3’-end by aligned

length, respectively. The best overlaps can be selected using bestn, a parameter

specified by users.

Supplementary Note 13: Genome polishing and assembly validation

Different polishing strategies were used for different genome-assembly pipelines

(NECAT, Canu28, and Canu+smartdenovo29) and different species (E. coli, S. cerevisiae,

A. thaliana, D. melanogaster, C. reinhardtii, O. sativa and S. pennellii):

1. Nanopolish (v0.10.2)8 was used to further polish the genome using fast5 files and

corresponding fasta/fastq files. Finally, the genome was polished three times using NGS

data with Pilon (v1.22)9 and generated the final genome.

2. For the A. thaliana, we used the Arrow in smrtlink (v5.1.0)10 to polish the draft

genome with Sequel Bam files because the raw fast5 files required by Nanopolish were

not available.

3. For the O. sativa and Human, we used minimap227 (v2.10-r761) with “-x map-ont”

and Racon11 (v1.3.1) with default parameters to polish the draft genome four times

using raw reads.

4. For S. pennellii34, the assemblies were polished five times using NGS data with Pilon

(v1.22).

We used QUAST6 (5.0.2) to evaluate the matrics number of contigs, NG50, NGA50,

number of misassemblies and QV(log10(100𝑘𝑘𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝 100 𝑘𝑘𝑘𝑘𝑘𝑘+ # 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝 100 𝑘𝑘𝑘𝑘𝑘𝑘

))

of assemblies. QUAST was run using the “--min-contig 5000 --min-identity 90” options

for E. coli, using the “--min-contig 5000 --large --min-identity 90” options for S.

cerevisiae, A. thaliana and O. sativa, using the “--min-contig 5000 --large --min-

identity 90 --fragmented” options for D. melanogaster, S. pennellii, and using the “--

min-contig 50000 --large --min-identity 90 --fragmented” options for Human.

BUSCO35 (4.0.6) was run to evaluate gene completeness of assemblies for all species.

We used the following script:

busco -i $contigs -m geno -l $lib -e 0.001 --offline -o output

where $contigs was set to one of assemblies and $lib was set to corresponding OrthoDB

v10 dataset. We used datasets enterobacterales, saccharomycetes, brassicales, diptera,

chlorophyta, poales, solanales and primates for E. coli, S. cerevisiae, A. thaliana, D.

melanogaster, C. reinhardtii, O. sativa, S. pennellii and H. sapiens, respectively. Those

datasets can be downloaded from https://busco.ezlab.org/busco_v4_data.html.

Alignments and validation results of statistical analysis are shown in Supplementary

Figures 6-13.

We then mapped the assembled genomes onto their reference genomes, and counted

single-nucleotide polymorphisms (SNPs) and large indels using dnadiff36 and GEGE37.

The five genome assemblies for E. coli, S. cerevisiae, A. thaliana, D. melanogaster and

C. reinhardtii and were aligned to their reference genomes and plotted using MUMmer

(v4.0)12. Results were generated using the following scripts:

nucmer --mumreference -l 100 -c 1000 -d 10 --banded -D 5 ${ref.fasta}

${asm.fasta}

delta-filter -i 95 -o 95 out.delta> out.best.delta

dnadiff -d out.best.delta

mummerplotout.best.delta --fat -f –png

We also compared genome assemblies for E. coli, S. cerevisiae, A. thaliana, C.

reinhardtii, and D. melanogaster generated using Canu, Canu+Smartdenovo,

Smartdenovo, miniasm, wtdbg2, Flye, and NECAT pipelines. The following scripts

were used to evaluate Indel gaps in these genome assemblies:

awk'{if($2=="GAP"&&sqrt($7*$7)>=10) {print $0 }}' ${out.qdiff} >

indelM10.txt

awk'{if($2=="GAP"&&sqrt($7*$7)<10) {print $0 }}' ${out.qdiff} > indelL10.txt

SNPs and indels between the assembly genome and reference genome are listed in

Supplementary Table 6.

https://busco.ezlab.org/busco_v4_data.html

Supplementary Note 14: Analysis of repeat regions in D. melanogaster

Repeat regions are one of the greatest challenges in genome assembly. To assess

transposable_element (TE)17 resolution in NECAT assembly, we analyzed the TE repeat

families and aligned the annotated D. melanogaster genome16 to the seven assembled

contigs from the genome assemblies pipelines (Canu, canu+smartdenovo, Smartdenovo,

miniasm, wtdbg2, Flye, and NECAT). Genome FlyBase 5.57_FB2014_0310 was

downloaded from:

ftp://ftp.flybase.net/genomes/dmel/dmel_r5.57_FB2014_03/fasta/dmel-all-gene-

r5.57.fasta.gz.

The annotated gff file was downloaded from:

ftp://ftp.flybase.net/genomes/dmel/dmel_r5.57_FB2014_03/gff/dmel-all-r5.57.gff.gz.

Transposable element (TE) features were extracted and converted to bed file using:

awk'$2=="FlyBase"&&$3=="transposable_element" {print $0}' <dmel-all-

r5.57.gff> > <TE.gtf>

awk'{print $1"\t"$4"\t"$5"\t"$3"_"NR}' <TE.gtf> > <TE.bed>

Then, the pipeline was executed as:

assembled_feature_pipeline.sh -a <asm.fasta> -r <reference.fasta> -f

<TE.bed>

After running the scripts, the final output file, called results/FINAL.REPORT, was

generated and used to identify TE with ≥ 100% Pct_length and corresponding

Pct_ident. The repeat familes, roo and juan, were extracted from the FINAL.REPORT

file. The annotated region from roo and juan families can be extracted from dmel-all-

r5.57.gff. The results are shown in Supplementary Table 7.

ftp://ftp.flybase.net/genomes/dmel/dmel_r5.57_FB2014_03/fasta/dmel-all-gene-r5.57.fasta.gz
ftp://ftp.flybase.net/genomes/dmel/dmel_r5.57_FB2014_03/fasta/dmel-all-gene-r5.57.fasta.gz
ftp://ftp.flybase.net/genomes/dmel/dmel_r5.57_FB2014_03/gff/dmel-all-r5.57.gff.gz

Supplementary Note 15: Analysis of telomere assembly

LRs provide considerable advantages in reconstructing the repetitive heterochromatic

regions of eukaryotic chromosomes. Telomeres play important roles in chromosome

replication of all eukaryotic genomes. Nanopore LR sequencing presents distinct

advantages in telomere assembly. To validate the effectiveness of using Nanopore data,

we evaluated long-read sequencing in reconstruction of heterochromatic sequences in

telomeric regions of S. cerevisiae.

