
REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
This paper describes an autoencoder for domain adaptation, which is also similar to the problem of 
batch correction. Both of these problems require a alignment of datasets, and has been 
characterized by many papers as manifold alignment. Moreover, autoencoders [7], and VAEs [6] 
have been used for this problem several times. Moreover, there is a whole set of works using 
cycleGANs [7,3] for both cross modal data alignment. In addition, there are approaches that use 
diffusion geometry and manifold learning methods for this purpose [7] showing results on single 
cell RNA-seq and ATAC-seq like this manuscript. However, the authors seem completely unaware 
of this body of literature, do not cite a single one of these papers, and don't compare the methods. 
 
[1] Liu R, Zou J, and Balsubramani A. Learning Transport Cost From Subset 
Correspondence. ICLR, 2020. 
[2] Makhzani A, Shlens J, Jaitly N, Goodfellow I, Frey B. Adversarial Autoencoders. 
arXiv:151105644 [cs]. May 2016. 
[3] Amodio M, Krishnaswamy S. MAGAN : Aligning Biological Manifolds. ICML 2018. 
[4] Amodio M, Krishnaswamy S. Image-To-Image Translation by Transformation Vector Learning 
CVPR 2019 
[5] Lopez et al. Deep generative models for single-cell transcriptomics, Nature Methods 2018 
[6] Stanley et al. Harmonic Alignment, SIAM Data Mining 2020 
[7] Amodio et al. Exploring single-cell data with deep multitasking neural networks. Nature 
Methods 2019 
[8]Zhu et al. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks 
ICCV 2017 
 
For all of these methods the authors need to formulate comparisons, put their work in context and 
describe conceptual differences against. Moreover the authors need to relate their adversarial 
setup to an adversarial autoencoder [2] 
 
One other point to consider is that the densities may be different in the different modalities. 
Alignment of geometries over densities is considered in [6]. 
 
The only point of impact may be the exact modes that they are aligning, spatial data with non-
spatial sequencing data. Spatial sequencing measurements does require convolutional layers which 
also some of the above references use especially [8,4], but image feature extraction on single cell 
data may be different than natural image feature extraction. This is the point which needs to be 
explored in great detail which this manuscript does not do. 
 
 
 
 
Reviewer #2 (Remarks to the Author): 
 
Yang et al describe an exciting and novel approach to integrate single-cell imaging and gene 
expression data. The primary innovation is the autoencoder training procedure and the new loss 
functions to incorporate markers shared among datasets (discriminative loss) and paired sample 
groups (anchor loss). The authors first benchmark their model in a paired gene expression and 
ATACseq dataset. They observe that their approach outperforms deep canonical correlation 
analysis based on two evaluation metrics. Next, the authors apply their approach to a dataset with 
gene expression and DAPI image measurements. The authors demonstrate, through a series of 
anecdotes based on independent clustering, that DAPI images and gene expression data share 
common signal. Overall, the manuscript is very interesting and timely, but I have several major 
and minor concerns that if addressed, will improve the manuscript. 



 
Major Concerns 
• There are several reporting and methodology concerns that I elaborate on in the minor concerns 
below. Individually, each of these concerns are mostly minor, but taken together, the many 
incomplete methods and reporting causes a major concern. 
• The authors need to expand their discussion. An emphasis on limitations of their approach should 
be a primary focus. In the main experiment, the authors used a nice dataset that appears to have 
clean separations between two groups in both imaging and expression data modalities. What 
happens to their approach in the much more common scenario where there are no clear groupings 
or even if there are different numbers of groups between different data modalities? What about 
more complicated imaging assays beyond DAPI staining? How do the authors propose to use their 
method to make biological discoveries? Don’t we expect certain signal to be unique to each 
modality? How can we use this approach to determine which signals are unique? 
• The authors include a training and testing set in the ATACseq + gene expression application. It is 
not clear if the authors use a holdout test set in the image-expression translation evaluation. The 
authors note “We held out 10% of the data as test data and trained until the reconstruction loss 
on the test data was smaller than 10−3”. This is not a true holdout set. Also, the authors do not 
note if their evaluations are based on the full dataset used for training. 
 
Minor Concerns 
• Some sentences convey more confidence than the results warrant. For example, a sentence in 
the second paragraph of the introduction states: “In particular, our framework can be applied to 
integrate and translate imaging and sequencing data, which cannot yet be obtained experimentally 
in the same cell, thereby providing a methodology to predict the genome-wide expression profile 
of a particular cell given its chromatin organization and vice-versa”. A scientist unfamiliar to this 
approach and the particular challenge may interpret the proposed approach to be error-free. 
• For the paired RNAseq/ATACseq approach, the authors must provide the data referenced in the 
supplementary materials and methods: “we acquired a transcription factor (TF) motif by cells 
matrix from the authors”. 
• The authors should provide rationale for why they chose model parameters and model 
architecture. A specific comment on why they selected a latent dimensionality of 50 would be 
helpful. 
• The authors vary the “level of supervision” in figure 2. This is an extremely important point that 
should be both defined more clearly and highlighted more in the text. A big strength of the 
authors’ approach is that “supervision” is not needed. Also, based on my understanding, 
“supervision” refers to having matched cells. Traditionally, “supervision” would more likely refer to 
a “supervised” learning algorithm, which this is not. Also, I understand how “supervision” is 
toggled for the autoencoder approach (anchor loss) but it is not clear how the “supervision” is 
varied for DCCA. Also, if DCCA supervision 0% is performed after 100 random samplings of the 
same label, shouldn’t figure 2A have error bars? 
• It appears that the authors include their processed gene expression matrix for the naïve CD4+ T 
cell analysis in their supplementary code. This is great! Please confirm this and also add access 
details in the supplementary methods. 
• The co-association matrix (fig 3b) demonstrates consensus across clustering methods. Which 
methods? How many iterations? I do not see if this is ever defined. 
• More methodological details are required for this statement: “Differential gene expression and 
GO enrichment analysis indicated that one cluster corresponded to quiescent cells while the other 
was poised for activation”. Also, this is referenced as Fig 2c-d. This should probably actually 
reference Fig 3c-d. 
• For figure 3G, bars or shading should be placed around each of the two populations to represent 
variance. Variance would provide insight into how stable and distinct the two groups are. What 
cluster analysis was used for the chromatin data? 
• The supplement section “Autoencoder training on chromatin images for validation section” 
references a Figure 3H that does not exist. 
• The dotted line in Figure 4C is not always a suitable “best guess” control. The authors should 



randomly permute class labels and retrain the random forests to get a better null baseline. 
• A simple statistical test comparing the two distributions in Figure 4H should be applied to 
determine significance. 
• Gene names should be italicized. 
• I don’t know what the arrows and gene names represent in Figure 4I. 
• In the methods: “Images were processed and further analyzed using custom programs in Fiji and 
R.” – these custom programs should be provided 
• The authors should specify that they use variational autoencoders instead of just saying 
autoencoders. 
• How were the images in Figure S4 selected? Randomly? Please specify. 
 
This is a signed review. 
 
Gregory Way, Ph.D. 
Postdoctoral Associate 
Imaging Platform 
Broad Institute of MIT and Harvard 
415 Main Street 
Cambridge, MA 02140 
 
 
Reviewer #3 (Remarks to the Author): 
 
In this paper, the authors propose a method for integration of heterogeneous datasets by deep 
learning. The problem that is addressed computationally in this paper is the joint analysis of data 
from different sources: if we acquire data using different techniques (e.g. transcriptomic, genomic 
or image data), they can in most cases not be obtained for the same cellular populations. The idea 
developed in this paper is to use autoencoders to map each of these data sources to a latent space 
and back, which means that we infer the rule according to which data in the latent space relates to 
data in the original space in both directions. The autoencoders can therefore be used to generate 
artificial data that has not been acquired. The authors validate their method on a dataset, where 
two data sources are available (scRNAseq and ATAC-seq) and show an application where they 
translate between scRNAseq and chromatin images. 
 
The paper is well written. It is certainly rather unusual for the readers of Nature Communications, 
but the text is technically sound and the data is convincing. The problem addressed in the paper is 
of high relevance. This kind of approaches is highly controversial and will contribute to an ongoing 
discussion in the field, that usually leads to very emotional reactions: how much can we actually 
predict? Is it still science if we predict measurements instead of taking them? How valid are the 
conclusions that can be drawn from predicted data? To which extend a different training set would 
influence the final conclusions? … 
This paper makes a significant contribution to this important discussion and also introduces an 
interesting piece of methodological work. However, I feel that the authors did not include a proper 
discussion, in particular regarding the limitations of the method. I also would like to see some 
further validation. 
 
