Supplementary Information for:

May, A.I., Prescott, M. and Ohsumi, Y.,

Autophagy facilitates adaptation of budding yeast to respiratory growth by recycling serine for one-carbon metabolism

This document contains:

Supplementary Figures 1 - 12 Supplementary Table 1: Antibodies used in this study Supplementary Table 2: Reagents used in this study Supplementary Table 3: Strains used in this study Supplementary Table 4: Plasmids used in this study Supplementary Table 5: Oligonucleotides used in this study

Supplementary Figure 1. Overview of the culture regime employed in this study. (a) Cells were taken from fresh (no older than 5-day-old) YPD plates and inoculated into SDCA medium. Following 24 h of culture, cells were diluted to $OD_{600} = 0.1$ in fresh SDCA media. After a second 24 h incubation in SDCA, cells were washed in and inoculated to subsequent culture media at $OD_{600} = 0.1$. (b) Viability and (c) petite frequency of wild-type (black) and $atg2\Delta$ (blue) cells at the point of inoculation to culture media. (d) Histogram of cell size of wild-type (black) and $atg2\Delta$ (blue) cells at the point of inoculation to culture media. Error bars = 1 standard deviation. Data are from one (b, d) or two (c) independent experiments.

Supplementary Figure 2. Prolonged autophagy mutant respiratory growth t_{lag} is confirmed in an alternative yeast background strain of distinct pedigree. (a) Growth of WT (black lines) and $atg2\Delta$ (blue lines) strains from the alternative background D273-10B on synthetic media supplemented with glucose (solid lines) or ethanol (broken lines) as carbon sources. Data are a single representative determination of data presented in (b) and (c). (b) Statistical analysis of t_{lag} and (c) μ_{log} for wild-type and $atg2\Delta$ cells. Data are from at least five independent experiments Mean growth curves from 3 independent determinations of WT (black) and $atg2\Delta$ (blue) cell growth on a range of fermentative and respiratory carbon sources. Boxplots in (b) and (c) are presented as median (middle bar), 25th and 75th percentiles (upper and lower limits of the box) and 1.5 * interquartile range (whiskers). Sample sizes: n = 4 (glucose) or n = 6 (ethanol). Indicated p-values were calculated using the two-sided Student's t-test with Welch modification. Error bars = 1 standard deviation.

Supplementary Figure 3. The shift from fermentative to non-fermentative media, and not removal of casamino acids, is implicated in the prolonged t_{lag} of $atg2\Delta$ cells. Shown are boxplots of WT (black) and $atg2\Delta$ (blue) t_{lag} for cells cultured under the indicated conditions. As n < 3 for cells pre-grown on ethanol media, these data are presented as individual determinations with a bar indicating the mean t_{lag} . SD, synthetic glucose media without casamino acids, SDCA, synthetic glucose media with casamino acids, SE, synthetic ethanol media without casamino acids, SECA, synthetic ethanol media with casamino acids. Data from at least three (n = 3) independent experiments are shown. Error bars = 1 standard deviation. Boxplots are shown as median (middle bar), 25th and 75th percentiles (upper and lower limits of the box) and 1.5 * interquartile range (whiskers).

Supplementary Figure 4. Changes in cell size reflect delayed onset of autophagy mutant growth on ethanol media. (a) Growth of WT (black) and $atg2\Delta$ (blue) cells on ethanol media. Sampling points are indicated by dotted red lines. (b) Cell size was assessed by particle counter at time points indicated in (a) and are presented as histograms of particle size frequency. Black, wild-type cells, blue, $atg2\Delta$ cells.

Supplementary Figure 5. Bulk autophagy is implicated in prolonged t_{lag} phenotype. (a) Growth of core and non-core *ATG* strains on glucose media. Growth curves from n = 1 experiment are shown. (b) Growth of core and non-core *ATG* strains on ethanol media. These data were quantified and are shown in Fig. 2. Black lines, wild-type, blue lines, $atg2\Delta$, red lines, indicated mutant strain.

b

Supplementary Figure 6. Autophagy is not induced during the lag phase of fermentative growth. (a) WT (black), $atg2\Delta$ (blue) and $atg11\Delta$ (green) cells expressing GFP-Atg8 were inoculated to SD media under the same conditions as shown in Fig. 3b and observed by microscopy at the indicated time points (broken red lines). Data are from a single experiment and were reproduced twice. (b) The phosphorylation of Atg13 was determined by western blotting in WT cells shifted from synthetic glucose media not containing casamino acids (SD) to SD or synthetic ethanol media not containing casamino acids (SE). Data are from a single experiment and were reproduced three times.