The S. cerevisiae S288C other features database was downloaded from

http://downloads.yeastgenome.org/sequence/S288C_reference/other_features/other_fe

atures_genomic.fasta.gz. We mapped selected S. cerevisiae telomeric repeats to S.

cerevisiae W303 assemblies generated using Canu, Canu+Smartdenovo, Smartdenove,

miniasm, wtdbg2, Flye and NECAT.

The features were aligned to the assembly using the following scripts:

nucmer --maxmatch<asm.fasta><features.fasta>

show-coords -lrcTHout.delta |sort -nk12 |awk'{if ($7> 85 && $11> 50) print

$0}' | grep TEL | sort -rnk8 >tels.coords

The contigs containing telomeric features within 1 kbp of contig ends were then

identified. The results are shown in Supplementary Table 8.

http://downloads.yeastgenome.org/sequence/S288C_reference/other_features/other_features_genomic.fasta.gz
http://downloads.yeastgenome.org/sequence/S288C_reference/other_features/other_features_genomic.fasta.gz

Supplementary Note 16: Validation of H. sapiens NA12878

To validate the performances of NECAT and Canu, each polished assembly was aligned

to reference genome hg38 with MUMmer (v4.0)12, after which tiling figures were

generated (Supplementary Figure 12). The genome was polished four times using

Nanopore data with Racon11 (v1.3.1) and minimap227 (v2.10-r761), after which the

final genome was generated using the following code:

minimap2 -x map-ont -t $NPROC $DRAFT reads.fastq > ONTmin_IT0.paf
time racon -m 8 -x -6 -g -8 -w 500 -t $NPROC reads.fastq ONTmin_IT0.paf $DRAFT >
ONTmin_IT1.fasta
minimap2 -x map-ont -t $NPROC ONTmin_IT1.fasta reads.fastq > ONTmin_IT1.paf
time racon -m 8 -x -6 -g -8 -w 500 -t $NPROC reads.fastq ONTmin_IT1.paf ONTmin_IT1.fasta >
ONTmin_IT2.fasta
minimap2 -x map-ont -t $NPROC ONTmin_IT2.fasta reads.fastq > ONTmin_IT2.paf
time racon -m 8 -x -6 -g -8 -w 500 -t $NPROC reads.fastq ONTmin_IT2.paf ONTmin_IT2.fasta >
ONTmin_IT3.fasta
minimap2 -x map-ont -t $NPROC ONTmin_IT3.fasta reads.fastq > ONTmin_IT3.paf
time racon -m 8 -x -6 -g -8 -w 500 -t $NPROC reads.fastq ONTmin_IT3.paf ONTmin_IT3.fasta >
ONTmin_IT4.fasta

The custom scripts, used to convert the output into a format accepted by

ColoredChromesomes.pl (http://sourceforge.net/projects/cchrom/), are shown below:

python makeMappings.py asm_refhg38.1coords 10000 > asm.tiling
perl convertToChr.pl human.chr.map asm.tiling human.lanes human.chrPos > asm.cfg
perl coloredChromosomes.pl --chromosomeSpec asm.cfg -o asm.ps
ps2pdf asm.ps

Because MUMmer was set to use a unique anchor matching option to accelerate the

alignment, some repetitive sequences remained unaligned. To avoid displaying these

regions as gaps in tiling, the conversion script chained together consecutive alignments

from the same contig if alignment gap in the reference was less than 10,000 bp. Thus,

breaks in the resulting tiling occurred whenever a contig switch occurred, or if there

was a >10,000 bp gap between two alignments of the same contig. The entire process

of alignment and figure generation can be reproduced using the scripts available on the

MHAP home page24 (assuming that Perl, Python, and MUMmer12 are placed in the

correct path), and by running the script shown below; this generates a figure designated

as asm.pdf (Supplementary Figure 14).

http://sourceforge.net/projects/cchrom/

Supplementary Figure 1

Sequencing error distribution for aligned Nanopore raw long reads on different reference-genome

positions in the nanopore datasets. (I: genome position; II: percentage of reads with 30-100%

sequencing error rate; III: 25-30%; IV: 20-25%; V: 15-20%; VI: 10-15%; VII: 0-10%).

Supplementary Figure 2

Mummerplot of new assembled WERI Nanopore contigs and hg38 reference genome. An alignment

dotplot shows the relationship between the contig assembled using Nanopore (y-axis) and GRCh38

reference genome (x-axis). Contig and chromosome boundaries are displayed as dotted lines

(horizontal and vertical, respectively).

Supplementary Figure 3

The number of identified SVs detected with WERI, TGS, and NGS.

Supplementary Figure 4

NECAT architecture. Stage 1: preprocess; Stage 2: step one of correction; Stage 3: step two of

correction; Stage 4: trimming; Stage 5: assembly.

raw
reads preprocess raw

reads

pack
raw reads

packed
raw readsfind

candiatescandidates

correct
raw reads

with
fast

methodsraw reads

corrected
reads

pack reads packed
reads find

candiates candidates

correct
reads
with

sensitive
methods corrected

reads

raw
reads

extract longest
45X

corrected reads

corrected
readspairwise

mappingoverlaps
trimming

trimmed
reads

complete
reads

complete
v.s.

trimmed
mapping

overlaps

pairwise
mapping overlaps

merge assembly
overlaps

merge assembly
reads

construct
contigs

contigs

reference
mapping

mapping
results

bridging

assembled
contigs

stage
1

stage
2

stage
3

stage
4

stage
5

remove
trimmed
reads’
overlaps

overlaps

Supplementary Figure 5

Removing false positives with chaining technique. (A): The candidate k-mer pair (blue) and its four

remote related k-mer pairs detected by DDF scoring. (B)Chaining is used to remove false positives

(purple) by examining positions with adjacent k-mer pairs.

…………

…………

seed k-mer pair

A

…………

…………

seed k-mer pair

B

×

DDF scoring shows
this remoted k-mer
pair is related

×chaining scoring filters
out the false positive

read

reference

read

reference

Supplementary Figure 6

Mummerplot of assembled contig and E. coli reference genome. An alignment dotplot shows the

relationship between the assembled contig of E. coli K12 (y-axis) and E. coli K12 reference genome

(x-axis). The assembled single contig was mapped onto the reference genome and covered the entire

genome. The assembled contig was arbitrarily shifted because the E. coli chromosome is circular; this

does not represent assembly error.

Supplementary Figure 7

Mummerplot of the assembled contig and S. cerevisiae reference genome. An alignment dotplot shows

the relationship between the contig assembled using Nanopore (y-axis) and S. cerevisiae reference

genome (x-axis). Contig and chromosome boundaries are displayed as dotted lines (horizontal and

vertical, respectively).