1. My first concern is that the method assumes that P_Z is identical for the different modalities. 
Let us assume that cells fall into different categories (different clusters in the latent space), and 
each experiment with different modality is made of various proportions of cells in these categories. 
If I understand correctly, the constraint on P_Z means that you would need identical or at least 
similar proportions of cells in each category to make the method work. Is this realistic? It certainly 
is for the ATACseq / scRNAseq example, because it is the same cellular population, but in general? 
Can the authors give an estimate about the similarity that is required for their method to work? In 
any case, this limitation should be discussed. 
2. Related to this, it is not entirely clear to me what the underlying principle of the data translation 



actually is. On page 3, it becomes clear that the auto-encoder for domain i is trained in such a way 
as to recapitulate the distribution in the latent space induced by domain j. This is basically the 
coupling mechanism between domains (or modalities) without which it would be impossible to 
translate between domains. Let us now assume that for modality 1, we capture a number of 
marker genes (as done here), and in modality 2, we take an unrelated cell measurement (e.g. cell 
cycle). If the proportions are comparable, the network would link the expression of the unrelated 
marker genes to the readout in modality 2 and basically do a completely wrong association. What 
would the authors do to prevent such a behavior? I think the reader needs to understand what 
kind of mappings can be learned, what the underlying principle is and what the limitations of the 
proposed methodology are. 
3. There is a number of papers that actually propose similar strategies, and some of them are 
mentioned in the introduction. I am surprised that there were not more benchmarking results on 
the scRNAseq / ATACseq data set. The authors should include more methods in this benchmark. 
4. On page 4, the authors show first the clustering results they obtain from a number of known 
markers, leading to 2 groups as expected (naive and activated). Then they turn to imaging 
experiments and find also two groups from Figure 3.g. But while they validate their clustering 
approach for the scRNAseq data, they do not the same for the imaging data. And indeed, Figure 
3.f seems not that convincing. There is clearly an overall shift between central vs. peripheral 
chromosome density, but the lower of the two clusters also contains a subcluster that could have 
been assigned to the upper one. An objective method to cluster the image data is required here, 
and the differences in clustering with respect to the final output might also be evaluated. 
5. Related to point 4: not all cellular properties suggest grouping of cells in distinct states: 
migration speed, cell size and many other physical properties are continuous variables. This would 
be also an interesting point to discuss. 
 
Altogether, I find this article interesting, and I vote for publication after revision. 
 
Thomas Walter. 
 
Minor comments: 
1. The authors should also reference the publications [1], [2]. 
2. Figure 2 is not very readable, as the difference between solid lines and dashed lines does not 
appear very clearly in the legend. 
3. I did not understand the impact of the level of supervision. What does it mean in practice that 
the “autoencoder model trained with just 25% supervision … has similar performance to fully 
supervised DCCA” ? What do you get in practice from this improvement? 
4. Page 4, Figure 2c-d is referenced, but it should be Figure 3c-d. 
 
References 
[1] Mayer, I.; Josse, J.; Raimundo, F.; Vert, J.-P. MissDeepCausal: Causal Inference from 
Incomplete Data Using Deep Latent Variable Models. 2020. 
[2] Liu, J.; Huang, Y.; Singh, R.; Vert, J.-P.; Noble, W. S. Jointly Embedding Multiple Single-Cell 
Omics Measurements. In 19th international workshop on algorithms in bioinformatics (WABI 
2019); Huber, K. T., Gusfield, D., Eds.; Leibniz international proceedings in informatics (LIPIcs); 
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik: Dagstuhl, Germany, 2019; Vol. 143, pp 10:1-
10:13. https://doi.org/10.4230/LIPIcs.WABI.2019.10. 



Reviewer #1: Comments and Responses

This paper describes an autoencoder for domain adaptation, which is also similar to the problem
of batch correction. Both of these problems require a alignment of datasets, and has been
characterized by many papers as manifold alignment. Moreover, autoencoders [REF7], and
VAEs [REF5] have been used for this problem several times. Moreover, there is a whole set of
works using cycleGANs [REF7, REF3] for both cross modal data alignment. In addition, there
are approaches that use diffusion geometry and manifold learning methods for this purpose
[REF7] showing results on single cell RNA-seq and ATAC-seq like this manuscript. However,
the authors seem completely unaware of this body of literature, do not cite a single one of these
papers, and don’t compare the methods.

[REF1 ] Liu R, Zou J, and Balsubramani A. Learning Transport Cost From Subset Correspon-
dence. ICLR, 2020

[REF2 ] Makhzani A, Shlens J, Jaitly N, Goodfellow I, Frey B. Adversarial Autoencoders.
arXiv:151105644 [cs]. May 2016

[REF3 ] Amodio M, Krishnaswamy S. MAGAN: Aligning Biological Manifolds. ICML 2018

[REF4 ] Amodio M, Krishnaswamy S. Image-To-Image Translation by Transformation Vector
Learning CVPR 2019

[REF5 ] Lopez et al. Deep generative models for single-cell transcriptomics, Nature Methods
2018

[REF6 ] Stanley et al. Harmonic Alignment, SIAM Data Mining 2020

[REF7 ] Amodio et al. Exploring single-cell data with deep multitasking neural networks. Nature
Methods 2019

[REF8 ] Zhu et al. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial
Networks ICCV 2017

For all of these methods the authors need to formulate comparisons, put their work in context
and describe conceptual differences against. Moreover the authors need to relate their adver-
sarial setup to an adversarial autoencoder [REF2]. One other point to consider is that the
densities may be different in the different modalities. Alignment of geometries over densities is
considered in [REF6]. The only point of impact may be the exact modes that they are aligning,
spatial data with non-spatial sequencing data. Spatial sequencing measurements does require
convolutional layers which also some of the above references use especially [REF8, REF4], but
image feature extraction on single cell data may be different than natural image feature extrac-
tion. This is the point which needs to be explored in great detail which this manuscript does
not do.

We thank the reviewer for these helpful comments and appreciate the related works pointed
out by Reviewer 1. We carefully updated the main text to describe them as well as how they
differ from our method (see below).

We would like to emphasize that a key technical contribution of our method is that we are
performing cross-modal alignment in the latent space rather than in the original data space as
in the referenced methods based on GANs. This has several advantages compared to existing
approaches that perform cross-modal alignment:
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(A) Performing cross-modal alignment in the latent space is scalable to more than two modal-
ities, as shown in Figure 1 in our paper. Additional modalities can be integrated by train-
ing a single autoencoder to align the new modality with the existing ones in the latent
space. Existing methods for cross-modal alignment have limited scalability to multiple
modalities, since a new model must be built to translate between every pair of modalities.

(B) Beyond scalability, performing cross-modal alignment in the latent space enforces a notion
of global consistency between the different modalities, which is missing from existing
methods that consider cross-modal alignments between every pair of modalities. Consider
an application of a CycleGAN-derived model [REF8] to translate between three modalities
(A,B,C) by training three pair-wise models (A ↔ B,B ↔ C,A ↔ C). Note that the
point obtained from directly mapping A → B may differ from the point obtained from
mapping from A → C → B. In practice, this means that biological predictions are
generally not consistent depending on how the cross-modal translations are performed.
On the other hand, our method enforces this type of consistency by construction and can
be used to build a biological model that aligns multiple modalities of data (e.g., images,
RNA-seq, ATAC-seq, etc.) with consistent predictions across modes.

(C) Since our method learns a joint latent space to perform cross-modal alignment, down-
stream data analysis such as clustering can be performed jointly across all of the modali-
ties within the latent space. This is not possible with existing cross-modal methods that
perform alignment directly in the input space.

In terms of comparison to batch correction methods [REF5, REF7], our approach is an extension
to the cross-modal setting. The batch-correction methods enforce alignment in the latent space
between different batches of data, which ensures that analysis of the latent representation of the
data is disentangled from batch-dependent effects. Similarly, our method enforces alignment in
the latent space between different modalities of data. However, the key conceptual difference is
the nature of the transformation, which leads to key methodological differences:

(D) In batch-correction, one assumes that the data structure of the different batches is similar,
such that they can be mapped from the input space to the latent space using similar
transformations. This is naturally enforced by using a common encoder/decoder model
to transform and align all of the samples, with batch identity being input to the model
as an additional variable. However, for cross-modal alignment between very different
modalities (e.g., imaging data and RNA-seq data as considered in our paper) or modalities
with different dimensionality (e.g., RNA-seq and ATAC-seq), the transformations cannot
be assumed to be similar. Therefore, cross-modal alignment requires implementing and
training a separate autoencoder for each data modality.

(E) Since the transformation from the input spaces to the latent space is performed by a
different autoencoder for each data modality, cross-modal alignment requires additional
constraints on the alignment between different modalities. For example, our method pro-
poses additional regularization techniques to constrain the way that the different modali-
ties are mapped to and aligned in the latent space (see the section on “Incorporating prior
knowledge” in our paper).

In the following, we provide a brief summary of each of the prior methods suggested by
Reviewer 1 and underscore the conceptual differences of our method.