Supplementary Figure 7. Low concentrations of serine are able to alleviate $atg2\Delta t_{lag}$ but do not affect autophagy induction. (a) Growth curves for WT (black lines) and $atg2\Delta$ (blue lines) grown on ethanol media alone (solid lines) or with indicated concentrations of serine (broken lines). These data are representative of three independent experiments that were quantified and are shown in Fig. 4. (b) GFP-Atg8 cleavage was assessed in wild-type, $atg2\Delta$ and $atg11\Delta$ cells growth on synthetic media with or without serine. Data are from a single experiment.

Supplementary Figure 8. Prolonged $atg2\Delta t_{lag}$ is not alleviated by the supplementation of iron. Ferric chloride was added to respiratory media at the indicated concentrations and WT (solid lines) and $atg2\Delta$ (broken lines) growth were determined. The average of n = 3 growth experiments is shown.

Supplementary Figure 9. Overview of the strategy used to determine formylation of Met-tRNA^{fMet}. (a) detailed overview of the fate of serine in the reactions of one-carbon metabolism. The phenomenon addressed in this paper concerns the mitochondrial reactions (enzymes catalysing these reactions are indicated in green). (b) A comparison of Met-tRNA species found in yeast. The sequence of initiator tRNA in mitochondria is sufficiently different as to allow for its specific probing by northern blotting.

Supplementary Figure 10. The deletion of *SHM1* strongly affects μ_{log} but not the t_{lag} of ethanol-grown cells. WT (black), $atg2\Delta$ (blue) and $shm1\Delta$ (red) cells were grown on ethanol media and growth in the absence (solid lines) or presence (broken lines) or serine determined. The average of n = 2 growth experiments is shown.

Supplementary Figure 11. t_{lag} duration correlates with initiator tRNA formylation and mitochondrial protein expression in a range of one carbon metabolism mutant strains. (a) Formylation of WT, *fmt1* Δ and *mis1* Δ initiator tRNA under the conditions shown in Fig. 6c. (b) Formylation of WT and *shm1* Δ initiator tRNA under the conditions shown in Fig. 6c. (c) Formylation of WT and *atg2* Δ initiator tRNA under the conditions shown in Fig. 6c, but with glycine supplemented to media instead of serine. (d) Mitochondrial protein expression, as determined by the incorporation of ³⁵S-labelled cysteine and methionine, was determined by autoradiography under the same conditions as shown in Fig. 6d. Samples were collected as indicated in the growth curves at the left of each figure. Data are single determinations from individual experiments.

Gating for cells:

DiOC6-stained WT cells

Gating for cells with high $\Delta \Psi_m$:

Supplementary Figure S12. Gating strategy used to determine cells with high mitochondrial membrane potential ($\Delta \Psi_m$). First, non-cell debris were removed by gating for cells by forward and side scatter. Following this, the proportion of highly fluorescent newly-emerged cells was identified by gating for the indicated region in the FL1-A channel. The proportion of cells falling within this region are shown in Fig. 5b. The logicle transformation was used for forward and side scatter data. The data shown in this figure are from the t = 26 h time point of the experiment shown in Fig. 5.

SUPPLEMENTARY INFORMATION

Supplementary Table 1: Antibodies used in this study

Resource	Supplier	Reference number
Mouse monoclonal Anti-GFP, clones 7.1	Roche	11814460001
and 13.1		
Rabbit polyclonal Anti-Ape1	Ohsumi lab	NA
	stock	
Mouse monoclonal Anti-β-actin	Wako	011-24554
Rabbit polyclonal Anti-Atg13	Ohsumi lab	NA
	stock	

Supplementary Table 2: Reagents used in this study

Reagent	Supplier	Reference number
Difco Yeast Nitrogen Base w/o Amino	BD	233520
Acids and Ammonium Sulfate		
Ammonium sulfate	Nacalai	02620-04
Bacto Casamino acids	BD	223050
Bacto Yeast extract	BD	212750
Bacto Peptone	BD	211677
Glucose	Nacalai	16806-54
Ethanol	Wako	14713-53
Galactose	Wako	075-00035
Sucrose	Wako	193-09545
Glycerol	Wako	075-00616
Sodium acetate	Wako	190-01075
Raffinose	Wako	184-00015
Lactate	Wako	195-02305
L-Glutamic Acid	Wako	070-00502
L(+)-Glutamine	Wako	074-00522
Glycine	Wako	073-00732
L-Serine	Wako	199-00402
D-Serine	Wako	191-08821
Adecanol	Adeka	LG-109
FCCP	Sigma	C2920
Urea	Sigma	U6504
TRIzol	Life Tech	15596026
Methyl blue	Sigma	M6900
DiOC6	Molecular	D273
	probes	
Triphenyltetrazolium chloride	Sigma	T8877
Adenosine 5'-triphosphate, [γ- ³² P]-	PerkinElmer	NEG502Z
Met- ³⁵ S label (stabilized)	ARC Inc.	ARS0110A
T4 Polynucleotide Kinase	Toyobo	PNK-111
KOD -plus- Ver. 2	Toyobo	KOD-211
PerfectHyb Plus	Sigma	H7033