Supplementary Figure 8

Mummerplot of the assembled contig and A. thaliana reference genome. An alignment dotplot shows

the relationship between the contig assembled using Nanopore (y-axis) and A. thaliana reference

genome (x-axis). Contig and chromosome boundaries are displayed as dotted lines (horizontal and

vertical, respectively).

Supplementary Figure 9

Mummerplot of the assembled contig and D. melanogaster reference genome. An alignment dotplot

shows the relationship between the contig assembled using Nanopore (y-axis) and D. melanogaster

reference genome (x-axis). Contig and chromosome boundaries are displayed as dotted lines

(horizontal and vertical, respectively).

Supplementary Figure 10

Mummerplot of the assembled contig and C. reinhardtii reference genome. An alignment dotplot shows

the relationship between the contig assembled using Nanopore (y-axis) and C. reinhardtii reference

genome (x-axis). Contig and chromosome boundaries are displayed as dotted lines (horizontal and

vertical, respectively).

Supplementary Figure 11

Mummerplot of the assembled contig and O. sativa reference genome. An alignment dotplot shows the

relationship between the contig assembled using Nanopore (y-axis) and O. sativa reference genome

(x-axis). Contig and chromosome boundaries are displayed as dotted lines (horizontal and vertical,

respectively).

Supplementary Figure 12

Mummerplot of new assembled contigs of NA12878 (rel3,4) Nanopore and hg38 reference genome. An

alignment dotplot shows the relationship between the contig assembled using Nanopore (y-axis) and

GRCh38 reference genome (x-axis). Contig and chromosome boundaries are displayed as dotted lines

(horizontal and vertical, respectively).

Supplementary Figure 13

Mummerplot of the NECAT contig and the other assembled contig from S. pennellii. An alignment

dotplot shows the relationship between the contig assembled using Nanopore (y-axis) and S. pennellii

reference genome (x-axis). Contig and chromosome boundaries are displayed as dotted lines

(horizontal and vertical, respectively).

Supplementary Figure 14

Continuity analysis of NECAT and Canu Nanopore H. sapiens NA12878 (rel3,4) assembly. (A)

NECAT assembly. (B) Canu assembly. Human chromosomes are painted with assembled contigs using

ColoredChromosomes package. Alternating shades indicate adjacent contigs (each vertical transition

from gray to black represents a contig boundary or alignment breakpoint).

Supplementary Figure 15

Histogram of minimum coverage for the S. cerevisiae dataset. min_coverage is set to the first
value not exceeding 30% of the value for the first trough of the histogram of all 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚s,
where 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 is the minimum coverage of all bases.

min_coverage

Supplementary Table 1. Detail information of the nine datasets used in this study.

Datasets Data resource of LRs SRA ID of NGS Reference

E. coli
Ecoli.fasta

ecoli.fast5.tgz
SRR072235 K-12 substr. MG1655

S. cerevisiae
yeast.fastq

yeast.fast5.tar.gz
SRR5244182 S. cerevisiae S288c

D. melanogaster
SRX3676783

Dro1.fast5.tar.gz
Dro2.fast5.tar.gz

SRR6702604 D. melanogaster v6

A. thaliana
ERR2173373

Ara.bam
ERR2173372 A. thaliana v5

C. reinhardtii
chl.fastq.gz

chl.fast5.tar.gz
SRR1734612 C. reinhardtii v5.5

O. sativa rice.fastq.gz __ O. sativa v4.0

S. pennellii tomatodata __ S. pennellii

H. sapiens
(NA12878)

rel_3_4 data
rel_6_data

ERR194147 Hg38

LRs: long reads; NGS: Next generation sequencing

https://s3.climb.ac.uk/nanopore/E_coli_K12_1D_R9.2_SpotON_2.pass.fasta
https://s3.climb.ac.uk/nanopore/E_coli_K12_1D_R9.2_SpotON_2.tgz
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR072235
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/005/845/GCF_000005845.2_ASM584v2/GCF_000005845.2_ASM584v2_genomic.fna.gz
http://www.tgsbioinformatics.com/necat/datasets/yeast.fastq.gz
http://www.tgsbioinformatics.com/necat/datasets/yeast.fast5.tar.gz
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR5244182
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/146/045/GCF_000146045.2_R64/GCF_000146045.2_R64_genomic.fna.gz
https://www.ncbi.nlm.nih.gov/sra/SRX3676783
https://sra-download.ncbi.nlm.nih.gov/traces/sra59/SRZ/006702/SRR6702603/20170531_1653_ISO1_FirstRun.tar.gz
https://sra-download.ncbi.nlm.nih.gov/traces/sra60/SRZ/006821/SRR6821890/20170531_1653_ISO1_FirstRun.tar.gz
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR6702604
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/001/215/GCF_000001215.4_Release_6_plus_ISO1_MT/GCF_000001215.4_Release_6_plus_ISO1_MT_genomic.fna.gz
ftp://ftp.sra.ebi.ac.uk/vol1/run/ERR217/ERR2173371/pb.bam
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=ERR2173372
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/001/735/GCF_000001735.4_TAIR10.1/GCF_000001735.4_TAIR10.1_genomic.fna.gz
http://www.tgsbioinformatics.com/necat/datasets/chl.fastq.gz
http://www.tgsbioinformatics.com/necat/datasets/chl.fast5.tar.gz
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR1734612
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/002/595/GCA_000002595.3_Chlamydomonas_reinhardtii_v5.5/GCA_000002595.3_Chlamydomonas_reinhardtii_v5.5_genomic.fna.gz
http://www.tgsbioinformatics.com/necat/datasets/rice.fastq.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/005/425/GCF_000005425.2_Build_4.0/GCF_000005425.2_Build_4.0_genomic.fna.gz
https://www.plabipd.de/portal/solanum-pennellii
http://www.plabipd.de/projects/SpennLost/assemblies/canu-smartdenovo_pass5.fasta
https://github.com/nanopore-wgs-consortium/NA12878/blob/master/nanopore-human-genome/rel_3_4.md
https://github.com/nanopore-wgs-consortium/NA12878/blob/master/Genome.md
https://www.ncbi.nlm.nih.gov/sra/?term=ERR194147
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/001/405/GCF_000001405.39_GRCh38.p13/GCF_000001405.39_GRCh38.p13_genomic.fna.gz

Supplementary Table 2. Statistical information of the nine datasets used in this study.