• Zhu et al. Unpaired Image-to-Image Translation using Cycle-Consistent Ad-
versarial Networks ICCV 2017. CycleGAN is perhaps the most prominent of unsu-
pervised cross-modal alignment methods. The method trains two translation networks on
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discriminative (GAN) losses to align the translated data with the original data in each
modality and also uses a cycle-consistency loss to ensure that translation between the two
modalities is consistent, i.e., translating a point from domain A → B → A yields the
same original point in domain A. However, this cross-modal translation approach, which
aligns distributions in two input spaces rather than one latent space, is limited compared
to our method as described in (A), (B), and (C) above. Extensions of CycleGAN such
as StarGAN (Choi et al, CVPR 2018) have been proposed for image-to-image translation
between multiple modalities. StarGAN uses a common encoder/decoder model for all of
the modalities, but this approach assumes that the input representations are similar and
bears resemblance to the batch-correction / domain adaptation methods. Thus it differs
from our approach as described in (D), (E) above.

• Amodio M, Krishnaswamy S. MAGAN: Aligning Biological Manifolds. ICML
2018. This paper presents an extension of CycleGAN with additional translation cost to
encourage certain alignments between the data. Similar to CycleGAN, it is still limited
compared to our method as described in (A), (B), (C) above.

• Amodio M, Krishnaswamy S. Image-To-Image Translation by Transformation
Vector Learning CVPR 2019. This method for cross-domain alignment replaces the
cycle-consistency loss of CycleGAN with “vector arithmetic consistency” in a common
latent space as learned by a Siamese network framework. The alignment is performed in
one of the input domains, which subjects it to the same limitations as described in (A),
(B), (C) above. Moreover, the Siamese network framework is specific to image-to-image
translation (e.g., translation between modalities with similar representations).

• Liu R, Zou J, and Balsubramani A. Learning Transport Cost From Subset.
This method for cross-domain alignment is based on Sinkhorn optimal transport, where
side information in the form of paired samples is used to learn the transport cost function.
This method differs fundamentally from our method in that the solution, the transport
plan, is a soft-matching between data points in the two modalities. Since it operates on
pairs of modalities and does not align data in a latent space, this method would still be
subject to the same limitations as described in (A), (B), (C) above.

• Lopez et al. Deep generative models for single-cell transcriptomics, Nature
Methods 2018, and Amodio et al. Exploring single-cell data with deep multi-
tasking neural networks. Nature Methods 2019. These works propose variants of
variational autoencoders and autoencoders respectively for aligning data batches in the
latent space. Lopez et al. aligns batches in the latent space using the variational lower
bound objective of a conditional variational autoencoder, and Amodio et al. aligns batches
in the latent space using maximum mean discrepancy (MMD) loss. Our work differs from
these works as described in (D) and (E) above. Additionally, we use a discriminative
approach to align modalities in the latent space rather than a variational loss or MMD
loss.

• Stanley et al. Harmonic Alignment, SIAM Data Mining 2020. This work uses
diffusion maps to learn the data manifolds and aligns them by considering correlations
between the diffusion coordinates, which is fundamentally different from our deep learning-
based method. This approach is primarily applicable to non-imaging data where the
construction of a diffusion map based on a Gaussian kernel can accurately capture the
data manifold.
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• Makhzani A, Shlens J, Jaitly N, Goodfellow I, Frey B. Adversarial Autoen-
coders. arXiv:151105644 [cs]. May 2016. Similar to our work, Makhzani et al.
propose aligning the latent space of an autoencoder using adversarial training (discrim-
inative loss) for generative modeling, but they do not leverage this technique for data
integration and/or translation. Inspired by their work, our method extends their idea to
perform adversarial training in the latent space for cross-modal data alignment.

With regards to updating the main text, we added [REF6] to our list of references in the
introduction, since this method can be applied to different modalities with the same representa-
tion (i.e., different sequencing measurements) but does not extend to imaging data. In addition,
in the introduction we also added the following sentences describing related work covering the
suggested references [REF1-5, REF7-8]:

“Several works have proposed using autoencoders for domain adaptation (in particular batch
correction) in the context of biological data [16, 17]. Different from these works, our method
uses autoencoders to integrate and translate between different data modalities that may have
very different representations. A separate line of work has proposed using neural networks to
directly translate between pairwise modalities in an unsupervised manner [18, 19] or with side
information [20, 21]. These methods tend to focus on modalities with similar representations
(e.g., image-to-image-translation) and directly translate between pairs of modalities without
learning a common latent representation of the data. In contrast, our work maps each data
distribution to a common latent distribution using an autoencoder. This not only enables data
integration and translation between arbitrary modalities in a globally consistent manner, but,
importantly, it also enables performing downstream analysis such as clustering across multiple
modalities at once. Other work has proposed coupled autoencoders to translate between paired
biological data [22], which differs from our method that does not require paired data. Building
on Makhzani et al. [23], we align the latent space of an autoencoder using adversarial training
and leverage this technique for data integration and/or translation.”
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Reviewer #2 Comments and Responses

Yang et al describe an exciting and novel approach to integrate single-cell imaging and gene
expression data. The primary innovation is the autoencoder training procedure and the new
loss functions to incorporate markers shared among datasets (discriminative loss) and paired
sample groups (anchor loss). The authors first benchmark their model in a paired gene ex-
pression and ATACseq dataset. They observe that their approach outperforms deep canonical
correlation analysis based on two evaluation metrics. Next, the authors apply their approach
to a dataset with gene expression and DAPI image measurements. The authors demonstrate,
through a series of anecdotes based on independent clustering, that DAPI images and gene
expression data share common signal. Overall, the manuscript is very interesting and timely,
but I have several major and minor concerns that if addressed, will improve the manuscript.

We thank the reviewer for these positive comments.

Major Concerns
• There are several reporting and methodology concerns that I elaborate on in the minor

concerns below. Individually, each of these concerns are mostly minor, but taken together, the
many incomplete methods and reporting causes a major concern.

We thank the reviewer for the constructive comments. Below, we provide a point-by-point
response to each comment.

The authors need to expand their discussion. An emphasis on limitations of their approach
should be a primary focus.

We have expanded our discussion with the following paragraph, which addresses several of
the reviewer’s questions below and clarifies the limitation of the method / how we envision
it being used: “While we used our method to align RNA-seq and imaging datasets, we have
presented a general framework that can be adapted to numerous other biological problems. As
indicated in Figure 1, our framework can be used to integrate datasets of different modalities
simply by incorporating autoencoder architectures tailored to those modalities. For example,
Hi-C data could be integrated using a graph neural network and multi-channel cell images us-
ing a convolutional neural network with different input channels. Also, while we focused on
aligning datasets each containing two distinct clusters, our method can be applied to datasets
with other distributions as long as the samples are taken from the same cell population. For
example, in applications where there are no clear clusters in the datasets, our method can be
used to align continuous markers between datasets by conditioning the adversarial loss on the
values of the continuous marker (Equation 3). In applications where there is some shared sig-
nal between modalities as well as signal that is individual to each modality, our model can be
extended by introducing a subset of latent dimensions that is specific to each modality. An
important consideration, however, is that while our method can be applied for data integration
and cross-modal alignment in generic contexts, depending on the data distributions, there may
be multiple alignments that satisfy the same objective function. Additional constraints (in the
form of prior knowledge) should be added to these models where possible to enforce alignments
that are biologically accurate. Overall, we envision an iterative process of biological discovery
where our predictive model is used for hypothesis generation, the hypotheses are validated (or
disproved) experimentally, and the new experimental results now serve as additional data (prior
knowledge) for improving the alignment of the model.”
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Figure 1: Example of cross-modal alignment between RNA-seq and ChIP-seq data of mouse
embryonic stem cells (Figure 7 from our earlier non-archival workshop paper [27]

In the main experiment, the authors used a nice dataset that appears to have clean sepa-
rations between two groups in both imaging and expression data modalities. What happens to
their approach in the much more common scenario where there are no clear groupings or even
if there are different numbers of groups between different data modalities?

While we used our method to align RNA-seq and imaging datasets with two distinct clus-
ters, we have presented a general framework that can be adapted to numerous other biological
problems as long as the different datasets are sampled from the same underlying distribution. In
applications where there are no clear clusters between the datasets, one could align continuous
markers between datasets by conditioning the adversarial loss on continuous marker values; see
what is now Equation 3 in the main text. We have clarified this point in the methods section,
under the discriminative loss subsection by adding the following sentences: “This approach is
valid for both discrete and continuous values of the cluster/marker y. For example, in [27], this
approach was used to align a continuous differentiation marker between RNA-seq and ChIP-seq
data.” To further illustrate this point, Figure 1 above (copied from our earlier non-archival
workshop paper [27]) shows the example of aligning a continuous marker (in this case a dif-
ferentiation marker) between RNA-seq and ChIP-seq data from mouse embryonic stem cells
using our approach, where there are no clear clusters in either modality. This use case of our
method is now also addressed in the discussion section of the revised manuscript as follows:
“Also, while we focused on aligning datasets each containing two distinct clusters, our method
can be applied to datasets with other distributions as long as the samples are taken from the
same cell population. For example, in applications where there are no clear clusters between the
datasets, our method can be used to align continuous markers between datasets by conditioning
the adversarial loss on the values of the continuous marker (Equation 3).”