Supplementary Table 3: Strains used in this study

Strain	Source	Reference number
S. cerevisiae X2180-1B (MATa SUC2	Lab stock	ATCC#204505
mal mel gal2 CUP1)		
S. cerevisiae X2180-1B $atg1\Delta$	This study	yAM150
(MATa SUC2 mal mel gal2 CUP1		
atg1 Δ ::KANMX)		
S. cerevisiae X2180-1B atg 2Δ	This study	yAM151
(MATa SUC2 mal mel gal2 CUP1		
atg1 Δ ::KANMX)		
<i>S. cerevisiae</i> X2180-1B $atg3\Delta$	This study	yAM306
(MATa SUC2 mal mel gal2 CUP1		
$atg1\Delta::KANMX)$		
<i>S. cerevisiae</i> X2180-1B $atg4\Delta$	This study	yAM308
(MATa SUC2 mal mel gal2 CUP1		
$atgI\Delta::KANMX)$		
S. cerevisiae X2180-1B $atg5\Delta$	This study	yAM310
(MATa SUC2 mal mel gal2 CUP1		
$atgI\Delta::KANMX)$		
S. cerevisiae X2180-1B $atg6\Delta$	This study	yAM312
(MATa SUC2 mal mel gal2 CUP1		
$atgI\Delta$::KANMX)	TT1 · / 1	A \$ 4214
S. cerevisiae X2180-1B atg/Δ	This study	YAM314
(MATa SUC2 mai mel gal2 CUPT		
$\frac{dlg1\Delta.:KANMA}{S}$	This starday	AM216
S. cereviside $\lambda 2180-1B$ dig8 Δ	This study	yAM310
$(MAI0 SUC2 mai mei gai2 CUP1 ata 1 \wedge K \wedge K \wedge K \wedge K$		
$uig_{1\Delta}$, KAIVMA) S. correvision Y2180 1P. $ata0A$	This study	vAM443
S. $Cereviside A2160-1B dig9\Delta$ (MATa SUC2 mal mal gal2 CUP)	This study	yAM445
(MATU SOCZ mut met gut2 COTT $atalA \cdots KANMY)$		
S correvision X2180-1B ata 10A	This study	vAM318
(MATa SUC2 mal mel gal2 CUP1	This study	y/ 11/15/10
ato1 ··· KANMX)		
S cerevisiae X2180-1B ato 11A	This study	vAM153
$(MATa SUC2 mal mel \alpha al2 CUP1$	This study	yr ivi i so
$atg 1 \Lambda$:: KANMX)		
S. cerevisiae X2180-1B $atg/2\Delta$	This study	vAM320
(MATa SUC2 mal mel gal2 CUP1		<i>y</i> =
$atgl\Delta$::KANMX)		
S. cerevisiae X2180-1B atg $I3\Delta$	This study	vAM322
$(MAT\alpha SUC2 mal mel gal2 CUP1$	5	5
$atgl\Delta::KANMX$		
S. cerevisiae X2180-1B $atg14\Delta$	This study	yAM340
(MATa SUC2 mal mel gal 2 CUP1	-	-
$atg1\Delta::KANMX)$		
S. cerevisiae X2180-1B $atg15\Delta$	This study	yAM342
(MAT α SUC2 mal mel gal 2 CUP1		
$atg1\Delta$::KANMX)		