Datasets Base size Coverage LR Count N25 N50 N75 Mean

E. coli 1,481,822,528 322X 164,472 25,243 14,891 8,074 9,010

S. cerevisiae 7,354,232,165 612X 1,814,834 27,799 13,354 4,108 4,052

D.

melanogaster
9,064,470,438 66X 1,327,569 18,919 11,853 6,495 6,828

A. thaliana 3,421,779,258 27X 300,071 30,160 20,127 11,544 11,403

C. reinhardtii 16,124,079,751 134X 1,455,141 45,167 27,507 14,469 11,080

O. sativa 67,710,180,969 183X 2,696,991 46,050 33,120 21,676 25,106

S. pennellii 141,704,928,841 160X 11,967,377 21,210 16,611 12,552 11,841

NA12878

(rel3,4)
114,380,310,980 38X 15,599,457 22,232 12,196 7,209 7,332

NA12878(rel6) 132,931,102,331 44X 15,666,888 26,903 13,630 7,984 8,485

HERS: high error subsequences with high sequencing error rates > 50% in 500bp subsequence.

Supplementary Table 3. Statistical information of sequencing error rate for nine datasets.

Datasets
The mean error rate of

raw reads

Percentage of reads with HERS and

length>10kb

E.coli 17.80% 3.50%

S. cerevisiae 12.00% 5.20%

A. thaliana 20.10% 23.2%

D. melanogaster 16.20% 6.90%

C. reinhardtii 15.00% 10.90%

O. sativa 15.60% 8.10%

S. pennellii 18.49% 8.05%

NA12878(rel3,4) 18.50% 7.80%

NA12878(rel6) 12.08% 5.15%

HERS: high error subsequences with high sequencing error rates > 50% in 1000bp subsequence.

Supplementary Table 4. Comparison of the accuracy of the nine datasets used in this study.