What about more complicated imaging assays beyond DAPI staining?

Our method can be applied to more complicated imaging assays by introducing an au-
toencoder architecture that is tailored to that particular data representation. For example, a
multi-channel cell image can be captured using a convolutional neural network with the same
number of channels in its first layer of convolutional filters. In the revised manuscript we
clarified this point in the discussion section as described in the added paragraph above: “For
example, Hi-C data could be integrated using a graph neural network and multi-channel cell
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images using a convolutional neural network with different input channels.”

How do the authors propose to use their method to make biological discoveries?

We thank the reviewer for this helpful question. We envision an iterative process of bio-
logical discovery, where our predictive model is used for hypothesis generation, the hypotheses
are validated (or disproved) experimentally, and the new experimental results now serve as
additional data (prior knowledge) for improving the alignment of the model. We have added
the following sentences to the discussion as described above to address this question: “An im-
portant consideration, however, is that while our method can be applied for data integration
and cross-modal alignment in generic contexts, depending on the data distributions, there may
be multiple alignments that satisfy the same objective function. Additional constraints (in the
form of prior knowledge) should be added to these models where possible to enforce alignments
that are biologically accurate. Overall, we envision an iterative process of biological discovery
where our predictive model is used for hypothesis generation, the hypotheses are validated (or
disproved) experimentally, and the new experimental results now serve as additional data (prior
knowledge) for improving the alignment of the model.”

Don’t we expect certain signal to be unique to each modality? How can we use this approach
to determine which signals are unique?

While we assumed in this particular instance that the distributions of the two datasets are
the same, the method can also be applied to the case where there is a shared subset of latent di-
mensions between modalities and a subset of latent dimensions that is specific to each modality.
We have clarified this in the section describing the model as follows: “Note that the assumption
that each Xi is obtained via a deterministic function of Z implies that the latent distribution
of each dataset is the same. However, by including the noise variables Ni as in Equation (1),
our method extends to the case where only a subset of latent dimensions is shared between the
different modalities and the remaining dimensions are specific to each modality.” To further
emphaisze this point, the following sentence has also been added to the discussion as mentioned
above: “In applications where there is some shared signal between modalities as well as signal
that is individual to each modality, our model can be extended by introducing a subset of latent
dimensions that is specific to each modality. ”

• The authors include a training and testing set in the ATACseq + gene expression appli-
cation. It is not clear if the authors use a holdout test set in the image-expression translation
evaluation. The authors note “We held out 10% of the data as test data and trained until the
reconstruction loss on the test data was smaller than 10-3”. This is not a true holdout set.
Also, the authors do not note if their evaluations are based on the full dataset used for training.

In the revised manuscript, we have now clarified this as follows: “Consistent with other
methods used for data integration and translation in the biological domain, where the goal is
to provide a matching between samples in the observed datasets [12], our evaluation is based
on the full dataset used for training rather than a held-out evaluation set.”

Minor Concerns
• Some sentences convey more confidence than the results warrant. For example, a sentence

in the second paragraph of the introduction states: “In particular, our framework can be ap-
plied to integrate and translate imaging and sequencing data, which cannot yet be obtained
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experimentally in the same cell, thereby providing a methodology to predict the genome-wide
expression profile of a particular cell given its chromatin organization and vice-versa”. A sci-
entist unfamiliar to this approach and the particular challenge may interpret the proposed
approach to be error-free.

In the revised manuscript, we reworded the sentence to emphasize hypothesis generation:
“In particular, our framework can be applied to integrate and translate imaging and sequenc-
ing data, which cannot yet be obtained experimentally in the same cell, thereby providing a
methodology for hypothesis generation to predict the genome-wide expression profile of a par-
ticular cell given its chromatin organization and vice-versa.”

• For the paired RNAseq/ATACseq approach, the authors must provide the data referenced
in the supplementary materials and methods: “we acquired a transcription factor (TF) motif
by cells matrix from the authors”.

We now provide this data as supplementary Data S1: ”Data S1: Transcription factor motif
by cells matrix for ATAC-seq data from A549 cells.”

• The authors should provide rationale for why they chose model parameters and model
architecture. A specific comment on why they selected a latent dimensionality of 50 would be
helpful.

We thank the reviewer for this helpful comment. In the revised manuscript, we added the
following sentences to address this point: “In practice, the model architecture of each autoen-
coder is selected based on the input data representation (e.g., fully-connected network for gene
expression data and convolutional network for images). The dimensionality of the latent distri-
bution is a hyperparameter that is tuned to ensure that the autoencoders are able to reconstruct
the respective data modalities well. For sequencing data, PCA can be used to obtain an initial
estimate of the intrinsic dimensionality of the data, which can then be fine-tuned by analyzing
the reconstruction loss of the model. For imaging data the reconstruction quality can also be
assessed qualitatively (see Figure S5) and a variational autoencoder with a small weight on the
KL-divergence regularization term can be used to improve image generation quality.”

• The authors vary the “level of supervision” in figure 2. This is an extremely important
point that should be both defined more clearly and highlighted more in the text. A big strength
of the authors’ approach is that “supervision” is not needed. Also, based on my understanding,
“supervision” refers to having matched cells. Traditionally, “supervision” would more likely re-
fer to a “supervised” learning algorithm, which this is not. Also, I understand how “supervision”
is toggled for the autoencoder approach (anchor loss) but it is not clear how the “supervision”
is varied for DCCA. Also, if DCCA supervision 0% is performed after 100 random samplings of
the same label, shouldn’t figure 2A have error bars?

We thank the reviewer for this comment. Indeed, we used the term “supervision” to refer
to the availability of matched data points, a type of prior knowledge. As per the reviewer’s
comment on the traditional use of the word “supervision”, we replaced this term by “paired
samples/cells/data”. In the section on ”Incorporating prior knowledge”, we define two types of
prior knowledge: (a) using shared markers/clusters, and (b) anchor loss (knowing which data
points are paired with each other). On paired RNA-seq and ATAC-seq samples we used the
anchor loss to ensure that matching data points are close to each other in the latent space. To
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better explain these points, we added the following sentences in the main text: “While paired
data was only used to evaluate the accuracy in Fig. 2a-b, Fig. 2c-e explore the setting in which
paired data on a fraction of samples is used for training. Although paired data is not neces-
sary for our method, such prior knowledge can be incorporated using the anchor loss described
above, which ensures that paired samples are close in the latent space. Fig. 2c-d show that our
autoencoder model outperforms DCCA when trained on varying amounts of paired data. In
fact, as shown in Fig. 2e, our autoencoder model trained with just 25% of the paired samples
has similar performance to DCCA trained on all (i.e. 100%) of the paired samples, thereby
indicating that our method is practical and competitive also in the setting where some paired
data is available.” In addition, in SI Appendix, Materials and Methods, we write: “For both
our cross-modal autoencoder method and DCCA, we explored the use of samples whose pairing
is known between the two domains (i.e., anchored cells in both datasets), which is available
in some applications. To make use of the pairing information in our cross-modal autoencoder
model, we included an additional term in the loss function corresponding to the mean absolute
error between the paired training points in the latent space.”

We clarified the question regarding what DCCA with 0% supervision means in SI Appendix,
Materials and Methods, as follows: “While our method based on autoencoders does not require
paired samples, DCCA does. In order to train DCCA with 0% paired samples, we randomly
generated paired samples using the treatment time labels of the cells as follows. For each point
with a particular treatment time label, we sampled 100 random points with the same label to
use as its paired samples.” Since all the artificial pairings were used for training, we obtained
a single performance number and thus do not have error bars in Figure 2a.

• It appears that the authors include their processed gene expression matrix for the näıve
CD4+ T cell analysis in their supplementary code. This is great! Please confirm this and also
add access details in the supplementary methods.

In the original submission, we had included the differential expression analysis results in SI
Appendix. In the revised submission, we now include also the processed gene expression ma-
trix as part of Data S2. We updated the description of Data S2 (previously Data S1) accordingly:

”Data S2: Cluster label assignments based on single-cell RNA-seq for PBMC cells. Cluster
label assignment for naive CD4+ T-cells based on single-cell RNA-seq. Differential expression of
genes between quiescent and poised naive CD4+ T-cells. Gene expression matrix corresponding
to naive CD4+ T-cells.”

• The co-association matrix (fig 3b) demonstrates consensus across clustering methods.
Which methods? How many iterations? I do not see if this is ever defined.

The procedure for obtaining the co-association matrix was described in the ”Gene expression
analysis of naive CD4+ T-cells” section in the Methods section; namely:

”To test the robustness with respect to different clustering methodologies, we also used k-
means, Gaussian mixture models and spectral clustering based on a k-nearest neighbor graph
with k ∈ {10, 20, 50, 100} to cluster the data. We performed 100 different initializations for each
method and computed the co-association matrix, which quantifies how often each pair of cells
was clustered together; the result is shown in Fig. 3b.”