S. cerevisiae X2180-1B $atg16\Delta$	This study	yAM344
$(MAT\alpha SUC2 mal mel gal2 CUP1$		
$atg1\Delta$::KANMX)		
S. cerevisiae X2180-1B atg17 Δ	This study	yAM346
$(MAT\alpha SUC2 mal mel gal2 CUP1$	2	
$atg1\Delta$::KANMX)		
S. cerevisiae X2180-1B atg18 Δ	This study	yAM348
(MATa SUC2 mal mel gal2 CUP1	5	5
$atgl\Delta::KANMX$		
S. cerevisiae X2180-1B ate 19Δ	This study	vAM350
(MATa SUC2 mal mel gal2 CUP1	5	5
$atgl\Delta::KANMX)$		
S cerevisiae X2180-1B $atg20\Lambda$	This study	vAM352
(MATa SUC2 mal mel gal2 CUP1	11110 000000	y1
$atg 1 \Lambda$:: KANMX)		
S cerevisiae X2180-1B atg22 Λ	This study	vAM358
(MATa SUC2 mal mel gal2 CUP)	11110 000003	<i>y</i> ¹
$at\sigma 1 \wedge \cdots K A NMX$		
S cerevisiae X2180-1B ato 23A	This study	vAM356
(MATa SUC2 mal mel gal2 CUP)	This study	<i>y</i> ¹ 111550
$(MIII @ 50 C2 mai met gut2 C01 Iatg1A \cdots KANMX)$		
S correvision X2180-1B ato 24 Λ	This study	vAM360
(M4Ta SUC2 mal mel gal2 CUP1	This study	y/11/15/00
(MATU 5002 mai met gat2 0011) atal $\Lambda \cdots KANMY$		
S correvision X2180 1B ato 27A	This study	xAM362
S. Cereviside $A2100-1D$ dig 27Δ (MATa SUC2 mal mal gal2 CUP)	This study	yAWI302
(MATU SOC2 mai mei gai2 COTTatalA ··· KANMY)		
$\frac{uigi\Delta.KANNA}{S}$	This study	xAM264
S. $Cereviside A2180-1D dig29\Delta$ (MATa SUC2 mal mal gal2 CUP)	This study	yAM304
(MATU 50C2 mut met gut2 COT 1)		
$\frac{uigi\DeltaKAWWA}{S}$	This study	vAM266
S. $Cereviside A2180-1D dig 51\Delta$ (MATa SUC2 mal mal gal2 CUP)	This study	yAM300
(MATU SOC2 mai met gut2 COTTatalA ··· KANMY)		
$\frac{uigi\DeltaKAWMA}{S}$	This study	xAM162
S. $Cereviside A2180-1D dig52\Delta$ (MATa SUC2 mal mal gal2 CUP)	This study	yAM102
(MATU SOC2 mut met gut2 COTTatalA ··· KANMY)		
$\frac{uigi\DeltaKAWWA}{S}$	This study	xAM268
S. $Cereviside A2100-1D dig55\Delta$ (MATa SUC2 mal mal gal2 CUP)	This study	yAW508
(MATU SOC2 mut met gut2 COTTatalA ··· KANMY)		
$\frac{uigi\DeltaKAWMA}{S}$	This study	xAM270
S. $Cereviside A2180-1B dig54\Delta$ (MATa SUC2 mal mal gal2 CUP)	This study	yAM370
$(MATU SOC2 mai met gut2 COTTatalA \cdots KANMY)$		
$\frac{u[g1\Delta, KANNA}{S}$	This study	x A M 272
S. $Cereviside A2180-1B dig50\Delta$	This study	yAM372
(MATO SUC2 mai mei gai2 CUPT		
$\frac{digi\DeltaKANMA}{S}$	This starday	4 1 4 2 7 4
S. cereviside $X_{2180-1B}$ digs $\delta\Delta$	This study	yAM3/4
(MATO SUC2 mai mei gal2 CUPI		
$\frac{uigi\Delta: KANMA}{S}$		A M27(
S. cerevisiae $X_{2180-1B}$ atg39 Δ	I his study	yAIVI3/6
(MAIO SUC2 mai mel gal2 CUPI		
$atg1\Delta$::KANMX)		

S. cerevisiae X2180-1B $atg40\Delta$	This study	yAM378
(MATa SUC2 mal mel gal2 CUP1		
$atg1\Delta$::KANMX)		
S. cerevisiae X2180-1B $pep4\Delta$	This study	yAM154
(MATa SUC2 mal mel gal2 CUP1		
$pep4\Delta::KANMX)$		
S. cerevisiae X2180-1B fmt1 Δ atg2 Δ	This study	yAM237
(MATa SUC2 mal mel gal2 CUP1		
$fmt1\Delta$::natNT2 atg2 Δ ::KANMX)		
S. cerevisiae X2180-1B mis 1Δ atg 2Δ	This study	yAM440
(MATa SUC2 mal mel gal2 CUP1		
$mis1\Delta::natNT2 atg2\Delta::KANMX)$		
S. cerevisiae X2180-1B mis $I\Delta$	This study	yAM461
(MATa SUC2 mal mel gal2 CUP1		
$mis1\Delta::natNT2)$		
S. cerevisiae X2180-1B fmt1 Δ	This study	yAM463
(MATa SUC2 mal mel gal2 CUP1		
$fmt1\Delta$::natNT2)		
S. cerevisiae X2180-1B GFP-Atg8	This study	yAM158
(MATa SUC2 mal mel gal2 CUP1		
atg8∆::GFP - ATG8::hphNT1)		
<i>S. cerevisiae</i> X2180-1B <i>atg2</i> Δ GFP-Atg8	This study	yAM159
(MATa SUC2 mal mel gal2 CUP1		
<i>atg8</i> ∆::GFP - ATG8::hphNT1		
$atg2\Delta::KANMX)$		
S. cerevisiae X2180-1B atg 11Δ GFP-	This study	yAM160
Atg8 (MATa SUC2 mal mel gal2 CUP1		
<i>atg8</i> ∆::GFP - ATG8::hphNT1		
$atg11\Delta::KANMX))$		
S. cerevisiae D273-10B (MATa mal)	Trevor	yAM086
	Lithgow	
S. cerevisiae D273-10B $atg2\Delta$	This study	yAM096
$(MAT \alpha mal atg2\Delta::KANMX)$		
S. cerevisiae D273-10B atg11 Δ	This study	yAM100
(MAT α mal atgl1 Δ ::KANMXMX)		