 Species Error
rate

Percentage

Raw Canu CN1 CN2

 A. thaliana 1% 0.10% 0.08% 0.13% 0.29%

 2% 0.19% 0.32% 0.82% 3.51%

 3% 0.33% 0.80% 3.07% 15.08%

 4% 0.42% 1.64% 8.86% 17.27%

 5% 0.53% 5.25% 12.79% 9.70%

 6% 0.69% 10.27% 9.60% 6.62%

 7% 0.99% 10.13% 7.06% 5.28%

 8% 1.29% 8.25% 5.83% 4.51%

 9% 1.36% 6.72% 4.91% 3.98%

 10% 1.47% 5.73% 4.37% 3.78%

 10-15% 21.93% 19.98% 17.24% 12.89%

 15-20% 23.94% 13.53% 11.63% 7.01%

 20-15% 19.40% 8.44% 5.88% 3.90%

 25-30% 14.37% 4.27% 3.34% 2.65%

 30-100% 13.00% 4.60% 4.47% 3.52%

E. coli 1% 0.00% 0.00% 0.00% 0.21%

 2% 0.00% 0.02% 0.57% 38.03%

 3% 0.00% 0.12% 13.41% 54.65%

 4% 0.00% 6.49% 39.09% 5.51%

 5% 0.01% 13.82% 27.44% 0.94%

 6% 0.05% 14.93% 10.95% 0.30%

 7% 0.12% 17.18% 4.26% 0.12%

 8% 0.26% 16.45% 1.83% 0.06%

 9% 0.52% 12.85% 0.90% 0.03%

 10% 1.10% 8.23% 0.46% 0.03%

 10-15% 30.91% 9.36% 0.66% 0.05%

 15-20% 37.18% 0.44% 0.19% 0.02%

 20-15% 20.07% 0.07% 0.09% 0.01%

 25-30% 8.53% 0.03% 0.06% 0.01%

 30-100% 1.23% 0.01% 0.10% 0.01%

S. cerevisiae 1% 0.01% 8.93% 22.94% 73.24%

 2% 0.03% 31.27% 32.96% 13.85%

 3% 0.16% 24.28% 17.77% 4.26%

 4% 0.49% 14.81% 9.57% 2.37%

 5% 0.92% 8.01% 4.85% 1.32%

 6% 1.71% 4.28% 2.64% 0.76%

 7% 4.74% 2.42% 1.58% 0.50%

 8% 9.05% 1.53% 1.10% 0.38%

 9% 11.09% 1.02% 0.84% 0.34%

 10% 10.47% 0.67% 0.65% 0.20%

 10-15% 35.62% 1.60% 2.22% 1.02%

 15-20% 16.69% 0.53% 1.15% 0.63%

 20-15% 6.44% 0.25% 0.60% 0.40%

 25-30% 1.41% 0.17% 0.37% 0.25%

 30-100% 1.16% 0.23% 0.75% 0.49%

D. melanogaster 1% 0.41% 1.40% 4.62% 39.13%

 2% 0.44% 20.23% 24.01% 24.44%

 3% 0.43% 20.70% 20.10% 4.65%

 4% 0.47% 9.79% 10.30% 2.03%

 5% 0.55% 5.45% 5.15% 1.78%

 6% 0.73% 3.98% 3.30% 1.84%

 7% 1.35% 3.01% 2.68% 1.43%

 8% 2.83% 2.29% 2.20% 1.03%

 9% 4.91% 1.84% 1.69% 1.34%

 10% 6.62% 1.91% 1.34% 2.51%

 10-15% 32.94% 8.34% 7.01% 9.35%

 15-20% 21.64% 8.52% 8.18% 5.16%

 20-15% 13.97% 6.89% 5.24% 2.89%

 25-30% 7.91% 3.34% 2.46% 1.44%

 30-100% 4.79% 2.31% 1.71% 0.99%

C. reinhardtii 1% 0.40% 0.10% 0.96% 36.91%

 2% 0.24% 9.99% 17.07% 42.08%

 3% 0.18% 35.85% 33.06% 10.98%

 4% 0.16% 20.99% 21.11% 3.56%

 5% 0.18% 9.12% 9.93% 1.65%

 6% 0.39% 4.87% 4.84% 0.94%

 7% 0.69% 3.33% 2.76% 0.59%

 8% 0.75% 2.32% 1.78% 0.42%

 9% 1.11% 1.73% 1.24% 0.33%

 10% 3.28% 1.27% 0.91% 0.25%

 10-15% 61.31% 3.64% 2.41% 0.75%

 15-20% 17.43% 1.91% 1.14% 0.42%

 20-15% 6.35% 1.52% 0.77% 0.39%

 25-30% 3.16% 1.27% 0.66% 0.27%

 30-100% 4.39% 2.10% 1.35% 0.48%

O. sativa 1% 0.05% 0.13% 0.25% 4.85%

 2% 0.06% 1.63% 5.32% 24.66%

 3% 0.09% 11.43% 14.88% 20.55%

 4% 0.12% 15.56% 15.99% 14.56%

 5% 0.17% 15.67% 15.05% 10.00%

 6% 0.27% 12.70% 12.18% 6.73%

 7% 0.43% 9.10% 9.15% 4.28%

 8% 0.65% 6.30% 6.61% 2.49%

 9% 1.14% 4.19% 4.61% 1.33%

 10% 2.47% 2.62% 2.96% 0.77%

 10-15% 42.41% 5.63% 5.16% 3.63%

 15-20% 42.39% 5.85% 3.47% 3.25%

 20-15% 5.46% 5.30% 2.82% 1.69%

 25-30% 2.75% 2.57% 0.88% 0.64%

 30-100% 1.56% 1.33% 0.66% 0.58%

S. pennellii 1% 0.18% 0.10% 0.45% 3.23%

 2% 0.18% 1.92% 3.83% 17.68%

 3% 0.27% 7.76% 8.96% 20.36%

 4% 0.43% 12.46% 12.90% 13.31%

 5% 0.64% 11.80% 12.63% 8.46%

 6% 0.90% 9.45% 10.08% 5.86%

 7% 1.25% 7.37% 7.71% 4.17%

 8% 1.80% 5.55% 5.93% 3.14%

 9% 2.52% 4.15% 4.53% 2.60%

 10% 3.40% 3.16% 3.46% 2.46%

 10-15% 26.81% 15.57% 12.25% 7.85%

 15-20% 25.30% 11.24% 6.90% 4.17%

 20-15% 16.76% 5.23% 3.89% 2.76%

 25-30% 10.10% 2.18% 2.41% 2.05%

 30-100% 9.48% 2.07% 4.09% 1.89%

NA12878(rel3,4) 1% 0.19% -- 0.20% 0.32%

 2% 0.12% -- 0.36% 3.04%

 3% 0.10% -- 2.76% 23.87%

 4% 0.11% -- 11.57% 32.48%

 5% 0.14% -- 19.44% 17.89%

 6% 0.21% -- 19.09% 8.18%

 7% 0.33% -- 14.15% 3.74%

 8% 0.54% -- 9.38% 1.83%

 9% 0.86% -- 6.00% 1.01%

 10% 1.42% -- 3.82% 0.65%

 10-15% 28.36% -- 6.34% 1.54%

 15-20% 34.60% -- 1.80% 1.40%

 20-15% 17.76% -- 2.03% 2.25%

 25-30% 9.13% -- 1.56% 1.20%

 30-100% 6.11% -- 1.50% 0.60%

NA12878(rel6) 1% 0.67% -- 14.22% 43.28%

 2% 0.39% -- 38.31% 27.29%

 3% 0.78% -- 17.05% 3.04%

 4% 2.10% -- 5.48% 1.12%

 5% 4.97% -- 2.18% 0.72%

 6% 8.81% -- 1.08% 0.53%

 7% 10.88% -- 0.71% 0.44%

 8% 10.30% -- 0.58% 0.38%

 9% 8.59% -- 0.52% 0.30%

 10% 6.93% -- 0.44% 0.27%

 10-15% 20.55% -- 1.73% 1.58%

 15-20% 9.88% -- 2.27% 3.87%

 20-15% 6.16% -- 6.54% 9.09%

 25-30% 4.60% -- 4.86% 5.13%

 30-100% 4.39% -- 4.03% 2.97%

Supplementary Table 5. Comparison with assemble-then-correct assemblers

Genome Pipeline
Assembly

Size (Mb)
Contig

NG50

(Kb)

NGA50

(Kb)

MA / local

MA

QV

(pre- /

post-

polish)

BUSCO

Total

time

E. coli

Ref. 4.6 1 4,642 — —/— —/— — —
Miniasm+Racon 4.6 1 4,598 3,919 2/4 17.6/22.2 20.7% 5.0
Smartdenovo 4.6 1 4,632 3,386 2/3 19.1/22.2 20.0% 40.0
Wtdbg2 4.5 1 4,495 1,658 3/1 17.0/22.4 17.9% 0.8
Flye 4.6 1 4,622 3,071 2/2 20.2/22.6 20.2% 630.4
Raven+Racon 4.6 1 4,599 3,402 2/3 18.9/22.6 20.2% 4.6
Shasta 4.6 1 4,603 2,924 3/6 18.9/22.5 20.5% 2.7
NECAT 4.6 1 4,595 3,984 2/3 18.5/22.3 19.8% 2.8

S. cerevisiae

S228C 12.2 17 924 — —/— —/— — —
Miniasm+Racon 13.0 33 821 708 39/43 20.9/27.2 97.7% 75.6
Smartdenovo 12.4 20 937 708 25/37 23.4/28.6 98.4% 97.1
Wtdbg2 12.1 22 792 701 18/26 22.0/29.5 98.5% 6.3
Flye 12.3 26 943 706 21/26 21.8/29.0 98.5% 197.8
Raven 12.5 18 818 714 34/35 24.1/28.7 98.3% 34.9
Shasta+Racon 12.1 269 927 688 21/24 21.8/29.1 97.4% 17.0
NECAT 12.3 19 937 708 26/35 23.1/29.0 98.3% 9.3

A. thaliana

TAIR10 119.7 7 23,460 — —/— —/— — —
Miniasm+Racon 118.2 69 11,938 559 665/1262 16.4/19.4 98.6% 9.3
Smartdenovo 116.4 127 3,676 440 370/1201 16.0/19.4 98.6% 78.4
Wtdbg2 115.3 349 9,840 481 441/1320 15.0/19.6 98.5% 14.4
Flye 126.6 154 12,043 627 1085/1962 16.8/18.5 98.7% 59.4
Raven 116.9 25 11,153 601 790/1659 16.7/19.5 98.8% 9.7
Shasta+Racon 82.5 1071 157 76 205/722 17.3/20.5 82.5% 4.9
NECAT 122.9 136 11,157 582 886/1304 16.0/18.9 98.8% 47.9

D. melanogaster

dm6 143.7 1870 25,287 — —/— —/— — —
Miniasm+Racon 143.9 439 1,496 1,238 906/562 20.1/22.6 91.4% 43.8
Smartdenovo 138.1 238 4,480 2,915 552/402 20.8/23.0 91.7% 182.4
Wtdbg2 138.9 872 6,633 4,383 652/301 19.3/22.6 90.4% 26.0
Flye 139.9 593 11,925 5,129 558/749 21.4/22.5 89.9% 127.9
Raven 139.1 201 5,914 3,720 723/351 20.7/23.0 91.6% 80.9
Shasta+Racon 127.6 783 456 445 186/106 21.7/24.2 90.3% 9.8
NECAT 142.8 277 18,072 6,323 1117/1333 20.2/22.3 92.0% 70.4