In order to make these methodological details easier to find, in the revised manuscript we
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added them also to the caption of Fig. 3b as follows: ”Gene expression data was clustered using
k-means, Gaussian mixture models and spectral clustering based on a k-nearest neighbor graph
with k ∈ {10, 20, 50, 100} with 100 initializations for each method.”

• More methodological details are required for this statement: “Differential gene expression
and GO enrichment analysis indicated that one cluster corresponded to quiescent cells while
the other was poised for activation”. Also, this is referenced as Fig 2c-d. This should probably
actually reference Fig 3c-d.

We thank the reviewer for this comment; we have now included a more detailed discussion
of this in the paper as follows: “Specifically, we observed that one of the two clusters of naive
CD4+ T-cells contained ”immune response” and ”cell activation” as one of the top significant
GO terms as well as a well-known activation marker IL32 as one of the differentially expressed
genes.”

We also fixed the references to the figures; thanks for noticing this.

• For figure 3G, bars or shading should be placed around each of the two populations to
represent variance. Variance would provide insight into how stable and distinct the two groups
are.

Good suggestion; we now provide a plot that includes standard deviation shading (Figure 3g
in the revised manuscript and Figure 2 below). We updated the figure caption of Figure 3g
accordingly by adding ”(standard deviation represented by shading)”.

Figure 2: Updated plot of average chromatin signal in concentric spheres with increasing radii
for central (green) and peripheral (blue) clusters with shading showing the standard deviation.

What cluster analysis was used for the chromatin data?

We thank the reviewer for this question. The chromatin data was clustered using hierarchi-
cal clustering with complete linkage based on the distance matrix obtained from 1- Spearman’s
correlation. This has been clarified in the caption of Figure 3g as follows: “The features were
clustered using hierarchical clustering with complete linkage based on the distance matrix ob-
tained from 1-Spearman’s correlation. ”

• The supplement section “Autoencoder training on chromatin images for validation sec-
tion” references a Figure 3H that does not exist.
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The reference should have been to Fig. 4h. Thanks for pointing this out; we fixed this
accordingly.

• The dotted line in Figure 4C is not always a suitable “best guess” control. The authors
should randomly permute class labels and retrain the random forests to get a better null baseline.

We did not mean for the dotted line to be a competitive baseline. We meant for it to rep-
resent a random guess based on evenly-distributed classes. This has been clarified in the figure
caption by adding: “The dotted line represents random guessing based on evenly-distributed
classes.”

• A simple statistical test comparing the two distributions in Figure 4H should be applied
to determine significance.

Using two-sided Welch’s t-test for difference in means gives a p-value < 2.2 × 10−16. We
have added this p-value to the caption in Figure 4h.

• Gene names should be italicized.

Thank you for pointing this out; we fixed this accordingly.

• I don’t know what the arrows and gene names represent in Figure 4I (upregulated / down-
regulated).

The arrows represent which genes are upregulated and which are downregulated as predicted
by our model. We have clarified this in the caption of Figure 4i: “The up and down arrows rep-
resent which genes are upregulated and downregulated respectively as predicted by our model.”

• In the methods: “Images were processed and further analyzed using custom programs in
Fiji and R.” – these custom programs should be provided

We have added the location of these programs in the section Data and code availability;
namely: “The primary images and code are available at

https://github.com/uhlerlab/cross-modal-autoencoders.”

• The authors should specify that they use variational autoencoders instead of just saying
autoencoders.

We would like to clarify that our method is not strictly based on variational autoencoders.
For example, the RNA-seq and ATAC-seq experiment uses regular autoencoders. As per the
model section, the main objectives of the autoencoder training are (1) reconstruction loss and (2)
discriminative loss between latent distribution and target latent distribution. Thus our choice
of autoencoder regularization is more similar to that of adversarial autoencoders (Makhzani et
al., 2015) than variational autoencoders. For the RNA-seq and image experiment, we use vari-
ational autoencoders with a very small weight on the KL divergence regularization term (i.e.,
10−8) to improve image generation quality. This has now been clarified in the text describing
our model as follows: “For imaging data the reconstruction quality can also be assessed qualita-
tively (see Figure S5) and a variational autoencoder with a small weight on the KL-divergence
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regularization term can be used to improve image generation quality.”

• How were the images in Figure S4 selected? Randomly? Please specify.

The images were selected randomly. In the revised manuscript, we updated the caption of
Figure S4 (now Figure S5) to clarify this point by adding: “Images were selected randomly.”

This is a signed review. Gregory Way, Ph.D. Postdoctoral Associate Imaging Platform
Broad Institute of MIT and Harvard 415 Main Street Cambridge, MA 02140
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Reviewer #3 Comments and Responses

In this paper, the authors propose a method for integration of heterogeneous datasets by deep
learning. The problem that is addressed computationally in this paper is the joint analysis of
data from different sources: if we acquire data using different techniques (e.g. transcriptomic,
genomic or image data), they can in most cases not be obtained for the same cellular populations.
The idea developed in this paper is to use autoencoders to map each of these data sources to a
latent space and back, which means that we infer the rule according to which data in the latent
space relates to data in the original space in both directions. The autoencoders can therefore be
used to generate artificial data that has not been acquired. The authors validate their method
on a dataset, where two data sources are available (scRNAseq and ATAC-seq) and show an
application where they translate between scRNAseq and chromatin images.

The paper is well written. It is certainly rather unusual for the readers of Nature Commu-
nications, but the text is technically sound and the data is convincing. The problem addressed
in the paper is of high relevance. This kind of approaches is highly controversial and will con-
tribute to an ongoing discussion in the field, that usually leads to very emotional reactions:
how much can we actually predict? Is it still science if we predict measurements instead of
taking them? How valid are the conclusions that can be drawn from predicted data? To which
extend a different training set would influence the final conclusions? . . . This paper makes
a significant contribution to this important discussion and also introduces an interesting piece
of methodological work. However, I feel that the authors did not include a proper discussion,
in particular regarding the limitations of the method. I also would like to see some further
validation.

We thank the reviewer for the positive and constructive comments.

1. My first concern is that the method assumes that PZ is identical for the different modali-
ties. Let us assume that cells fall into different categories (different clusters in the latent space),
and each experiment with different modality is made of various proportions of cells in these cat-
egories. If I understand correctly, the constraint on PZ means that you would need identical or
at least similar proportions of cells in each category to make the method work. Is this realistic?
It certainly is for the ATACseq / scRNAseq example, because it is the same cellular population,
but in general? Can the authors give an estimate about the similarity that is required for their
method to work? In any case, this limitation should be discussed.

Our method assumes that the datasets are collected from the same (or similar) cell popu-
lations, such that the underlying latent distributions of the datasets are the same. This is a
realistic assumption for many applications – for example, it is common for cell samples to be
collected from the same tissue and then separated for different downstream experiments and
analysis. The method could also be adapted to the case where there are some signals that are
shared between data modalities and other signals that are distinct. This could for example
be implemented using a subset of latent dimensions that are shared between modalities and
the remaining latent dimensions be specific to each modality. In the revised manuscript, we
clarified this point as follows in the section describing our model: “Note that the assumption
that each Xi is obtained via a deterministic function of Z implies that the latent distribution
of each dataset is the same. However, by including the noise variables Ni as in Equation (1),
our method extends to the case where only a subset of latent dimensions is shared between the
different modalities and the remaining dimensions are specific to each modality.”
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2. Related to this, it is not entirely clear to me what the underlying principle of the data
translation actually is. On page 3, it becomes clear that the auto-encoder for domain i is trained
in such a way as to recapitulate the distribution in the latent space induced by domain j. This
is basically the coupling mechanism between domains (or modalities) without which it would be
impossible to translate between domains. Let us now assume that for modality 1, we capture a
number of marker genes (as done here), and in modality 2, we take an unrelated cell measure-
ment (e.g. cell cycle). If the proportions are comparable, the network would link the expression
of the unrelated marker genes to the readout in modality 2 and basically do a completely wrong
association. What would the authors do to prevent such a behavior? I think the reader needs
to understand what kind of mappings can be learned, what the underlying principle is and what
the limitations of the proposed methodology are.