Supplementary Table 4: Plasmids used in this study

Name	Туре	Source	Description
pFA6a-kanMX6	Plasmid	Janke et al. ⁵¹	Generic plasmid for PCR-
			mediated generation of
			targeted deletion cassettes
pFA6a-natNT2	Plasmid	Janke et al. ⁵¹	Generic plasmid for PCR-
			mediated generation of
			targeted deletion cassettes
pRS303-GFP-ATG8	Plasmid	Suzuki, et	C-terminally tagged Atg8
		al. ⁵⁰	for genomic integration
			following amplification of
			cassette by PCR.

Name	Source	Sequence
		tttgaagctaccccatattttcaaatctcttttacaacaccagacgagaaattaagaa
ATG1_S1	This study	aatgCGTACGCTGCAGGTCGAC
	This study	aagatacttgaaaatatagcaggtcatttgtacttaataagaaaaccatattatgcat
ATG1_S2		cacATCGATGAATTCGAGCTCG
ATG1_8F	This study	taatataataaaaacataaggc
ATG1_5R	This study	caggtataaaagagctgg
	This study	gcataaagattaaagcaaattaagaggaaccctttttttt
ATG2_S1		GTACGCTGCAGGTCGAC
	This study	cggccgaataattgccacaggtgcagctctagcaacataaactgctgcggcgct
ATG2_S2		cggcccATCGATGAATTCGAGCTCG
ATG2_VerF-216	This study	cgcgataatgaatatgcaagg
ATG2_VerR+96	This study	cattttggctttcccacc
	This study	tagaagttaggaacaaagaagtacaaaggagtaaatacaattttattatcCGTA
ATG3_S1		CGCTGCAGGTCGAC
	This study	ctgttttttgaccacctggcttgcagctaatagtgaaaaaacacaaatttATCGA
ATG3_S2		TGAATTCGAGCTC
ATG3_2F	This study	tagtagatttettattttte
ATG3_3R	This study	aatattcataatttatgtca
	This study	ttagtagatgaagaatggacgacttcttatcacgtataggagtgatatacCGTA
ATG4_S1		CGCTGCAGGTCGAC
	This study	gaatatattaaaacaagtatatatgcttatgaactagtgaattccttacaATCGA
ATG4_S2		TGAATTCGAGCTC
ATG4_VerF-218	This study	cacttetteettetagaaaete
ATG4_VerR+244	This study	ggcattttggacttcgac
	This study	ttgttcttttggttctagaagaacggagataggaaacctatgatgtaagtCGTAC
ATG5_S1		GCTGCAGGTCGAC
	This study	tattttctgcgatatttgaatgacacttttaaatgcgtatataacagctcATCGAT
ATG5_S2		GAATTCGAGCTC
ATG5_2F	This study	atgatcgaagttttgtccgg
ATG5_3R	This study	aaagtatcaacagctctcga
	This study	gccaaacatgtcacttacccctgcaactagacccatctttagaaggtcttagtCG
ATG6_S1		TACGCTGCAGGTCGAC
	This study	gtggaaaaagaaattttccctttatcacatttatgaaaaaatgcatttatatgaactac
ATG6_S2		ATCGATGAATTCGAGCTCG
ATG6_VerF-185	This study	ggactggtggtataatcgaa
ATG6_VerR+170	This study	ctggcatatcatctgatgaaag
	This study	gctacttagataactaaagttcattatatttcaacaaatataagataatcaagaataaa
ATG7_S1		atgCGTACGCTGCAGGTCGAC
	This study	ggaaagtggcaccacaatatgtaccaatgctattatatgcaaaatattaagcaatct
ATG/_S2		catcATCGATGAATTCGAGCTCG
ATG7_VerF-196	This study	ggcaagcaagatttttcatttg
ATG/_VerR+261	This study	ggtagctttaccgacacttt
	This study	tgataagagaatctaataattgtaaagttgagaaaatcataataaaaataattactag
ATG8_S1		agacCGTACGCTGCAGGTCGAC
	This study	cctataatttcgattttagatgttaacgcttcatttcttttcatataaaagactacctgcc
ATG8_S2		ATCGATGAATTCGAGCTCG
ATG8_VerF-171	This study	gcacatgatatatcatcaccc