C. reinhardtii

Ref. v5.5 111.1 53 7,784 — —/— —/— — —
Miniasm+Racon 128.0 215 2,815 588 994/2568 19.5/21.6 98.5% 137.8
Smartdenovo 112.9 83 3,370 620 748/1681 19.9/22.6 97.2% 1365.3
Wtdbg2 115.7 344 4,290 711 808/1254 17.9/22.1 97.2% 35.4
Flye 112.9 65 6,573 831 764/2029 21.6/23.6 98.4% 185.8
Raven 113.3 49 4,435 774 861/1834 21.3/23.1 98.5% 64.2
Shasta+Racon 106.9 905 2,099 602 553/1490 21.3/23.1 95.5% 36.5
NECAT 113.4 54 6,169 732 831/2273 19.8/22.4 98.0% 101.8

O. sativa

Ref.v4.0 382.8 15 30,829 — —/— —/— — —
Miniasm+Racon 393.0 240 9,750 3,078 625/7104 15.2/16.0 59.0% 933.1
Smartdenovo 379.4 352 1,889 1,363 467/7987 16.5/16.0 59.6% 3564.9
Wtdbg2 394.6 2554 2,432 1,272 396/10878 14.6/15.8 55.9% 154.3
Flye 380.7 249 3,552 2,213 573/1742 16.4/16.3 59.2% 817.6
Raven 374.8 212 3,670 2,109 563/3738 16.2/16.3 60.1% 344.6
Shasta+Racon 345.8 3278 340 296 248/4515 15.9/16.7 58.2% 161.1
NECAT 373.1 120 9,650 3,311 479/4873 16.0/16.3 58.4% 517.2

S. pennellii

Ref. 915.6 899 2,522 — —/— —/— — —
Miniasm 977.8 2704 1,903 1 694/56129 —/18.3 83.8% —
Smartdenovo 955.3 1901 1,108 574 3544/14483 —/20.2 97.0% —
Wtdbg2 934.3 4986 1,228 632 3258/9948 15.2/16.9 93.6% 439.0
Flye 1,026.0 3180 1,971 651 8504/10726 16.0/18.5 96.7% 3590.8
Raven 1,019.7 3287 609 368 10254/12375 16.2/19.9 94.0% 1119.1
Shasta+Racon 748.7 9712 115 100 1909/3528 16.8/21.1 96.2% 344.7
NECAT 991.8 1344 4,802 992 5813/12592 15.2/17.3 95.5% 3233.7

NA12878 (rel6)
Ref.38 3,272 639 145,139 — —/— —/— — —
Flye 2,867 3309 28,407 16,640 4054/7258 22.9/24.2 74.6% 2500.0
NECAT 2,847 1047 20,913 13,441 948/1467 23.1/24.4 74.5% 9418.8

‘Assembly size’ is the total number of base pairs in all contigs generated by assemblers. ‘NG50’ indicates that 50% of reference

genome size was contained in contigs having length ≥N. ‘NGA50’ is NG50 of aligned blocks that contigs are broken into at

misassembly breakpoints. ‘MA / local MA’ are the numbers of misassemblies and local misassemblies evaluated by QUAST. ‘QV’

is defined as 10 × log10(100𝑘𝑘𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝 100 𝑘𝑘𝑘𝑘𝑘𝑘+ # 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝 100 𝑘𝑘𝑘𝑘𝑘𝑘

), where ‘# mismatches per 100 kbp’ and ‘# indels per 100 kbp’

are evaluated by QUAST. ‘BUSCO’ is gene completeness evaluated by BUSCO. All the pipelines were tested on the same computer

with 2.0 GHz CPU and 3T GB RAM of memory. For the first six datasets, we ran all the pipelines on our computer with 32 threads;

the total computational time are recorded. For S. pennellii and human dataset, we ran the pipelines on our computer with 64 threads,

and total computational time were recorded. The assembly results of Miniasm and Smartdenove on the dataset S. pennellii were

from https://www.plabipd.de/portal/solanum-pennellii. The assembly results and total time of Flye on the dataset NA12878 (rel6)

was acquired from https://github.com/fenderglass/Flye.

https://www.plabipd.de/portal/solanum-pennellii
https://github.com/fenderglass/Flye

Supplementary Table 6. SNP and INDEL statistics between assembly genome and reference

genome.

Species Software SNPs
Indels

Cover (%)
<=10bp >10bp

E. coli Canu 9374 1 18 99.35

 Canu+Smartdenovo 9170 0 4 99.39

 Smartdenovo 8663 0 6 99.31

 Miniasm+Racon 10116 0 6 99.33

 wtdbg2 7926 0 4 99.39

 Flye 8590 0 3 99.42

 Raven 8898 0 3 99.41

 Shasta+Racon 9250 1 5 99.38

 NECAT 10248 0 11 99.37

S. cerevisiae Canu 9297 7 33 99.88

 Canu+Smartdenovo 9010 4 30 99.91

 Smartdenovo 9699 8 41 99.65

 miniasm+Racon 9508 23 31 99.43

 wtdbg2 9243 7 31 99.82

 Flye 9199 8 31 99.92

 Raven 9175 15 34 99.90

 Shasta+Racon 9311 31 45 98.50

 NECAT 9142 4 38 99.92

D.
melanogaster

Canu 24811 22 266 98.96

Canu+Smartdenovo 31359 9 281 99.16

 Smartdenovo 40735 5 251 98.92

 miniasm+Racon 44233 54 285 98.10

 wtdbg2 27297 24 215 98.87

 Flye 26494 20 195 99.03

 Raven 36549 21 224 98.46

 Shasta+Racon 30080 23 213 98.70

 NECAT 29113 10 345 99.30

A. thaliana Canu 457782 456 2880 98.98

 Canu_smartdenovo 462818 42 3413 99.32

 Smartdenovo 461263 37 3372 99.02

 miniasm+Racon 463272 467 2982 97.04

 wtdbg2 457763 458 2976 99.19

 Flye 463692 465 2988 99.34

 Raven 462823 465 3001 98.58

 Shasta+Racon 328323 335 1960 98.55

 NECAT 463859 45 3427 99.31

C. reinhardtii Canu 39984 324 1580 99.40

 Canu_smartdenovo 39832 13 1630 99.60

 Smartdenovo 47750 12 1655 99.40

 miniasm+Racon 48898 301 1386 99.07

 wtdbg2 48849 283 1372 99.21

 Flye 39996 302 1388 99.69

 Raven 40500 305 1401 99.49

 Shasta+Racon 46545 295 1364 98.81

 NECAT 45218 11 1812 99.54

Supplementary Table 7. Number of TEs in Flybase.