We thank the reviewer for this comment. The main assumption required for our method
is that the different datasets present separate “views” of the same underlying latent variables.
We agree with the reviewer that arbitrary and incorrect mappings can be learned, which is
why it is important to include prior knowledge if possible, e.g., using a disciminative loss to
align common markers/clusters. We have added the following paragraph to the discussion sec-
tion clarifying the limitations of our approach as well as providing possible extensions to our
approach: “While we used our method to align RNA-seq and imaging datasets, we have pre-
sented a general framework that can be adapted to numerous other biological problems. As
indicated in Figure 1, our framework can be used to integrate datasets of different modalities
simply by incorporating autoencoder architectures tailored to those modalities. For example,
Hi-C data could be integrated using a graph neural network and multi-channel cell images us-
ing a convolutional neural network with different input channels. Also, while we focused on
aligning datasets each containing two distinct clusters, our method can be applied to datasets
with other distributions as long as the samples are taken from the same cell population. For
example, in applications where there are no clear clusters in the datasets, our method can be
used to align continuous markers between datasets by conditioning the adversarial loss on the
values of the continuous marker (Equation 3). In applications where there is some shared sig-
nal between modalities as well as signal that is individual to each modality, our model can be
extended by introducing a subset of latent dimensions that is specific to each modality. An
important consideration, however, is that while our method can be applied for data integration
and cross-modal alignment in generic contexts, depending on the data distributions, there may
be multiple alignments that satisfy the same objective function. Additional constraints (in the
form of prior knowledge) should be added to these models where possible to enforce alignments
that are biologically accurate. Overall, we envision an iterative process of biological discovery
where our predictive model is used for hypothesis generation, the hypotheses are validated (or
disproved) experimentally, and the new experimental results now serve as additional data (prior
knowledge) for improving the alignment of the model.”

While we used a disciminative loss to align common clusters in RNA-seq and imaging
datasets, our framework can be adapted also when no clear clusters between the datasets are
available. As pointed out in the revised discussion section above, this can be achieved by align-
ing continuous markers between datasets by conditioning the adversarial loss on the values of
the continuous marker. To further illustrate this point, Figure 1 above (copied from our earlier
non-archival workshop paper [27]) shows the example of aligning a continuous marker (in this
case a differentiation marker) between RNA-seq and ChIP-seq data from mouse embryonic stem
cells using our approach, where there are no clear clusters in either modality.
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3. There is a number of papers that actually propose similar strategies, and some of them
are mentioned in the introduction. I am surprised that there were not more benchmarking
results on the scRNAseq / ATACseq data set. The authors should include more methods in
this benchmark.

We thank the reviewer for this comment. In the revised manuscript, we now include addi-
tional benchmarking results on the scRNAseq / ATACseq data set. Namely, we compare our
method to the (or one of the) most widely used methods for data integration “Seurat”. Briefly,
this method assumes that the features across different modalities are the same and learns a
shared embedding using canonical correlation analysis (CCA). The results of this additional
benchmarking experiment are shown below in Figure 3 (in Figure 2 in the revised manuscript)
along with the following brief description: ”In Fig. 2, we compare our cross-modal autoencoder
framework to deep canonical correlation analysis (DCCA) [29], which determines a nonlinear
transformation of the two datasets to maximize the correlation of the resulting representations,
as well as to Seurat, a prominent method for biological data intergration of similar modali-
ties [9,12]. Our autoencoder framework outperforms Seurat and is competitive with DCCA for
integrating single-cell RNA-seq and single-cell ATAC-seq data both in terms of fraction of cells
assigned to the correct cluster (Fig. 2a) as well as k-nearest neighbor accuracy (Fig. 2b).”

We also added the following accompanying text in SI Materials and Methods to describe this
comparison and how we implemented Seurat: “We additionally compared our method against
a popular method for data integration, Seurat [3,4]. Briefly, this method assumes that the fea-
tures across different modalities are the same and learns a shared embedding using CCA based
on this assumption. In order to apply Seurat to this particular dataset, we used the Seurat
pipeline as follows: In order to obtain from ATAC-seq data a matrix that has the same features
as the gene expression matrix, the ATAC-seq data was transformed into a gene activity matrix
using the CreateGeneActivityMatrix function. We normalized and scaled the data using the
NormalizeData and ScaleData functions. Finally, a shared CCA embedding was learned using
the FindTransferAnchors functionality. Similar to our cross-modal autoencoder and DCCA, we

Figure 3: Comparison of our cross-modal autoencoder model, DCCA, and Seurat, a popular
method for data integration.
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used the inferred CCA embedding to quantify the method’s performance. Note that Seurat
was fit using both training and test data, thereby giving Seurat an advantage over the other
methods.”

4. On page 4, the authors show first the clustering results they obtain from a number of
known markers, leading to 2 groups as expected (naive and activated). Then they turn to
imaging experiments and find also two groups from Figure 3.g. But while they validate their
clustering approach for the scRNAseq data, they do not the same for the imaging data. And
indeed, Figure 3.f seems not that convincing. There is clearly an overall shift between central
vs. peripheral chromosome density, but the lower of the two clusters also contains a subcluster
that could have been assigned to the upper one. An objective method to cluster the image data
is required here, and the differences in clustering with respect to the final output might also be
evaluated.

We thank the reviewer for this helpful comment. To address this, we provided a careful

(a) (b)

(c) (d)

Figure 4: New supplementary figure for clustering of T-cell imagining data. This figure indicates
that two clusters is an appropriate choice for the analysis using (a) average silhouette width,
(b) gap statistic, (c) total within-cluster sum of square. (d) Alternative clustering using 1 -
Pearson’s correlation matrix with average linkage. Green and blue colors represent original
cluster labels.
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analysis of number of clusters and robustness with respect to clustering methods. The results
are provided above in Figure 4. We also added this figure in the revised supplement as Fig. S4.
Using a variety of ways to evaluate the optimal number of clusters (average silhouette width,
gap statistic and total within-cluster sum of square) all suggest that our dataset contains 2
clusters (see figures (a)-(c)). For clustering the imaging data we used hierarchical clustering
with complete linkage based on 1-Spearman’s correlation to obtain the distance matrix. We
chose this distance metric in order to avoid potential batch effects between samples. In order
to test whether the results are robust to the choice of this metric, we redid the analysis using
1 - Pearson’s correlation and we used average linkage instead of complete linkage. As shown in
figure (d), this alternative clustering method gives similar results.

5. Related to point 4: not all cellular properties suggest grouping of cells in distinct states:
migration speed, cell size and many other physical properties are continuous variables. This
would be also an interesting point to discuss. (continuous markers)

While we used our method to align RNA-seq and imaging datasets with two distinct clus-
ters, we have presented a general framework that can be adapted to numerous other biological
problems as long as the different datasets are sampled from the same underlying distribution.
In applications where there are no clear clusters between the datasets, one can align continuous
markers between datasets by conditioning the adversarial loss on continuous marker values; see
what is now Equation (3) in the main text. We have clarified this point in the methods section,
under the discriminative loss subsection by adding the following sentences: “This approach is
valid for both discrete and continuous values of the cluster/marker y. For example, in [27], this
approach was used to align a continuous differentiation marker between RNA-seq and ChIP-seq
data.” To further illustrate this point, Figure 1 (copied from our earlier non-archival workshop
paper [27]) shows an example, where a continuous marker (in this case a differentiation marker)
was used to align RNA-seq and ChIP-seq data from mouse embryonic stem cells using our ap-
proach, where there are no clear clusters in either modality. We would be happy to include this
example as additional validation as a supplementary figure.

Altogether, I find this article interesting, and I vote for publication after revision.
Thomas Walter.

Minor comments: 1. The authors should also reference the publications [1], [2].

Thanks for the suggestions. We have added [2] to our introduction and references. We feel
that [1] is beyond the scope of our work; however, we would be happy to add it to our references
if the reviewer could clarify its relation to our work.

2. Figure 2 is not very readable, as the difference between solid lines and dashed lines does
not appear very clearly in the legend.

In the revised manuscript, we replaced Figure 2 in the main text with a new version to
improve readability (by adding different marker types in addition to dashed lines). We included
it below in Figure 5 for your reference.

3. I did not understand the impact of the level of supervision. What does it mean in practice
that the “autoencoder model trained with just 25% supervision . . . has similar performance to
fully supervised DCCA” ? What do you get in practice from this improvement?
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ED

Figure 5: Figure 2 with improved readability.

While in this particular application of integrating RNA-seq and ATAC-seq data, paired data
for all samples is available, in other settings only some paired data might be available and much
more unpaired data might be available (e.g. only some cells have both RNA-seq and ATAC-seq
measured in the same cell). We wanted to understand the performance of our model in this
setting. For example, our autoencoder model trained with 25% supervision considers the case
where 25% of the cells in the dataset have paired information (e.g. ATAC-seq and RNA-seq
collected in the same cell), while the remaining 75% of cells do not have such paired information.
In Figure 2e we analyzed how much paired data our autoencoder framework would require in
order to match the performance of DCCA trained using 100% paired data, showing that just
25% suffices. Thus our method is practical and competitive in settings where only partial paired
data is available. We clarified this point in the main text as follows:

“While paired data was only used to evaluate the accuracy in Fig. 2a-b, Fig. 2c-e explore the
setting in which paired data on a fraction of samples is used for training. Although paired data
is not necessary for our method, such prior knowledge can be incorporated using the anchor loss
described above, which ensures that paired samples are close in the latent space. [...] In fact, as
shown in Fig. 2e, our autoencoder model trained with just 25% of the paired samples has similar
performance to DCCA trained on all (i.e. 100%) of the paired samples, thereby indicating that
our method is practical and competitive also in the setting where some paired data is available.”