Supplementary Table 5: Oligonucleotides used in this study

ATG8_VerR+207	This study	gctcacatttgtctccaaatac
	This study	gcctgaaatatcaaaatcacggaattattaggttatggagagaga
ATG9_S1		tacccCGTACGCTGCAGGTCGAC
	This study	gccttatcttccgacgtcagacttcttgtaatactctttaacaagtcctaagacacca
ATG9_S2		cccATCGATGAATTCGAGCTCG
ATG9_6F	This study	cccagtttcggaactttagggg
ATG9_5R	This study	attaggcttctcagagac
	This study	gaagagaacaccatgaaaaaaaaaaaaaaaaagggctaaaaaaacagaattatcag
ATG10_S1		acttgatgCGTACGCTGCAGGTCGAC
	This study	atatatatatatattacatagatgattgcatagtgttttaaaaagctttcctaggttaag
ATG10 S2		ATCGATGAATTCGAGCTCG
ATG10 VerF	This study	gcaatgagaagagaacacc
ATG10 VerR	This study	ccgacacatcatcagaaga
	This study	attattttagtgtactgttgttgttcggaaagtacttcttttatttcttttatacatcatgC
ATG11 S1	5	GTACGCTGCAGGTCGAC
	This study	gttaaatagatacataattaaaatcttgtcatttgtgacaaacgtttagcactgttcaa
ATG11 S2	5	acATCGATGAATTCGAGCTCG
ATG11 7F	This study	gcgatgcccttatttgagtacc
ATG11 6R	This study	ccttttccagagatgaggaaaattcaccagg
	This study	aacgtacatccctaactgtatattctacagtagagtgaaccaatgacagtCGTA
ATG12 S1		CGCTGCAGGTCGAC
_	This study	ttttgatcgactgtaggttttcttcttagaccattccagcgcccgggtatATCGA
ATG12 S2		TGAATTCGAGCTC
ATG12 1F	This study	GTGATTTTCTTTTCAGTGT
ATG12_2R	This study	TCAAACACTTTCGATGAAAT
	This study	ccttccaggctcaagtcttgaaaagaaagcagaacatacagcccggttgaatagc
ATG13 S1	5	atgagtcCGTACGCTGCAGGTCGAC
_	This study	gattattttctttagttgtgccctttaaaataaaactttaccattttaaccttctttagA
ATG13 S2	5	TCGATGAATTCGAGCTCG
ATG13 VerF-	This study	
150 -	5	cgagaagtagaaacaagggt
ATG13 VerR+18	This study	
2 -	5	gacacatggatcttcaagagg
	This study	tagaaggataacgagtagagaaaaagggaagtaaaagttaaaaactagaatcct
ATG14 S1	5	agtatgacCGTACGCTGCAGGTCGAC
_	This study	ctgactacatgcaactttatacacacggcaggaaaaaaagtgcgcactctagcct
ATG14 S2	j	accacgATCGATGAATTCGAGCTCG
ATG14 VerF-	This study	~
237		gcaatgccaatgatgaatatg
ATG14 VerR+70	This study	cactggctgctattgtttat
	This study	atgttgcataaaagcccttcaagaaagagatttgcttctcctttgCGTACGCT
ATG15 S1		GCAGGTCGAC
	This study	ttacaactcgtatttggtgcagaagccaagccaattgcggcctacATCGATG
ATG15_S2		AATTCGAGCTCG
ATG15_VerF-	This study	
261		gtgattgtgtgatcgcagt
ATG15_VerR+12	This study	
1		ctcgtgtcgtttagctgaa
	This study	ttgatttttgttattaacctgcgcgaatctgtattaagggcgcatattccCGTAC
ATG16_S1		GCTGCAGGTCGAC