Method
Contain in a contig roo Juan

Total Perfect Total Perfect Total Perfect

Canu 5304 3970 131 95 11 11

Canu+Smartdenovo 5292 3916 132 115 11 11

Miniasm+Racon 5234 3994 128 89 9 9

Smrtdenovo 5312 3998 135 106 11 11

Flye 5268 3840 131 93 11 11

Wtdbg2 5156 3831 130 95 11 11

Raven 5269 3943 130 72 11 11

Shasta+Racon 5042 4063 113 69 11 11

NECAT 5,304 4001 134 118 11 11

Total and Perfect refer to all the identified TE numbers and the number of TEs with more than 99%
Pct_ident from the final report.

Supplementary Table 8. Chromosome number identified based on the alignment of telomeric

repeats

Method All Pair_end telomere Single_end
telomere

Identified
in a single contigs

Identified
in two contigs

Canu 16 13 1 2

Canu+Smartdenovo 16 14 1 1

Miniasm+Racon 16 13 1 2

Smartdenovo 16 14 1 1

Flye 16 14 1 1

Wtdbg2 16 3 8 5

Raven 16 14 1 1

Shasta+Racon 16 13 1 2

NECAT 16 14 1 1

“All” indicates the total identified number of chromosome, “identified in a single contig”

is the number of chromosomes in which the telomeric repeats are mapped on both the

left and right ends in a single contig.

Supplementary Table 9. Comparison with hybrid pipelines

Genome Pipeline
Assembly

Size (Mb)
Contig

NG50

(Kb)

NGA50

(Kb)

MA /

local MA

QV Correct/Contig

/Total time

E. coli

Ref. 4.6 1 4,642 — —/— — —/—/—
Canu+Smartdenovo 4.6 1 4,630 3,287 3/2 18.6 26.1/8.0/34.1
Canu-Flye 4.6 1 4,606 3,943 2/2 19.6 26.1/1.8/27.9
Canu+NECAT 4.6 1 4,595 2,451 2/16 17.2 26.1/1.1/27.2
NECAT+Canu 4.6 1 4,635 3,362 2/2 18.5 1.6/37.9/39.5
NECAT+Smartdenovo 4.6 1 4,637 3,291 3/2 18.6 1.6/6.5/8.1
NECAT+Flye 4.6 1 4,599 1,626 4/2 19.0 1.6/2.1/3.7
NECAT 4.6 1 4,595 3,984 2/3 18.5 1.6/1.2/2.8

S. cerevisiae

S228C 12.2 17 924 — —/— — —/—/—
Canu+Smartdenovo 12.4 19 815 705 34/29 22.7 493.3/38.4/531.7
Canu-Flye 12.4 26 939 710 27/31 24.5 493.3/28.7/522.0
Canu+NECAT 12.4 21 816 705 38/49 21.8 493.3/2.8/496.1
NECAT+Canu 12.5 20 936 708 28/34 23.0 4.4/257.0/261.4
NECAT+Smartdenovo 12.3 17 816 676 20/24 23.3 4.4/29.9/34.3
NECAT+Flye 12.2 16 940 706 22/22 22.2 4.4/11.6/16.0
NECAT 12.3 19 937 708 26/35 23.1 4.4/4.9/9.3

A. thaliana

TAIR10 119.7 7 23,460 — —/— — —/—/—
Canu+Smartdenovo 115.6 44 11,071 527 576/1170 15.9 193.1/125.9/319.0
Canu-Flye 117.2 124 7,157 543 628/1107 16.4 193.1/32.4/225.5
Canu+NECAT 110.3 280 5,762 511 356/1372 15.2 193.1/15.5/208.6
NECAT+Canu 120.1 66 11,022 575 835/1235 16.3 19.8/841.9/861.7
NECAT+Smartdenovo 117.6 57 6,314 582 725/1168 16.5 19.8/101.8/121.6
NECAT+Flye 118.9 62 13,170 619 952/1381 16.6 19.8/31.1/50.9
NECAT 122.9 136 11,157 536 886/1304 16.0 19.8/28.0/47.9

D. melanogaster

dm6 143.7 1870 25,287 — —/— — —/—/—
Canu+Smartdenovo 135.8 162 14,456 6,473 587/333 20.8 289.6/294.4/584.0
Canu-Flye 136.1 261 3,519 2,497 544/268 23.1 289.6/80.2/369.8
Canu+NECAT 139.3 291 16,995 7,154 687/674 18.9 289.6/24.0/313.6
NECAT+Canu 150.4 496 4,872 4,179 1640/1738 20.2 37.7/3434.4/3472.0
NECAT+Smartdenovo 134.5 123 12,674 9,663 488/295 21.4 37.7/196.3/234.0
NECAT+Flye 137.3 246 7,369 5,100 578/720 21.1 37.7/69.1/106.7
NECAT 142.8 277 18,072 6,323 1117/1333 20.2 37.7/32.7/70.4

C. reinhardtii

Ref. v5.5 111.1 53 7,784 — —/— — —/—/—
Canu+Smartdenovo 109.7 46 4,498 713 655/1629 20.1 950.4/816.0/1766.4
Canu-Flye 111.7 54 4,149 756 754/1946 21.4 950.4/126.5/1076.9
Canu+NECAT 110.9 77 4,435 682 650/2125 18.1 950.4/29.1/979.5
NECAT+Canu 118.9 100 5,317 687 934/2515 20.0 54.8/8299.1/8353.9
NECAT+Smartdenovo 112.9 72 2,569 622 704/1583 20.4 54.8/690.7/745.5
NECAT+Flye 112.2 37 6,712 746 770/1947 20.9 54.8/119.8/174.6
NECAT 113.4 54 6,169 726 831/2273 19.8 54.8/47.0/101.8

NA12878(rel6)

Ref38 3,272 639 145,139 — —/— — —/—/—
NECAT+Flye 2,844 820 33,800 16,778 850/1017 21.2 2518.4/1599.9/4118.3
Flye 2,867 3309 28,407 16,640 4054/7258 22.9 —/—/2500
NECAT 2,847 1047 20,913 13,441 948/1467 23.1 2518.4/6900.4/9418.8

‘Assembly size’ is the total number of base pairs in all contigs generated by assemblers. ‘NG50’ indicates that 50%

of reference genome size was contained in contigs having length ≥N. ‘NGA50’ is NG50 of aligned blocks that

contigs are broken into at misassembly breakpoints. ‘MA / local MA’ are the numbers of misassemblies and local

missassemblies evaluated using QUAST. ‘QV’ is defined as 10 ×

log10(100𝑘𝑘𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝 100 𝑘𝑘𝑘𝑘𝑘𝑘+ # 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝 100 𝑘𝑘𝑘𝑘𝑘𝑘

), where ‘# mismatches per 100 kbp’ and ‘# indels per 100 kbp’

are evaluated by QUAST. All the pipelines were tested on the same computer with 2.0 GHz CPU and 3T GB RAM

of memory. We ran all the pipelines on our computer with 32 threads for the first five datasets and with 64 threads

for the human dataset; the correction and contig computational time of the pipelines were recorded. The assembly

results and total time of Flye on the dataset NA12878 (rel6) was acquired from

https://github.com/fenderglass/Flye.

https://github.com/fenderglass/Flye

Reference
1. Li, H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences.