4. Page 4, Figure 2c-d is referenced, but it should be Figure 3c-d.

Thank you, we fixed this accordingly.
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REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
Thank you for clearing up and improving the placement of your work within the broader literature. 
However, while the differences between your method and previous domain alignment techniques is 
conceptually established, the authors have not added any comparisons with other similar domain 
alignment techniques. Comparison to methods that do not work in the latent space would be 
useful in showing in what data the benefits of alignment in the latent space outweighs its 
limitations. 
Since the two main validation experiments are done between two domains, comparisons to 
methods that operate in the data space are necessary to answer the question of whether 
alignment in the latent space is necessary or useful for fewer than 3 modalities. 
The authors also did not address how the feature extraction priors affects the integration. For 
example, does a 3-layer convolutional encoder embed the same as a 3-layer dense encoder? Does 
using a 2-layer convolutional encoder change this? Alignment in the latent space has some 
conceptual benefits, but robustness of the integration to the encoder architecture seems like a 
crucial component in this framework, but this cannot be assessed without additional experiments 
and detail. 
Reviewer #3 also brought up lack of benchmarking against similar methods. The addition of a 
Seurat comparison is certainly useful, it further emphasizes the lack of comparison to more 
comparable neural network based methods of alignment. 
 
 
Reviewer #2 (Remarks to the Author): 
 
The authors have adequately addressed most of the concerns I raised in the first round, and have 
improved the benchmarks, readability, and placement of the paper in the larger body of existing, 
similar literature. This paper presents an important contribution to the field. Thank you! 
 
I do have a few additional comments to address. In order of importance: 
 
1. GitHub Management: The addition of the GitHub resource is great to see. I also noticed that in 
the cross-modal-autoencoders repository, there is a link to preprocessing scripts at 
https://github.com/SaradhaVenkatachalapathy/Radial_chromatin_packing_immune_cells. This 
secondary repository should also be referenced in the manuscript. Additionally, both resources 
should be given an appropriate, open source license so that others can be instructed on how best 
to attribute and build off of the software this work has produced. Lastly, I strongly urge that these 
GitHub repositories be archived using an independent secondary service (e.g. Zenodo). Archival of 
the software provides an even stronger link to reproducibility in perpetuity. 
2. Adding the usage note: “an iterative process of biological discovery where our predictive model 
is used for hypothesis generation” is quite vague. Presumably there could be hundreds of 
thousands of hypotheses that could be tested. What classes of hypotheses do the authors 
propose? Is it possible to provide a specific example about what the authors envision? 
3. The authors discuss, but do not test, the addition of single-modality-specific latent features (Ni) 
to overcome the concern regarding single-modality-specific information. Is this indeed the case? If 
so, the authors should note that this feature of the architecture was not thoroughly vetted. 
4. The method details for the differential gene expression / Gene Ontology enrichment analyses 
are still lacking. Specifically, what GO software was used? What was the gene background used to 
determine GO enrichment? Was all of GO included or only a subset? What method was used and 
what was the cutoff in determining differential expression? 
 
This is a signed review. Gregory Way, Ph.D. Postdoctoral Associate Imaging Platform Broad 
Institute of MIT and Harvard 415 Main Street Cambridge, MA 02140 
 



 
 
Reviewer #3 (Remarks to the Author): 
 
The authors have addressed all the issues that I raised in my first review. In particular, they 
discuss conditions and limitations of the presented method, which will be very valuable for the 
scientific community. I therefore believe that this paper is going to make a fine contribution to the 
field. 



Reviewer #1: Comments and Responses

Thank you for clearing up and improving the placement of your work within the broader lit-
erature. However, while the differences between your method and previous domain alignment
techniques is conceptually established, the authors have not added any comparisons with other
similar domain alignment techniques. Comparison to methods that do not work in the latent
space would be useful in showing in what data the benefits of alignment in the latent space
outweighs its limitations. Since the two main validation experiments are done between two
domains, comparisons to methods that operate in the data space are necessary to answer the
question of whether alignment in the latent space is necessary or useful for fewer than 3 modal-
ities.

We thank the reviewer for the detailed comments on our work.

We further extended our computational performance comparison of prior work to include
work that does not rely on a latent space. In particular, we now quantify the performance of
CycleGAN, a prominent method for domain translation, which ensures that source samples are
recovered back after mapping source samples to target domain and back to the source domain,
and MAGAN, which is an extension of CycleGAN that additionally makes use of correspon-
dences between domains. Both of these methods do not align the modalities in the latent space.
We note that an advantage of learning a common latent space between modalities is that it
enables clustering of cells in the common latent space as opposed to based on each modality
(each modalitiy may give a different clustering), which is often of interest to biologists who want
to characterize cells into cell types based on the measured modalities. Fig. 1 below (respec-
tively Fig. 2b,d in the revised main text) shows that our method outperforms CycleGAN and
MAGAN. In particular, Fig. 1a compares models that do not use any correspondences (samples
known to be paired) between the modalities (i.e., 0% supervision). Since MAGAN requires
some correspondences for training (otherwise it corresponds to CycleCAN), it is not included
in Fig. 1a. Fig. 1b compares our cross-modal autoencoder to other models (DCCA, CycleGAN,
MAGAN) with varying amount of supervision (samples that are known to be paired) from 0%
to 100% supervision. Note that MAGAN with 0% supervision corresponds to the CycleGAN
model.

We also remark that we trained the same architecture that we used for our Image+RNA-seq
model with the CycleGAN losses. However, this model did not produce realistic and diverse
cell images after 2000 epochs, for various choices of hyper-parameters. This indicates that, in
addition to the advantages of using a latent space described above, our cross-modal alignment
approach based on aligning modalities using a single discriminator in a lower-dimensional latent
space also provides additional stability and regularization for small biological imaging datasets
compared to cross-modal alignment methods that operate using two discriminators in higher-
dimensional input spaces.

We added the following accompanying text in SI Materials and Methods to describe the com-
parison with CycleGAN, MAGAN and our implementation on the paired RNA-seq and ATAC-
seq data: ”Finally, we compared our method against CycleGAN [5], a prominent deep learning
method for domain translation, which ensures that source samples are recovered back after map-
ping source samples to target domain and back to the source domain. We used the code provided
by the authors of CycleGAN at http://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
to translate ATAC-seq to RNA-seq and RNA-seq to ATAC-seq. We modified the architecture of
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Figure 1: Comparison of our cross-modal autoencoder model, DCCA, Seurat, CycleGAN and
MAGAN. (a) k-nearest neighbor accuracy for models trained on data with 0% supervision
(paired samples). (b) k-nearest neighbor accuracy for models trained on data with 0-100%
supervision.

the generator and discriminator networks to handle non-image data and match the architecture
of our cross-modal autoencoder. In particular, the generator for translating ATAC-seq to RNA-
seq consisted of a sequence of fully-connected layers with the following sizes: 815, 815, 815,
100, 50, 100, 2613, 2613, 2613. Similarly, the generator for translating RNA-seq to ATAC-seq
consisted of a sequence of fully-connected layers with the following sizes: 2613, 2613, 2613 815,
815, 815, 100, 50, 100, 815, 815, 815. The discriminator model for ATAC-seq data took as input
815 features, followed by 815 hidden nodes and then 100 hidden nodes with a final output layer
of size 1. The discriminator model for RNA-seq data took as input 2613 features, followed by
2613 hidden nodes and then 100 hidden nodes with a final output layer of size 1. All models
used LeakyReLU as activation. The CycleGAN was trained for 2000 epochs with a learning
rate of 0.0002 and batch size of 32. We evaluated the model only in terms of the k-nearest
neighbor accuracy since the fraction of cells in the correct cluster was meant to evaluate the
quality of the latent space. The k-nearest neighbor accuracy of the CycleGAN was computed
in the original instead of the latent space since the model does not rely on the latent space
for domain translation. Similarly, we compared our method against MAGAN [6], which has
an additional correspondence loss term that ensures the measurements coming from the same
sample should be close to each other. We trained MAGAN by providing 5%, 50% and 100% of
paired samples in the training data for the correspondence loss.”

Accordingly, we have also updated the Figure caption of Fig. 2 in the manuscript and the
section in the revised manuscript on model validation on paired single-cell RNA-seq and ATAC-
seq data to reflect the addition of the two new methods (all changes are shown in red in the
revised manuscript).

The authors also did not address how the feature extraction priors affects the integration.
For example, does a 3-layer convolutional encoder embed the same as a 3-layer dense encoder?
Does using a 2-layer convolutional encoder change this?

To demonstrate the robustness of our proposed data integration strategy, we trained mod-
els with varying numbers of latent dimensions, varying numbers of layers in the variational
autoencoder (VAE), and different architecture choices of the image VAE (convolutional versus
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fully-connected). We redid the analysis of Figure 3(b-d) for each of these models and added
these new figures in the supplementary material (see Figures 2-3 below, corresponding to Fig-
ures S8 and S9 in the revised manuscript) to show that our data integration strategy is effective
across different model architectures.