ATG16 S2	This study	gatttatttettttgtatgcattttgtgacgatttgacaactgatgcaATCGATG
ATC16 VerE	This starday	AATTCOAUCTC
177	This study	gctgcaactgtttatcctg
ATG16 VerR+14	This study	
3	Tills study	gototactetetaageatot
5	This study	
ATG17_S1	This study	CGTACGCTGCAGGTCGAC
ATG17 S2	This study	cgaaatattgatacaattattgaatctttgtaccgtatcctttttttctaaggA
ATG17 VerE	This study	
	This study	aatatataasttataatattt
172 ATC17 V. D+2(This star las	
$AIGI/_verk+20$	This study	
8		ccaacacagattcacagc
ATG18 S1	This study	cagttagtaatagtgttccagttaactctgtatccttttctcttcggcctgacaatgC
AI010_51	This starday	
ATG18 S2	This study	gtgtatgcgttgtgacgtacggaaggcagcgcgagacacttccgtgatcaatcca tcaagATCGATGAATTCGAGCTCG
ATG18 VerF-	This study	
105	11110 00000	gotaactcagcagtgotc
$\Delta TG18$ Ver $R+12$	This study	
	This study	acaacaaataataataaca
0	This study	
ATG19 S1	This study	gtaaatgCGTACGCTGCAGGTCGAC
	This study	gtatgtgaaaaggtactcattgctgtataaaaatagagtttgacctagagttcttccc
ATG19 S2	2	aagATCGATGAATTCGAGCTCG
ATG19 VerF-82	This study	ggtgtatcagacgaaagaaga
ATG19 VerR+14	This study	<u> </u>
	Time study	gctaggtgataagtaatgagagg
	This study	cgaatactggtggtgcaattgaacataccatctagaaaagttgtcttctacagcaca
ATG20 S1	2	caatgCGTACGCTGCAGGTCGAC
_	This study	acgttgtttatatatatatatatataagtatgctataacgctaaaaaaaa
ATG20 S2		aATCGATGAATTCGAGCTCG
ATG20 VerF-	This study	
245	T ms study	getottteaatettgeteate
$\Delta TG20$ VerR+27	This study	
$\frac{1020}{3}$ vert $\frac{127}{3}$	This study	acaataaaacataatcatct
ATG22 S1	This study	geoattatageoattattacteateacattattatatacattagetataCGTAC
AI022_51	This study	GCTGCAGGTCGAC
ATG22 S2	This study	ccttatatatatacotaaocaaaottttatotaacaaaaaaaa
	Time study	CGATGAATTCGAGCTCG
ATG22 VerF-	This study	
121 -		cctcagctattgaaagatgc
ATG22_VerR+14	This study	
9	_	cgtagttgcatcaaaccc
ATG23_S1	This study	ccacattttaacctcgttgttctataaggtaacaaaataaagtgaagaagtaaatatg
ATC22 52	This starter	
A1023_52	i nis study	ATCGATGAATTCGAGCTCG

ATG23 VerF-	This study	
297 -		cctagccctaggacaact
ATG23_VerR+25	This study	
5		gcctagatcatgatcttgaagt
ATG24_S1	This study	taagccgttattaaactttatttacggtataccacaatactgctcttttgttgaggatat gCGTACGCTGCAGGTCGAC
ATG24_S2	This study	atcagataatcgtagtgcccaaggtattatcagtagtaatgggaaaacattaagag caccaATCGATGAATTCGAGCTCG
ATG24 VerF-95	This study	cgacgcaagattaacagattaaa
ATG24 VerR+20	This study	
7 -	5	ggaagaacaatgcaaaatgttt
ATG27_S1	This study	gatttatatctgagatcttcaatcgatgcgatagataaaggtaaggaaagctttcac gatgCGTACGCTGCAGGTCGAC
ATG27_S2	This study	atataataaaaggttagcactgctgttgcaaaaatatcgaattgtaagccagtaaac ttatATCGATGAATTCGAGCTCG
ATG27 VerF-	This study	
159 -	5	gtccaggtgcaaattgaaaa
ATG27 3R	This study	gacgaaactgttcttctgg
	This study	cttatcaagaagagacatacataattgtactgctgtgcattttcctacttgactttcatg
ATG29_S1		CGTACGCTGCAGGTCGAC
	This study	ccaacgcagatttactaacacttaagctcgaagataaatcgtcatctgaactaccg
ATG29_S2		cATCGATGAATTCGAGCTCG
ATG29_VerF-	This study	
136		cttcaagtacactatttctagacg
ATG29_VerR+24	This study	
9		gcctcagacagcagagaata
477621 61	This study	cgtcgcattcccattttcttattaagccggtaaacattgctgaaatctgcgaacagg
AIG31_SI	This star las	
ATC21 S2	I his study	
ATG21 VorE	This study	galcoaldaallcoadcico
	This study	aateeaataatteaaaa
ATG31 3R	This study	otcoatttootagaaaggot
<u></u>	This study	
ATG32 S1	This study	taaacatCGTACGCTGCAGGTCGAC
	This study	aacagaagtgatagtaaaaaagtgagtaggaacgtgtatgtttgtgtatattggaa
ATG32 S2	2	aaaggATCGATGAATTCGAGCTCG
ATG32 1F	This study	ATTTAGGAAATAAGGTGCAG
ATG32_2R	This study	AATTTGCTAACAGAAGAAAT
	This study	ttagccaaattcgcttatcacttactacttcacgatatacagaagtaaaaaacatataa
ATG33_S1		aaagCGTACGCTGCAGGTCGAC
	This study	agaggagccgagttcaggcagctacaaattcttgtagagataaatacgtgaacga
ATG33_S2		gaaacaATCGATGAATTCGAGCTCG
ATG33_VerF-95	This study	ggcaaaagaggtcccttg
ATG33_VerR+22	This study	
2		gagcacctacaaatgtgctt
ATG34_S1	This study	ctagttcctataggttgagtgtctatcaaaaatttacggagacgcgatgCGTAC GCTGCAGGTCGAC
	This study	gttaaataagtactatagccaaagaaactggaagaatataaaaaagcatttaAT
ATG34_S2		CGATGAATTCGAGCTCG

