

Supplementary Fig.1 BCAR4 fusions that discovered in lung adenocarcinomas. A. *CD63-BCAR4* fusion detected in a patient (NCCLUAD-010) in the present study. **B.** *ERBB3-BCAR4* fusion occurred in one TCGA patient

Supplementary Fig.2 Colony forming assay in lung and breast cancer cells overexpressing CD63-BCAR4. Colony-forming ability was measured for two weeks after 100 cells/well were seeded into 6-well plates. The number of colonies was counted after staining with 0.5% crystal violet solution. All experiments were performed in triplicate. Representative colonies and relative colony-forming activity of CD63-BCAR4 or empty vector-expressing cells. The statistical significances are marked with * (p < 0.05), ** (p < 0.005), or ns (not significant).

Supplementary Fig.3 *Gene expression in BEAS-2B cells overexpressing CD63-BCAR4 and BCAR4.* Semi-quantitative RT-PCR was performed to compare mRNA expression of genes that demonstrated differential expression in microarray.

Liver

Supplementary Fig.4 Tumor formation in liver and lung after intravenous injection in NOG mice. CD63-BCAR4 overexpressing BEAS-2B cells (2×10^5) were injected into tail vein of NOG mice (n=3). Mice were housed under pathogen-free condition in the animal facility and monitored two times a week. Mice were sacrificed at three months after intravenous injection of cells to evaluate tumor growth in organs. Tissue sections of liver and lung were stained with H&E. All animal experiments were performed under the approval of the ethical committee (IACUC) of our institute (NCC-15-271 and KU17167).

Supplementary Fig.5 *Gene expression of SNIP, PTCH1,* and *PPP1R10 in CD63-BCAR4 overexpressed cells.* A.RT-PCR (left) and quantitative real-time RT-PCR (right) were used to compare mRNA expression of *SNIP, PTCH1,* and *PPP1R10* between control vector and CD3-BCAR4 overexpressed cells. B. Expression level of GLI2-target genes was examined by microarray.