To reflect this analysis we added the following sentence to the revised main text: ”In SI
Appendix, Fig. S8-9, we show that our findings are robust to different architecture choices (fully-
connected versus convolutional layers, number of layers, as well as latent space dimension).”

Alignment in the latent space has some conceptual benefits, but robustness of the integra-
tion to the encoder architecture seems like a crucial component in this framework, but this
cannot be assessed without additional experiments and detail. Reviewer #3 also brought up
lack of benchmarking against similar methods. The addition of a Seurat comparison is certainly
useful, it further emphasizes the lack of comparison to more comparable neural network based
methods of alignment.

We thank the reviewer for the comments. Our added experiments described above show that
our proposed data integration strategy outperforms other comparable neural network based
strategies that do not make use of a latent space and that our cross-model autoencoder is
robust to different architecture choices (fully-connected versus convolutional layers, number of
layers, as well as latent space dimension). In fact, our experiments indicate that the addition
of a lower-dimensional latent space helped provide stability and regularization compared to
cross-modal alignment strategies that operate directly in the high-dimensional input spaces and
require discriminators in these high-dimensional spaces as compared to our discriminator which
operates in the lower-dimensional latent space.
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Reviewer #2 Comments and Responses

The authors have adequately addressed most of the concerns I raised in the first round, and
have improved the benchmarks, readability, and placement of the paper in the larger body of
existing, similar literature. This paper presents an important contribution to the field. Thank
you!

I do have a few additional comments to address. In order of importance:
1. GitHub Management: The addition of the GitHub resource is great to see. I also no-

ticed that in the cross-modal-autoencoders repository, there is a link to preprocessing scripts at
https://github.com/SaradhaVenkatachalapathy/Radial_chromatin_packing_immune_cells.
This secondary repository should also be referenced in the manuscript. Additionally, both re-
sources should be given an appropriate, open source license so that others can be instructed on
how best to attribute and build off of the software this work has produced. Lastly, I strongly
urge that these GitHub repositories be archived using an independent secondary service (e.g.
Zenodo). Archival of the software provides an even stronger link to reproducibility in perpetuity.

We have added the secondary repository in the Data and Code Availability section. Re-
garding licenses, we have added the MIT Open Source License to the main repository. In terms
of archiving using an independent secondary service, we will also deposit the data with an ap-
propriate license on Zenodo upon publication of the manuscript.

2. Adding the usage note: “an iterative process of biological discovery where our predictive
model is used for hypothesis generation” is quite vague. Presumably there could be hundreds
of thousands of hypotheses that could be tested. What classes of hypotheses do the authors
propose? Is it possible to provide a specific example about what the authors envision?

We added the following example: ”where our predictive model is used for hypothesis gen-
eration (for example linking particular image features to particular gene regulatory modules)”.
Linking single-cell imaging and sequencing as proposed in our work is particularly critical for
applications where one of the data modalities is difficult/expensive to obtain. In many appli-
cations large-scale imaging datasets are relatively easier to obtain, including large-scale tissue
biopsies or during early development of an organism. Our method can provide hypotheses based
on the single-cell images on key regulatory genes that underlie disease progression or are regu-
lated spatio-temporally during early development.

3. The authors discuss, but do not test, the addition of single-modality-specific latent fea-
tures (Ni) to overcome the concern regarding single-modality-specific information. Is this indeed
the case? If so, the authors should note that this feature of the architecture was not thoroughly
vetted.

This is correct. We have added the following line in our discussion section to clarify: ”Em-
pirically validating this aspect of our model is a potential direction for future work.”

4. The method details for the differential gene expression / Gene Ontology enrichment anal-
yses are still lacking. Specifically, what GO software was used? What was the gene background
used to determine GO enrichment? Was all of GO included or only a subset? What method
was used and what was the cutoff in determining differential expression?

The main details for differential expression and gene ontology analysis are located in the
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subsection ”Gene expression analysis of naive CD4+ T-cells” under Methods in the main paper.
We here include the relevant excerpts from that section regarding differential expression and
GO enrichment:

”we performed differential expression analysis on the two subpopulations of naive CD4+
T-cells using Wilcoxon rank sum test. We defined marker genes as all genes with Bonferroni-
corrected p-value of < 0.05... Gene ontology analysis was performed on these marker genes
overexpressed in each cluster (average log-fold change > 0) using g:Profiler [37,38], keeping the
top 5 gene ontology biological process terms with lowest p-values (Fig. 3d). All reported p-values
(after adjusting for multiple hypothesis testing using the Benjamini–Hochberg procedure) were
≤ 0.05.”

To provide more details in response to the reviewers questions: For GO enrichment we used
g:Profiler [37,38] with the default options. This included using the ”only annotated genes”
option, which includes only genes with at least one annotation for the gene background. The
whole GO graph (biological process) was queried for enrichment of terms. We reported the top
5 gene ontology biological process terms with lowest p-values. The only non-default change that
we made was the use of the Benjamini–Hochberg procedure to adjust for multiple-hypothesis
testing instead of using the custom method provided by g:Profiler. We used Wilcoxon rank sum
test for differential expression analysis and used a cutoff of < 0.05 for the adjusted p-values.

We changed the following sentence in the revised manuscript to include more details as
suggested by the reviewer: ”Gene ontology analysis was performed on these marker genes over-
expressed in each cluster (average log-fold change > 0) using g:Profiler [37,38] using the ”only
annotated genes” option, keeping the top 5 gene ontology biological process terms with lowest
p-values (Fig. 3d).

This is a signed review. Gregory Way, Ph.D. Postdoctoral Associate Imaging Platform
Broad Institute of MIT and Harvard 415 Main Street Cambridge, MA 02140

We thank the reviewer for the perceptive comments that helped improve our manuscript.
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Reviewer #3 Comments and Responses

The authors have addressed all the issues that I raised in my first review. In particular, they
discuss conditions and limitations of the presented method, which will be very valuable for the
scientific community. I therefore believe that this paper is going to make a fine contribution to
the field.

We thank the reviewer for the positive comments.
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Figure 2: (a) Receiver Operating Characteristic (ROC) curve illustrating performance of clas-
sifiers trained to distinguish between peripheral and central chromatin patterns in images when
evaluated on images translated from RNA-seq data. High performance of classifiers indicates
that the alignment of the clusters in the latent space also holds in the original gene expression
and imaging spaces and is robust to different architecture choices. The dotted line represents
random guessing based on evenly-distributed classes. (b) ROC curves illustrating performance
of classifiers trained to distinguish between quiescent and poised gene expression programs when
evaluated on RNA-seq data translated from images. (c) Linear Discriminant Analysis (LDA)
plots of single-cell RNA-seq (left) and imaging (right) datasets embedded in the latent space for
models with different numbers of latent dimensions. The clusters with more quiescent (blue)
and poised (green) gene expression programs from the RNA-seq dataset are aligned with the
clusters with peripheral (blue) and central (green) chromatin patterns from the imaging dataset.
(d) Same as (c), for models with different numbers of layers in the RNA-seq VAE. (e) Same as
(c), for model with fully connected image VAE. Note that the model with latent dimension of
128 is the same model as the one with 4 layers in the RNA-seq VAE.
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Figure 3: Differential gene expression analysis between cells with central and peripheral chro-
matin pattern performed on the predicted gene expression matrix translated from images using
our methodology with different architecture choices. The predicted fold-change of gene expres-
sion based on images is strongly correlated with the observed fold-change of gene expression
between quiescent and poised naive T-cells from the actual RNA-seq dataset. (a) Original
model with 128 latent dimensions and 4 layers in the RNA-seq VAE, (b) model with 256 la-
tent dimensions, (c) model with 3 layers in the RNA-seq VAE, (d) model with 5 layers in the
RNA-seq VAE, (e) model with fully-connected Image VAE instead of convolutional.
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REVIEWERS' COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
The authors have satisfactorily addressed my comments. In particular I feel that the comparisons 
and placement of work in context is critical for a machine learning contribution. I would further ask 
that the authors discuss the fact that their model, like cycleGAN/MAGAN does not need paired 
data, and highlight situations where paired data is unavailable. 



Reviewer #1: Comments and Responses

The authors have satisfactorily addressed my comments. In particular I feel that the compar-
isons and placement of work in context is critical for a machine learning contribution. I would
further ask that the authors discuss the fact that their model, like cycleGAN/MAGAN does
not need paired data, and highlight situations where paired data is unavailable.

We thank the reviewer for this suggestion. We now include the following sentences in
the main text: ”Similar to CycleGAN, our cross-modal autoencoder does not require paired
samples, which is advantageous for many modalities, where the process of data collection results
in destruction of the cell (e.g. RNA-seq) and thus the same cell cannot be used in another
assay to measure a different modality (e.g. imaging). However, if additional information is
available such as shared markers measured in all modalities and/or paired data, similar to the
MAGAN approach, this prior information can be incorporated through additional terms in the
loss function (see section on incorporating prior knowledge).”
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