ATG34 VerF-	This study	
225 -	5	ctgtgagcttgggtatacag
ATG34 VerR+14	This study	
8 -		ctgtcttaggtttctcaacag
	This study	gtattcagggcttaaaatactaaaatttggtggtcagtacagctcattaatgCGT
ATG36_S1	-	ACGCTGCAGGTCGAC
	This study	gatggtgttcggacaacgttttagaatgagggtatctaactttcttctaATCGAT
ATG36_S2		GAATTCGAGCTCG
ATG36_VerF-	This study	
162		catcgttatacacgtacgatc
ATG36_VerR+22	This study	
1		ctggagagcacacaaaa
	This study	gttcgataattcaacgacagttatactaatcttggtgatggaatgCGTACGCT
ATG38_S1		GCAGGTCGAC
	This study	gttaaaagacgatacttcgtatcttgaaaagaaattaccttattcgtctaATCGA
ATG38_S2		TGAATTCGAGCTCG
ATG38_VerF-97	This study	gcgtaatggaacgctct
ATG38_VerR+24	This study	
7		gcatccttgattccgtttc
	This study	cgataatagagactagtaaaacagtcgagttgtcggacctaaaatgCGTACG
ATG39_S1		CTGCAGGTCGAC
	This study	cgtttttttttttttttttttttttttttttttttttt
ATG39_S2		TGAATTCGAGCTCG
ATG39_VerF-	This study	
245		caaggtacctggatcgag
ATG39_VerR+24	This study	
7		gagatggatagcatacgttatg
	This study	cctaacgttctttctgctgtgcttcactccaccatagaaaactaatgCGTACGC
ATG40_S1		TGCAGGTCGAC
	This study	ggtaccttcatagactaccattatggtaaaatggaaaaactattctaATCGAT
ATG40_S2		GAATTCGAGCTCG
ATG40_VerF-	This study	
182		cctaagcagcgaaatacac
$ATG40_VerR+20$	This study	
1	T 1 1	ccgatacagcatgtttaacc
	This study	agectagtgacetagtatttaatecaaataaaatteaaacaaaaaceaaaactaae
PEP4_SI	T1 · / 1	atgttcCGTACGCTGCAGGTCGAC
	This study	ctagatggcagaaaaggatagggcggagaagtaagaaaagtttagctcaaattg
PEP4_S2	T1 · / 1	ctttggcATCGATGAATTCGAGCTCG
PEP4_IF	This study	gggaagaataacaaaaagtatatctcaccc
PEP4_2R	This study	cgggctacccgcatataatgacattatggg
FMI1_SI	This study	ggggacctaggcacctcatagtgagaagattgaaaacggcgtatcaaacaaa
FMT1_S2	This study	gaaagaagggagaagaagaatactaaaagaggaatgtagagccgggttaAT CGATGAATTCGAGCTCG
FMT1_VerF	This study	gctcatctcggtttcttaat
FMT1_VerR	This study	gggcttcctacacttaattca
MIS1_S1	This study	tctcagtctgttcatttgtcagatatttaaggctaaaaggaaatgCGTACGCT
_		GCAGGTCGAC

MIS1_S2	This study	catcgaggtcgaattgatgccattaggagtctgccaaactatttaATCGATG AATTCGAGCTCG
MIS1_VerF	This study	ctcctgcaacactcttctat
MIS1_VerR	This study	gctttattgaaggaagacgc
Mitochondrial	Li, et al. ²⁹	tagcaataatacgatttg
initiator tRNA		
oligonucleotide		
probe for northern		
blotting		