Bioinformatics 32, 2103 (2015).
2. Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nature Methods (2019).
3. Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P.A. Assembly of long, error-prone reads using

repeat graphs. Nature Biotechnology 37, 540-546 (2019).
4. Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. (2020).
5. Shafin, K. et al. Nanopore sequencing and the Shasta toolkit enable efficient de novo assembly

of eleven human genomes. Nature Biotechnology (2020).
6. Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome

assemblies. Bioinformatics 29, 1072-1075 (2013).
7. Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome assembly from

long uncorrected reads. Genome Res 27, 737-746 (2017).
8. Loman, N.J., Quick, J. & Simpson, J.T. A complete bacterial genome assembled de novo using

only nanopore sequencing data. Nature Methods 12, 733-735 (2015).
9. Walker, B.J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and

genome assembly improvement. Plos One 9, e112963 (2014).
10. Kingan, S. et al. A High-Quality De novo Genome Assembly from a Single Mosquito Using PacBio

Sequencing. Genes.
11. Vaser, R., Sović, I., Nagaranjan, N. & Šikić, M. Fast and accurate de novo genome assembly from

long uncorrected reads. Genome Research 27, 737 (2017).
12. Kurtz, S. et al. Versatile and open software for comparing large genomes. Genome Biology 5,

R12 (2004).
13. Salzberg, S.L. et al. GAGE: A critical evaluation of genome assemblies and assembly algorithms.

Genome research 22, 557-567 (2012).
14. Schmidt, M.H.W. et al. De Novo Assembly of a New Solanum pennellii

Accession Using Nanopore Sequencing. The Plant Cell 29, 2336 (2017).
15. Hoskins, R.A. et al. The Release 6 reference sequence of the Drosophila melanogaster genome.

Genome Research 25, 445-458 (2015).
16. Hoskins, R.A. et al. Sequence finishing and mapping of Drosophila melanogaster

heterochromatin. Science 316, 1625-1628 (2007).
17. Kaminker, J.S. et al. The transposable elements of the Drosophila melanogaster euchromatin:

a genomics perspective. Genome Biology 3, 1-20 (2002).
18. Fu, Y. et al. N6-Methyldeoxyadenosine Marks Active Transcription Start Sites in

Chlamydomonas. Cell 161, 879-892 (2015).
19. Michael, T.P. et al. High contiguity Arabidopsis thaliana genome assembly with a single

nanopore flow cell. Nature Communications 9, 541 (2018).
20. Solares, E.A., Chakraborty, M., Miller, D.E., Kalsow, S. & Hawley, R.S. Rapid Low-Cost Assembly

of the Drosophila melanogaster Reference Genome Using Low-Coverage, Long-Read
Sequencing. G3&#58; Genes|Genomes|Genetics 8, g3.200162.202018 (2018).

21. Jain, M. et al. Nanopore sequencing and assembly of a human genome with ultra-long reads.
Nature Biotechnology 36, 338-345 (2018).

22. Staff, S.R.A.S. Using the SRA Toolkit to convert .sra files into other formats. (2011).

23. Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q File
Manipulation. PloS one 11, e0163962 (2016).

24. Konstantin, B. et al. Assembling large genomes with single-molecule sequencing and locality-
sensitive hashing. Nature Biotechnology 33, 623-630 (2015).

25. Tischler, G. & Myers, E.W. Non Hybrid Long Read Consensus Using Local De Bruijn Graph
Assembly. bioRxiv (2017).

26. Koren, S. et al. Hybrid error correction and de novo assembly of single-molecule sequencing
reads. Nature Biotechnology 30, 693-700 (2012).

27. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34 (2017).
28. Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting

and repeat separation. Genome Research 27, 722 (2017).
29. Schmidt, M.H. et al. De novo Assembly of a New Solanum pennellii Accession Using Nanopore

Sequencing. Plant Cell 29, 2336 (2017).
30. Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nature Methods 17, 1-4

(2020).
31. Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P.A. Assembly of long, error-prone reads using

repeat graphs. Nature Biotechnology (2019).
32. Sedlazeck, F.J. et al. Accurate detection of complex structural variations using single-molecule

sequencing. Nature Methods 15 (2018).
33. Layer, R.M., Chiang, C., Quinlan, A.R. & Hall, I.M. LUMPY: a probabilistic framework for

structural variant discovery. Genome Biology 15, R84 (2014).
34. Schmidt, M.H. et al. De Novo Assembly of a New Solanum pennellii Accession Using Nanopore

Sequencing. The Plant cell 29, 2336-2348 (2017).
35. Seppey, M., Manni, M. & Zdobnov, E.M. BUSCO: Assessing Genome Assembly and Annotation

Completeness. Methods in molecular biology (Clifton, N.J.) 1962, 227-245 (2019).
36. Phillippy, A.M., Schatz, M.C. & Pop, M. Genome assembly forensics: finding the elusive mis-

assembly. Genome Biology 9, 1-13 (2008).
37. Salzberg, S.L. et al. GAGE: A critical evaluation of genome assemblies and assembly algorithms.

(2012).

	Title page for supplementary information
	supplementary notes
	Supplementary Note 1：Comparison with assemble-then-correct assemblers
	Supplementary Note 2：Validating assemblies from Nanopore reads
	Supplementary Note 3：Comparison with hybrid pipelines
	Supplementary Note 4: Cell culture and sequencing materials
	Supplementary Note 5: DNA extraction and purification
	Supplementary Note 6: Nanopore whole genome sequencing and base-calling
	Supplementary Note 7：Statistics for Nanopore datasets
	Supplementary Note 8：Error analysis of Nanopore raw reads
	Supplementary Note 9: Performance of error correcting algorithms
	Supplementary Note 10: Comparison of assembly pipelines
	Supplementary Note 11: Validation of the WERI genome
	Supplementary Note 12: Overlap-filtering strategy
	Supplementary Note 13: Genome polishing and assembly validation
	Supplementary Note 14: Analysis of repeat regions in D. melanogaster
	Supplementary Note 15: Analysis of telomere assembly
	Supplementary Note 16: Validation of H. sapiens NA12878
	Reference

	Supplementary figure
	supplementary tables

